曲线拟合的最小二乘法matlab举例
matlab最小二乘法曲线拟合

matlab最小二乘法曲线拟合最小二乘法是一种常用的曲线拟合方法,它通过最小化实际观测值与拟合曲线之间的平方误差来确定最佳拟合曲线的参数。
给定一组实际观测数据点(xi, yi),我们希望找到一个拟合曲线y=f(x;θ),其中θ表示曲线的参数。
最小二乘法的目标是使误差的平方和最小化,即使得下述损失函数最小化:L(θ) = ∑(yi - f(xi;θ))^2其中,∑表示求和运算,L(θ)是损失函数,yi是第i个观测数据点的输出值,f(xi;θ)是根据参数θ计算得到的拟合曲线在第i个观测点的预测值。
为了找到最佳的参数θ,我们通过最小化损失函数来求解优化问题:minimize L(θ)这个问题可以通过求解等式∂L/∂θ = 0 来得到最优参数θ的闭式解。
具体的求解方法,可以通过矩阵和向量的运算来实现。
在Matlab中,可以使用“polyfit”函数进行最小二乘法的曲线拟合。
该函数可以拟合出一条多项式曲线,通过指定最佳拟合的次数,即多项式的阶数。
拟合结果包括最佳参数和拟合误差等信息。
使用方法如下:```% 输入观测数据x = [x1, x2, x3, ...]';y = [y1, y2, y3, ...]';% 拟合曲线order = 1; % 最佳拟合的次数(如一次线性拟合)p = polyfit(x, y, order);% 最佳参数coefficients = p;% 拟合曲线curve = polyval(p, x);% 绘制拟合曲线和观测数据plot(x, y, 'o', x, curve)```这样,就可以使用Matlab的最小二乘法曲线拟合方法来得到最佳的拟合曲线。
曲线拟合的线性最小二乘法及其MATLAB程序

3.1 曲线拟合的线性最小二乘法及其MATLAB 程序例3.1.1 给出一组数据点),(i i y x 列入表3-1中,试用线性最小二乘法求拟合曲线,并估计其误差,作出拟合曲线.表3-1 例3.1.1的一组数据),(y x解 (1)在MATLAB 工作窗口输入程序>> x=[-2.5 -1.7 -1.1 -0.8 0 0.1 1.5 2.7 3.6];y=[-192.9 -85.50 -36.15 -26.52 -9.10 -8.43 -13.12 6.50 68.04];plot(x,y,'r*'),legend('实验数据(xi,yi)')xlabel('x'), ylabel('y'),title('例3.1.1的数据点(xi,yi)的散点图')运行后屏幕显示数据的散点图(略).(3)编写下列MA TLAB 程序计算)(x f 在),(i i y x 处的函数值,即输入程序>> syms a1 a2 a3 a4x=[-2.5 -1.7 -1.1 -0.8 0 0.1 1.5 2.7 3.6];fi=a1.*x.^3+ a2.*x.^2+ a3.*x+ a4运行后屏幕显示关于a 1,a 2, a 3和a 4的线性方程组fi =[ -125/8*a1+25/4*a2-5/2*a3+a4,-4913/1000*a1+289/100*a2-17/10*a3+a4,-1331/1000*a1+121/100*a2-11/10*a3+a4,-64/125*a1+16/25*a2-4/5*a3+a4,a4, 1/1000*a1+1/100*a2+1/10*a3+a4,27/8*a1+9/4*a2+3/2*a3+a4, 19683/1000*a1+729/100*a2+27/10*a3+a4, 5832/125*a1+324/25*a2+18/5*a3+a4]编写构造误差平方和的MA TLAB 程序>> y=[-192.9 -85.50 -36.15 -26.52 -9.10 -8.43 -13.12 6.5068.04];fi=[-125/8*a1+25/4*a2-5/2*a3+a4,-4913/1000*a1+289/100*a2-17/10*a3+a4,-1331/1000*a1+121/100*a2-11/10*a3+a4,-64/125*a1+16/25*a2-4/5*a3+a4, a4, 1/1000*a1+1/100*a2+1/10*a3+a4,27/8*a1+9/4*a2+3/2*a3+a4,19683/1000*a1+729/100*a2+27/10*a3+a4,5832/125*a1+324/25*a2+18/5*a3+a4];fy=fi-y; fy2=fy.^2; J=sum(fy.^2)运行后屏幕显示误差平方和如下J=(-125/8*a1+25/4*a2-5/2*a3+a4+1929/10)^2+(-4913/1000*a1+289/100*a2-17/10*a3+a4+171/2)^2+(-1331/1000*a1+121/100*a2-11/10*a3+a4+723/20)^2+(-64/125*a1+16/25*a2-4/5*a3+a4+663/25)^2+(a4+91/10)^2+(1/1000*a1+1/100*a2+1/10*a3+a4+843/100)^2+(27/8*a1+9/4*a 2+3/2*a3+a4+328/25)^2+(19683/1000*a1+729/100*a2+27/10*a3+a4-13/2)^2+(5832/125*a1+324/25*a2+18/5*a3+a4-1701/25)^2为求4321,,,a a a a 使J 达到最小,只需利用极值的必要条件0=∂∂k a J )4,3,2,1(=k ,得到关于4321,,,a a a a 的线性方程组,这可以由下面的MA TLAB 程序完成,即输入程序>> syms a1 a2 a3 a4J=(-125/8*a1+25/4*a2-5/2*a3+a4+1929/10)^2+(-4913/1000*a1+289/100*a2-17/10*a3+a4...+171/2)^2+(-1331/1000*a1+121/100*a2-11/10*a3+a4+723/20)^2+(-64/125*a1+16/25*a2-4/5*a3+a4+663/25)^2+(a 4+91/10)^2+(1/1000*a1+1/100*a2+1/10*a3+a4+843/100)^2+(27/8*a1+9/4*a2+3/2*a3+a4+328/25)^2+(19683/1000*a1+729/100*a2+27/10*a3+a4-13/2)^2+(5832/125*a1+324/25*a2+18/5*a3+a4-1701/25)^2;Ja1=diff(J,a1); Ja2=diff(J,a2); Ja3=diff(J,a3); Ja4=diff(J,a4);Ja11=simple(Ja1), Ja21=simple(Ja2), Ja31=simple(Ja3), Ja41=simple(Ja4),运行后屏幕显示J 分别对a 1, a 2 ,a 3 ,a 4的偏导数如下Ja11=56918107/10000*a1+32097579/25000*a2+1377283/2500*a3+23667/250*a4-8442429/625Ja21 =32097579/25000*a1+1377283/2500*a2+23667/250*a3+67*a4+767319/625Ja31 =1377283/2500*a1+23667/250*a2+67*a3+18/5*a4-232638/125Ja41 =23667/250*a1+67*a2+18/5*a3+18*a4+14859/25解线性方程组Ja 11 =0,Ja 21 =0,Ja 31 =0,Ja 41 =0,输入下列程序>>A=[56918107/10000, 32097579/25000, 1377283/2500, 23667/250; 32097579/25000, 1377283/2500, 23667/250, 67; 1377283/2500, 23667/250, 67, 18/5; 23667/250, 67, 18/5, 18];B=[8442429/625, -767319/625, 232638/125, -14859/25];C=B/A, f=poly2sym(C)运行后屏幕显示拟合函数f 及其系数C 如下C = 5.0911 -14.1905 6.4102 -8.2574f=716503695845759/140737488355328*x^3-7988544102557579/562949953421312*x^2+1804307491277693/281474976710656*x-4648521160813215/562949953421312故所求的拟合曲线为8.25746.410214.19055.0911)(23-+-=x x x x f . (4)编写下面的MA TLAB 程序估计其误差,并作出拟合曲线和数据的图形.输入程序>> xi=[-2.5 -1.7 -1.1 -0.8 0 0.1 1.5 2.7 3.6];y=[-192.9 -85.50 -36.15 -26.52 -9.10 -8.43 -13.12 6.50 68.04];n=length(xi);f=5.0911.*xi.^3-14.1905.*xi.^2+6.4102.*xi -8.2574;x=-2.5:0.01: 3.6;F=5.0911.*x.^3-14.1905.*x.^2+6.4102.*x -8.2574;fy=abs(f-y); fy2=fy.^2; Ew=max(fy),E1=sum(fy)/n, E2=sqrt((sum(fy2))/n)plot(xi,y,'r*'), hold on, plot(x,F,'b-'), hold offlegend('数据点(xi,yi)','拟合曲线y=f(x)'),xlabel('x'), ylabel('y'),title('例3.1.1的数据点(xi,yi)和拟合曲线y=f(x)的图形')运行后屏幕显示数据),(i i y x 与拟合函数f 的最大误差E w ,平均误差E 1和均方根误差E 2及其数据点),(i i y x 和拟合曲线y =f (x )的图形(略).Ew = E1 = E2 =3.105 4 0.903 4 1.240 93.2 函数)(x r k 的选取及其MATLAB 程序例3.2.1 给出一组实验数据点),(i i y x 的横坐标向量为x =(-8.5,-8.7,-7.1,-6.8,-5.10,-4.5,-3.6,-3.4,-2.6,-2.5, -2.1,-1.5, -2.7,-3.6),纵横坐标向量为y =(459.26,52.81,198.27,165.60,59.17,41.66,25.92, 22.37,13.47, 12.87, 11.87,6.69,14.87,24.22),试用线性最小二乘法求拟合曲线,并估计其误差,作出拟合曲线.解 (1)在MATLAB 工作窗口输入程序>>x=[-8.5,-8.7,-7.1,-6.8,-5.10,-4.5,-3.6,-3.4,-2.6,-2.5,-2.1,-1.5, -2.7,-3.6];y=[459.26,52.81,198.27,165.60,59.17,41.66,25.92,22.37,13.47, 12.87, 11.87,6.69,14.87,24.22];plot(x,y,'r*'),legend('实验数据(xi,yi)')xlabel('x'), ylabel('y'),title('例3.2.1的数据点(xi,yi)的散点图')运行后屏幕显示数据的散点图(略).(3)编写下列MA TLAB 程序计算)(x f 在),(i i y x 处的函数值,即输入程序>> syms a bx=[-8.5,-8.7,-7.1,-6.8,-5.10,-4.5,-3.6,-3.4,-2.6,-2.5,-2.1,-1.5,-2.7,-3.6]; fi=a.*exp(-b.*x)运行后屏幕显示关于a 和b 的线性方程组fi =[ a*exp(17/2*b), a*exp(87/10*b), a*exp(71/10*b),a*exp(34/5*b), a*exp(51/10*b), a*exp(9/2*b), a*exp(18/5*b), a*exp(17/5*b), a*exp(13/5*b), a*exp(5/2*b), a*exp(21/10*b), a*exp(3/2*b), a*exp(27/10*b), a*exp(18/5*b)]编写构造误差平方和的MA TLAB 程序如下>>y=[459.26,52.81,198.27,165.60,59.17,41.66,25.92,22.37,13.47,12.87, 11.87, 6.69,14.87,24.22];fi =[ a*exp(17/2*b), a*exp(87/10*b), a*exp(71/10*b), a*exp(34/5*b), a*exp(51/10*b), a*exp(9/2*b), a*exp(18/5*b), a*exp(17/5*b), a*exp(13/5*b), a*exp(5/2*b), a*exp(21/10*b), a*exp(3/2*b), a*exp(27/10*b), a*exp(18/5*b)];fy=fi-y;fy2=fy.^2;J=sum(fy.^2)运行后屏幕显示误差平方和如下J =(a*exp(17/2*b)-22963/50)^2+(a*exp(87/10*b)-5281/100)^2+(a*exp(71/10*b)-19827/100)^2+(a*exp(34/5*b)-828/5)^2+(a*exp(51/10*b)-5917/100)^2+(a*exp(9/2*b)-2083/50)^2+(a*exp(18/5*b)-648/25)^2+(a*exp(17/5*b)-2237/100)^2+(a*exp(13/5*b)-1347/100)^2+(a*ex p(5/2*b)-1287/100)^2+(a*exp(21/10*b)-1187/100)^2+(a*exp(3/2*b)-669/100)^2+(a*exp(27/10*b)-1487/100)^2+(a*exp(18/5*b)-1211/50)^2为求b a ,使J 达到最小,只需利用极值的必要条件,得到关于b a ,的线性方程组,这可以由下面的MA TLAB 程序完成,即输入程序>> syms a bJ=(a*exp(17/2*b)-22963/50)^2+(a*exp(87/10*b)-5281/100)^2+(a*exp(71/10*b)-19827/100)^2+(a*exp(34/5*b)-828/5)^2+(a*exp(51/10*b)-5917/100)^2+(a*exp(9/2*b)-2083/50)^2+(a*exp(18/5*b)-648/25)^2+(a*exp(17/5*b)-2237/100)^2+(a*exp(13/5*b)-1347/100)^2+(a*exp(5/2*b)-1287/100)^2+(a*exp(21/10*b)-1187/100)^2+(a*exp(3/2*b )-669/100)^2+(a*exp(27/10*b)-1487/100)^2+(a*exp(18/5*b)-1211/50)^2;Ja=diff(J,a); Jb=diff(J,b);Ja1=simple(Ja), Jb1=simple(Jb),运行后屏幕显示J 分别对b a ,的偏导数如下Ja1 =2*a*exp(3*b)+2*a*exp(17*b)+2*a*exp(87/5*b)+2*exp(68/5*b)*a+2*exp(9*b)*a+2*a*exp(34/5*b)-669/50*exp(3/2*b)-1487/50*exp(27/10*b)-2507/25*exp(18/5*b)-22963/25*exp(17/2*b)-5281/50*exp(87/10*b)-19827/50*exp(71/10*b)-2237/50*exp(17/5*b)-1656/5*exp(34/5*b)-1347/50*exp(13/5*b)-5917/50*exp(51/10*b)-1287/50*exp(5/2*b )-2083/25*exp(9/2*b)-1187/50*exp(21/10*b)+4*a*exp(36/5*b)+2*a*e xp(26/5*b)+2*a*exp(71/5*b)+2*a*exp(51/5*b)+2*a*exp(5*b)+2*a*exp (21/5*b)+2*a*exp(27/5*b)Jb1 =1/500*a*(2100*a*exp(21/10*b)^2+8500*a*exp(17/2*b)^2+6800*a*exp(34/5*b)^2-10035*exp(3/2*b)-40149*exp(27/10*b)-180504*exp (18/5*b)-3903710*exp(17/2*b)-459447*exp(87/10*b)-1407717*exp(71/10*b)-76058*exp(17/5*b)-1126080*exp(34/5*b)-35022*exp(13/5*b)-301767*exp(51/10*b)-32175*exp(5/2*b)-187470*exp(9/2*b)-24927*ex p(21/10*b)+7100*a*exp(71/10*b)^2+5100*a*exp(51/10*b)^2+4500*a*e xp(9/2*b)^2+7200*a*exp(18/5*b)^2+3400*a*exp(17/5*b)^2+2600*a*ex p(13/5*b)^2+2500*a*exp(5/2*b)^2+1500*a*exp(3/2*b)^2+2700*a*exp(27/10*b)^2+8700*a*exp(87/10*b)^2)用解二元非线性方程组的牛顿法的MATLAB 程序求解线性方程组J a1 =0,J b1 =0,得a = b=2.811 0 0.581 6故所求的拟合曲线(7.13)为0811.2)(=x f e x 5816.0-.(4)编写下面的MA TLAB 程序估计其误差,并做出拟合曲线和数据的图形.输入程序>> xi=[-8.5 -8.7 -7.1 -6.8 -5.10 -4.5 -3.6 -3.4 -2.6 -2.5-2.1 -1.5 -2.7 -3.6];y=[459.26 52.81 198.27 165.60 59.17 41.66 25.92 22.3713.47 12.87 11.87 6.69 14.87 24.22];n=length(xi); f=2.8110.*exp(-0.5816.*xi); x=-9:0.01: -1;F=2.8110.*exp(-0.5816.*x); fy=abs(f-y); fy2=fy.^2;Ew=max(fy),E1=sum(fy)/n, E2=sqrt((sum(fy2))/n), plot(xi,y,'r*'), hold on plot(x,F,'b-'), hold off,legend('数据点(xi,yi)','拟合曲线y=f(x)')xlabel('x'), ylabel('y'),title('例3.2.1的数据点(xi,yi)和拟合曲线y=f(x)的图形')运行后屏幕显示数据),(i i y x 与拟合函数f 的最大误差E w = 390.141 5,平均误差E 1=36.942 2和均方根误差E 2=106.031 7及其数据点),(i i y x 和拟合曲线y =f (x )的图形(略).3.3 多项式拟合及其MATLAB 程序例3.3.1 给出一组数据点),(i i y x 列入表3–3中,试用线性最小二乘法求拟合曲线,并估计其误差,作出拟合曲线.表3–3 例3.3.1的一组数据),(i i y x解 (1)首先根据表3–3给出的数据点),(i i y x ,用下列MATLAB 程序画出散点图.在MATLAB 工作窗口输入程序>> x=[-2.9 -1.9 -1.1 -0.8 0 0.1 1.5 2.7 3.6];y=[53.94 33.68 20.88 16.92 8.79 8.98 4.17 9.1219.88];plot(x,y,'r*'), legend('数据点(xi,yi)')xlabel('x'), ylabel('y'),title('例3.3.1的数据点(xi,yi)的散点图')运行后屏幕显示数据的散点图(略).(3)用作线性最小二乘拟合的多项式拟合的MATLAB 程序求待定系数k a )3,2,1(=k .输入程序>> a=polyfit(x,y,2)运行后输出(7.16)式的系数a =2.8302 -7.3721 9.1382故拟合多项式为2138.91372.72830.2)(2+-=x x x f . (4)编写下面的MATLAB 程序估计其误差,并做出拟合曲线和数据的图形.输入程序>> xi=[-2.9 -1.9 -1.1 -0.8 0 0.1 1.5 2.7 3.6];y=[53.94 33.68 20.88 16.92 8.79 8.98 4.17 9.12 19.88];n=length(xi); f=2.8302.*xi.^2-7.3721.*xi+9.1382x=-2.9:0.001:3.6;F=2.8302.*x.^2-7.3721.*x+8.79;fy=abs(f-y); fy2=fy.^2; Ew=max(fy), E1=sum(fy)/n,E2=sqrt((sum(fy2))/n), plot(xi,y,'r*', x,F,'b-'),legend('数据点(xi,yi)','拟合曲线y=f(x)')xlabel('x'), ylabel('y'),title('例3.3.1 的数据点(xi,yi)和拟合曲线y=f(x)的图形')运行后屏幕显示数据),(i i y x 与拟合函数f 的最大误差E w ,平均误差E1和均方根误差E 2及其数据点(x i ,y i )和拟合曲线y =f (x )的图形(略).Ew = E1 = E2 =0.745 7, 0.389 2, 0.436 33.4 拟合曲线的线性变换及其MATLAB 程序例3.4.1 给出一组实验数据点),(i i y x 的横坐标向量为x =(7.5 6.8 5.10 4.53.6 3.4 2.6 2.5 2.1 1.5 2.7 3.6),纵横坐标向量为y =(359.26 165.60 59.17 41.66 25.92 22.37 13.47 12.87 11.87 6.69 14.87 24.22),试用线性变换和线性最小二乘法求拟合曲线,并估计其误差,作出拟合曲线.解 (1)首先根据给出的数据点),(i i y x ,用下列MATLAB 程序画出散点图.在MATLAB 工作窗口输入程序>> x=[7.5 6.8 5.10 4.5 3.6 3.4 2.6 2.5 2.1 1.5 2.73.6];y=[359.26 165.60 59.17 41.66 25.92 22.37 13.47 12.8711.87 6.69 14.87 24.22];plot(x,y,'r*'), legend('数据点(xi,yi)')xlabel('x'), ylabel('y'),title('例3.4.1的数据点(xi,yi)的散点图')运行后屏幕显示数据的散点图(略).(2)根据数据散点图,取拟合曲线为a y =e bx )0,0(≠>b a ,其中b a ,是待定系数.令b B a A y Y ===,ln ,ln ,则(7.19)化为Bx A Y +=.在MATLAB 工作窗口输入程序>> x=[7.5 6.8 5.10 4.5 3.6 3.4 2.6 2.5 2.1 1.5 2.73.6];y=[359.26 165.60 59.17 41.66 25.92 22.37 13.4712.87 11.87 6.69 14.87 24.22];Y=log(y); a=polyfit(x,Y,1); B=a(1);A=a(2); b=B,a=exp(A)n=length(x); X=8:-0.01:1; Y=a*exp(b.*X); f=a*exp(b.*x);plot(x,y,'r*',X,Y,'b-'), xlabel('x'),ylabel('y')legend('数据点(xi,yi)','拟合曲线y=f(x)')title('例3.4.1 的数据点(xi,yi)和拟合曲线y=f(x)的图形')fy=abs(f-y); fy2=fy.^2; Ew=max(fy), E1=sum(fy)/n,E2=sqrt((sum(fy2))/n)运行后屏幕显示a y =e bx 的系数b =0.624 1,a =2.703 9,数据),(i i y x 与拟合函数f的最大误差Ew =67.641 9,平均误差E 1=8.677 6和均方根误差E 2=20.711 3及其数据点),(i i y x 和拟合曲线9703.2)(=x f e x 1624.0的图形(略).3.5 函数逼近及其MATLAB 程序最佳均方逼近的MATLAB 主程序function [yy1,a,WE]=zjjfbj(f,X,Y,xx)m=size(f);n=length(X);m=m(1);b=zeros(m,m); c=zeros(m,1);if n~=length(Y)error('X 和Y 的维数应该相同')endfor j=1:mfor k=1:mb(j,k)=0;for i=1:nb(j,k)=b(j,k)+feval(f(j,:),X(i))*feval(f(k,:),X(i));endendc(j)=0;for i=1:nc(j)=c(j)+feval(f(j,:),X(i))*Y(i);endenda=b\c;WE=0;for i=1:nff=0;for j=1:mff=ff+a(j)*feval(f(j,:),X(i));endWE=WE+(Y(i)-ff)*(Y(i)-ff);endif nargin==3return ;endyy=[];for i=1:ml=[];for j=1:length(xx)l=[l,feval(f(i,:),xx(j))];endyy=[yy l'];endyy=yy*a; yy1=yy'; a=a';WE;例3.5.1 对数据X 和Y , 用函数2,,1x y x y y ===进行逼近,用所得到的逼近函数计算在 6.5=x 处的函数值,并估计误差.其中X =(1 3 4 5 6 7 8 9); Y =(-11 -13 -11 -7 -1 7 17 29).解 在MATLAB 工作窗口输入程序>> X=[ 1 3 4 5 6 7 8 9]; Y=[-11 -13 -11 -7 -1 7 17 29];f=['fun0';'fun1';'fun2']; [yy,a,WE]=zjjfbj(f,X,Y,6.5)运行后屏幕显示如下yy =2.75000000000003a =-7.00000000000010 -4.99999999999995 1.00000000000000WE =7.172323350269439e-027例3.5.2 对数据X 和Y ,用函数2,,1x y x y y ===,x y cos =,=y e x ,xy sin =进行逼近,其中X =(0 0.50 1.00 1.50 2.00 2.50 3.00),Y =(0 0.4794 0.8415 0.9815 0.9126 0.5985 0.1645).解 在MATLAB 工作窗口输入程序>> X=[ 0 0.50 1.00 1.50 2.00 2.50 3.00];Y=[0 0.4794 0.8415 0.9815 0.9126 0.5985 0.1645];f=['fun0';'fun1';'fun2';'fun3';'fun4';'fun5'];xx=0:0.2:3;[yy,a,WE]=zjjfbj(f,X,Y, xx), plot(X,Y,'ro',xx,yy,'b-')运行后屏幕显示如下(图略)yy = Columns 1 through 7-0.0005 0.2037 0.3939 0.5656 0.7141 0.83480.9236Columns 8 through 140.9771 0.9926 0.9691 0.9069 0.8080 0.67660.5191Columns 15 through 160.3444 0.1642a = 0.3828 0.4070 -0.3901 0.0765 -0.4598 0.5653 WE = 1.5769e-004即,最佳逼近函数为y=0.3828+0.4070*x-0.3901*x^2+0.0765*exp(x) -0.4598*cos(x) +0.5653*sin(x).>>拟合曲线:x=[26.9;29.0;19.5;24.2;24.3;23.0;24.8;19.4;24.5;23.9;24.1;17.6];y=[147;138;71;110;98;91;99;83;100;98;106;59];p=polyfit(x,y,6);hold onxx=0:180;y2=polyval(p,xx);h=plot(x,y,'*');plot(xx,y2)set(gca,'XTick',15:0.1:30)set(gca,'YTick',50:1:150)范例x=[1 3 5 6 8 9 10 11 12 14 15 17 19 21 23 25];y=[10 20 42 60 73 79 80 78 73 64 56 71 51 42 41 40];plot(x,y,'ro');p=polyfit(x,y,4);%于是拟合出的曲线就是p(1)x^4+p(2)x^3+p(3)x^2+p(4)x+p(5),想拟合成其它次数的多项式只需将4改为相应的次数即可f=poly2sym(p);xinterp=[2 4 7 13 16 18 20 22 24];yinterp=subs(f,xinterp);hold on;plot(xinterp,yinterp,'o');ezplot(f,[0,30])范例function ans = meanWeight(data,weight)data = data(:);weight = weight(:);n = size(data);n = n(1);ans = data'*weight;end你将以上的保存在一个m文件中,然后在命令窗口meanWeight(data,weight)即可得到结果,其中data为前五天的数据,weight为前五天对应的权重。
Matlab最小二乘法曲线拟合

最小二乘法在曲线拟合中比较普遍。
拟合的模型主要有1.直线型2.多项式型3.分数函数型4.指数函数型5.对数线性型6.高斯函数型......一般对于LS问题,通常利用反斜杠运算“\”、fminsearch或优化工具箱提供的极小化函数求解。
在Matlab中,曲线拟合工具箱也提供了曲线拟合的图形界面操作。
在命令提示符后键入:cftool,即可根据数据,选择适当的拟合模型。
“\”命令1.假设要拟合的多项式是:y=a+b*x+c*x^2.首先建立设计矩阵X:X=[ones(size(x)) x x^2];执行:para=X\ypara中包含了三个参数:para(1)=a;para(2)=b;para(3)=c;这种方法对于系数是线性的模型也适应。
2.假设要拟合:y=a+b*exp(x)+cx*exp(x^2)设计矩阵X为X=[ones(size(x)) exp(x) x.*exp(x.^2)];para=X\y3.多重回归(乘积回归)设要拟合:y=a+b*x+c*t,其中x和t是预测变量,y是响应变量。
设计矩阵为X=[ones(size(x)) x t] %注意x,t大小相等!para=X\ypolyfit函数polyfit函数不需要输入设计矩阵,在参数估计中,polyfit会根据输入的数据生成设计矩阵。
1.假设要拟合的多项式是:y=a+b*x+c*x^2p=polyfit(x,y,2)然后可以使用polyval在t处预测:y_hat=polyval(p,t)polyfit函数可以给出置信区间。
[p S]=polyfit(x,y,2) %S中包含了标准差[y_fit,delta] = polyval(p,t,S) %按照拟合模型在t处预测在每个t处的95%CI为:(y_fit-1.96*delta, y_fit+1.96*delta)2.指数模型也适应假设要拟合:y = a+b*exp(x)+c*exp(x.?2)p=polyfit(x,log(y),2)fminsearch函数fminsearch是优化工具箱的极小化函数。
matlab最小二乘法拟合曲线

matlab最小二乘法拟合曲线Matlab最小二乘法拟合曲线是一种应用于数据拟合的有效的工具,它的作用是使用最小二乘法来估计未知参数并获得适合拟合的最优拟合曲线,以下是Matlab最小二乘法拟合曲线的具体用法:一、Matlab最小二乘法拟合模型:1、首先,根据需要拟合的数据,定义未知参数的类型、数量和频率;2、接下来,定义未知参数的初始值,以及用于确定参数最优拟合曲线的搜索算法;3、然后,调用最小二乘法函数,使用最小二乘法函数计算拟合参数θ;4、最后,用优化到的θ值生成最优曲线,即得到拟合曲线。
二、Matlab最小二乘法拟合曲线的特点:1、精度高:最小二乘法在误差估计上是最佳的,能控制估计偏差,通过求解思维运算完成最小二乘拟合;2、可以处理多元数据:最小二乘法可以处理多个变量进行统计拟合,有多个自变量时,仍然能生成反映变量之间关系的拟合曲线;3、计算量小:最小二乘法只需计算发生一次,消耗计算量较小,计算正确率高;4、反应速度快:最小二乘法反应速度快,可以很好的拟合多项式,某一特定点的拟合能力强,它具有很高的拟合度。
三、Matlab最小二乘法拟合曲线的应用:1、最小二乘法拟合曲线可以用于多元统计拟合,研究变量之间的关系,可用于实验数据处理和建模;2、最小二乘法拟合曲线也可以用于经济学,可以通过估计最小二乘回归系数进行广义线性模型的预测;3、最小二乘法拟合曲线可以用于工程曲线拟合,如机械设计的几何拟合等,以及测量仪器的校正等;4、最小二乘法拟合曲线也可以用于生物学研究,可以通过进化分类树及类群的状态估计其特征变化趋势;5、最小二乘法拟合曲线还可以用于物理和化学实验中,以及天气、气候等领域。
四、Matlab最小二乘法拟合曲线的优缺点:优点:1、计算量小,计算消耗较小;2、可对多元数据进行拟合,处理变量之间的关系;3、拟合精度高,控制估计偏差;4、反应速度快,容错性强。
缺点:1、处理误差较大的数据时,拟合效果不佳;2、对曲线的凸性要求,不能处理异常数据;3、无法处理变量间的非线性关系,拟合结果也会出现偏差。
MATLAB实现非线性曲线拟合最小二乘法

非线性曲线拟合最小二乘法、问题提出设数据(Xj,yJ 3(i=0,1,2,3,4).由表给出,表中第四行为lnyZl«,可以看出数学模型为y二aebx,用最小二乘法确定a及b。
、理论基础根据最小二乘拟合的定义:在函数的最佳平方逼近中f(x). C[a,b],如果f(x)只在一组离散点集{Xi,i=O,1,…,m},上给定,这就是科学实验中经常见到的实验数据{ ( Xj,%),i=O,1,・・・,m}的曲线拟合,这里yi二f(xj,i=O,1,・・・,n% 要求一个函数y二S(x)与所给数据{ ( Xi, yi) m}拟合,若记误差i 二 S*(xJ-% ,i=O,1m,、=(O,1, ,、m)T,设\(x), \(x)/,:n(x)是C[a,b]上线性无尖函数族,在」-spar( A(X), : l(x), (x)}中找一函数S(x),使误差平方和m m m2、2八、F 八[s(Xi)・y_2 =min,目凶呦2,i=0 i=0 S(x)邯im这里S(x)二a。
o(x) 4 !(x) ann(x) (n<m)这就是一般的最小二乘逼近,用几何语言来说,就称为曲线拟合的最小二乘法。
在建模的过程中应用到了求和命令(sum)、求偏导命令(diff)、化简函数命令(simple)〉用迭代方法解二元非线性方程组的命令(fsolve),画图命令(plot)等。
三、实验内容用最小二乘法求拟合曲线时,首先要确定S(x)的形式。
这不单纯是数学问题,还与所研究问题的运动规律及所得观测数据( Xi,% )有尖;通常要从问题的运动规律及给定数据描图,确定s(x)的形式,并通过实际计算选出较好的结果。
S(x)的一般表达式为线性形式,若\(x)是k次多项式,S(x)就是n次多项式,为了使问题的提法更有一般性,通常在最小二乘法中2都考虑为加权平方和m:2八(X讥S(Xj) - f(xj]2.i=0这里r(x)_o是[a,b]上的权函数,它表示不同点(Xi, f(xj)处的数据比重不同。
曲线拟合的最小二乘法matlab举例

学院:光电信息学院 姓名:赵海峰 学号:1001一、曲线拟合的最小二乘法原理:由已知的离散数据点选择与实验点误差最小的曲线)(...)()()(1100x a x a x a x S n n ϕϕϕ+++=称为曲线拟合的最小二乘法。
若记),()()(),(0i k i j mi i k j x x x ϕϕωϕϕ∑==k i k i mi i k d x x f x f ≡=∑=)()()(),(0ϕωϕ上式可改写为),...,1,0(;),(n k d a k j noj j k -=∑=ϕϕ这个方程成为法方程,可写成距阵形式d Ga =其中,),...,,(,),...,,(1010T n T n d d d d a a a a ==⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=),(),(),()(),(),(),(),(),(101110101000n n n n n n G ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕΛM M M ΛΛ。
它的平方误差为:.)]()([)(||||2022i i mi i x f x S x -=∑=ωδ二、数值实例:下面给定的是乌鲁木齐最近1个月早晨7:00左右(新疆时间)的天气预报所得到的温度数据表,按照数据找出任意次曲线拟合方程和它的图像。
下面应用Matlab编程对上述数据进行最小二乘拟合三、Matlab程序代码:x=[1:1:30];y=[9,10,11,12,13,14,13,12,11,9,10,11,12,13,14,12,11,10,9,8,7,8,9,11,9,7,6,5,3,1 ];a1=polyfit(x,y,3) %三次多项式拟合%a2= polyfit(x,y,9) %九次多项式拟合%a3= polyfit(x,y,15) %十五次多项式拟合%b1=polyval(a1,x)b2=polyval(a2,x)b3=polyval(a3,x)r1= sum((y-b1).^2) %三次多项式误差平方和%r2= sum((y-b2).^2) %九次次多项式误差平方和%r3= sum((y-b3).^2) %十五次多项式误差平方和%plot(x,y,'*') %用*画出x,y图像%hold onplot(x,b1, 'r') %用红色线画出x,b1图像%hold onplot(x,b2, 'g') %用绿色线画出x,b2图像%hold onplot(x,b3, 'b:o') %用蓝色o线画出x,b3图像%四、数值结果:不同次数多项式拟和误差平方和为:r1 =r2 =r3 =r1、r2、r3分别表示三次、九次、十五次多项式误差平方和。
最小二乘法曲线拟合的Matlab程序

最⼩⼆乘法曲线拟合的Matlab程序⽅便⼤家使⽤的最⼩⼆乘法曲线拟合的Matlab程序⾮常⽅便⽤户使⽤,直接按提⽰操作即可;这⾥我演⽰⼀个例⼦:(红⾊部分为⽤户输⼊部分,其余为程序运⾏的结果,结果图为Untitled.fig,Untitled2.fig) 请以向量的形式输⼊x,y.x=[1,2,3,4]y=[3,4,5,6]通过下⾯的交互式图形,你可以事先估计⼀下你要拟合的多项式的阶数,⽅便下⾯的计算.polytool()是交互式函数,在图形上⽅[Degree]框中输⼊阶数,右击左下⾓的[Export]输出图形回车打开polytool交互式界⾯回车继续进⾏拟合输⼊多项式拟合的阶数m = 4Warning: Polynomial is not unique; degree >= number of data points. > In polyfit at 72In zxecf at 64输出多项式的各项系数a = 0.0200000000000001a = -0.2000000000000008a = 0.7000000000000022a = 0.0000000000000000a = 2.4799999999999973输出多项式的有关信息 SR: [4x5 double]df: 0normr: 2.3915e-015Warning: Zero degrees of freedom implies infinite error bounds.> In polyval at 104In polyconf at 92In zxecf at 69观测数据拟合数据x y yh1.0000 3.0000 3.00002.0000 4.0000 4.00003 5 54.0000 6.0000 6.0000剩余平⽅和 Q = 0.000000相关指数 RR = 1.000000请输⼊你所需要拟合的数据点,若没有请按回车键结束程序.输⼊插值点x0 = 3输出插值点拟合函数值 y0 = 5.0000>>结果:untitled.figuntitled2.fig⼀些matlab优化算法代码的分享代码的⽬录如下:欢迎讨论1.约束优化问题:minRosen(Rosen梯度法求解约束多维函数的极值)(算法还有bug) minPF(外点罚函数法解线性等式约束) minGeneralPF(外点罚函数法解⼀般等式约束)minNF(内点罚函数法)minMixFun(混合罚函数法)minJSMixFun(混合罚函数加速法)minFactor(乘⼦法)minconPS(坐标轮换法)(算法还有bug)minconSimpSearch(复合形法)2.⾮线性最⼩⼆乘优化问题minMGN(修正G-N法)3.线性规划:CmpSimpleMthd(完整单纯形法)4.整数规划(含0-1规划)DividePlane(割平⾯法)ZeroOneprog(枚举法)5.⼆次规划QuadLagR(拉格朗⽇法)ActivedeSet(起作⽤集法)6.辅助函数(在⼀些函数中会调⽤)minNT(⽜顿法求多元函数的极值)minMNT(修正的⽜顿法求多元函数极值)minHJ(黄⾦分割法求⼀维函数的极值)7.⾼级优化算法1)粒⼦群优化算法(求解⽆约束优化问题)1>PSO(基本粒⼦群算法)2>YSPSO(待压缩因⼦的粒⼦群算法)3>LinWPSO(线性递减权重粒⼦群优化算法)4>SAPSO(⾃适应权重粒⼦群优化算法)5>RandWSPO(随机权重粒⼦群优化算法)6>LnCPSO(同步变化的学习因⼦)7>AsyLnCPSO(异步变化的学习因⼦)(算法还有bug)8>SecPSO(⽤⼆阶粒⼦群优化算法求解⽆约束优化问题)9>SecVibratPSO(⽤⼆阶振荡粒⼦群优化算法求解五约束优化问题)10>CLSPSO(⽤混沌群粒⼦优化算法求解⽆约束优化问题)11>SelPSO(基于选择的粒⼦群优化算法)12>BreedPSO(基于交叉遗传的粒⼦群优化算法)13>SimuAPSO(基于模拟退⽕的粒⼦群优化算法)2)遗传算法1>myGA(基本遗传算法解决⼀维约束规划问题)2>SBOGA(顺序选择遗传算法求解⼀维⽆约束优化问题)3>NormFitGA(动态线性标定适应值的遗传算法求解⼀维⽆约束优化问题)4>GMGA(⼤变异遗传算法求解⼀维⽆约束优化问题)5>AdapGA(⾃适应遗传算法求解⼀维⽆约束优化问题)6>DblGEGA(双切点遗传算法求解⼀维⽆约束优化问题)7>MMAdapGA(多变异位⾃适应遗传算法求解⼀维⽆约束优化问题)⾃⼰编写的马尔科夫链程序A 代表⼀组数据序列⼀维数组本程序的操作对象也是如此t=length(A); % 计算序列“A”的总状态数B=unique(A); % 序列“A”的独⽴状态数顺序,“E”E=sort(B,'ascend');a=0;b=0;c=0;d=0;Localization=find(A==E(j)); % 序列“A”中找到其独⽴状态“E”的位置for i=1:1:length(Localization)if Localization(i)+1>tbreak; % 范围限定elseif A(Localization(i)+1)== E(1)a=a+1;elseif A(Localization(i)+1)== E(2)b=b+1;elseif A(Localization(i)+1)== E(3)c=c+1;% 依此类推,取决于独⽴状态“E”的个数elsed=d+1;endendT(j,1:tt)=[a,b,c,d]; % “T”为占位矩阵endTT=T;for u=2:1:ttTT(u,:)= T(u,:)- T(u-1,:);endTT; % ⾄此,得到转移频数矩阵Y=sum(TT,2);for uu=1:1:ttTR(uu,:)= TT(uu,:)./Y(uu,1);endTR % 最终得到马尔科夫转移频率/概率矩阵% 观测序列马尔科夫性质的检验:N=numel(TT);uuu=1;Col=sum(TT,2); % 对列求和Row=sum(TT,1); % 对⾏求和Total=sum(Row); % 频数总和for i=1:1:ttxx(uuu,1)=sum((TT(i,j)-(Row(i)*Col(j))./Total).^2./( (Row(i)*Col(j)). /Total)); uuu=uuu+1; % 计算统计量x2endendxx=sum(xx)。
最小二乘法曲线拟合的Matlab程序

最小二乘法曲线拟合的Matlab程序最小二乘法是一种常用的数学优化技术,它通过最小化误差的平方和来找到最佳函数匹配。
在曲线拟合中,最小二乘法被广泛使用来找到最佳拟合曲线。
下面的Matlab程序演示了如何使用最小二乘法进行曲线拟合。
% 输入数据x = [1, 2, 3, 4, 5];y = [2.2, 2.8, 3.6, 4.5, 5.1];% 构建矩阵A = [x(:), ones(size(x))]; % 使用x向量和单位矩阵构建矩阵A% 使用最小二乘法求解theta = (A' * A) \ (A' * y); % 利用最小二乘法的公式求解% 显示拟合曲线plot(x, theta(1) * x + theta(2), '-', 'LineWidth', 2); % 画出拟合曲线hold on; % 保持当前图像plot(x, y, 'o', 'MarkerSize', 10, 'MarkerFaceColor','b'); % 在图像上画出原始数据点xlabel('x'); % 设置x轴标签ylabel('y'); % 设置y轴标签legend('拟合曲线', '原始数据点'); % 设置图例这个程序首先定义了一组输入数据x和y。
然后,它构建了一个矩阵A,这个矩阵由输入数据x和单位矩阵构成。
然后,程序使用最小二乘法的公式来求解最佳拟合曲线的参数。
最后,程序画出拟合曲线和原始数据点。
这个程序使用的是线性最小二乘法,适用于一次曲线拟合。
如果你的数据更适合非线性模型,例如二次曲线或指数曲线,那么你需要使用非线性最小二乘法。
Matlab提供了lsqcurvefit函数,可以用于非线性曲线拟合。
例如:% 非线性模型 y = a * x^2 + b * x + cfun = @(theta, x) theta(1) * x.^2 + theta(2) * x +theta(3);guess = [1, 1, 1]; % 初始猜测值% 使用lsqcurvefit函数求解theta = lsqcurvefit(fun, guess, x, y);% 显示拟合曲线plot(x, fun(theta, x), '-', 'LineWidth', 2); % 画出拟合曲线hold on; % 保持当前图像plot(x, y, 'o', 'MarkerSize', 10, 'MarkerFaceColor','b'); % 在图像上画出原始数据点xlabel('x'); % 设置x轴标签ylabel('y'); % 设置y轴标签legend('拟合曲线', '原始数据点'); % 设置图例这个程序定义了一个非线性函数fun,然后使用lsqcurvefit函数来求解最佳拟合曲线的参数。
用Matlab作最小二乘曲线拟合

用Matlab 作最小二乘曲线拟合1.用n 次多项式作最小二乘拟合已知⎩⎨⎧m m y y y y x x x x ......1010::,要从n H (即:全体次数不高于n 的多项式集合)中找一个)(x S n ,使得在节点处的总误差∑=-m i ii n y x S 02))((达到最小。
Matlab 命令格式:系数数组=polyfit (节点数组,函数值数组,次数n)例1:对函数C=C(t)测量得下面一组数据:t : 1 2 3 4 5 6 7 8 9C :4.54, 4.99, 5.35, 5.65, 5.90, 6.10, 6.26, 6.39, 6.50试分别用1次、2次、6次多项式作拟合,并画图显示拟合效果。
clearhold onx0=1:9;y0=[4.54,4.99,5.35,5.65,5.90,6.10,6.26,6.39,6.50];for i=1:9plot(x0(i),y0(i),'+')enda1=polyfit(x0,y0,1),a2=polyfit(x0,y0,2),a6=polyfit(x0,y0,6)x=0:0.1:10;y1=polyval(a1,x);y2=polyval(a2,x);y6=polyval(a6,x);plot(x,y1,x,y2,x,y6)hold off为了准确判断拟合效果,需计算“节点处的总误差”:(续前面程序) wc1=sqrt(sum((polyval(a1,x0)-y0).^2))wc2=sqrt(sum((polyval(a2,x0)-y0).^2))wc6=sqrt(sum((polyval(a6,x0)-y0).^2))2.用一般函数作最小二乘拟合已知⎩⎨⎧m m y y y y x x x x ......1010::,要用一个函数)(x f 来近似代表y ,此函数中含有几个待定参数n a a a ,...,,21,现在的任务是:确定参数的值,使得在节点处的总误差∑=-m i ii y x f 02))((达到最小。
matlab最小二乘法拟合求参数

matlab最小二乘法拟合求参数
在Matlab中,可以使用`polyfit`函数来进行最小二乘法拟合,并求得拟合参数。
`polyfit`函数的使用格式如下:
```
p = polyfit(x, y, n)
```
其中,`x`和`y`是数据点的横坐标和纵坐标,`n`是拟合多项式的阶数。
函数返回一个包含拟合参数的向量`p`,其中`p(1)`为常数项,`p(2)`为一次项,以此类推。
下面是一个示例代码,展示了如何使用`polyfit`函数进行最小二乘法拟合并求参数:
```matlab
% 生成示例数据
x = [1, 2, 3, 4, 5];
y = [3, 5, 7, 9, 11];
% 进行最小二乘法拟合
p = polyfit(x, y, 1);
% 输出拟合参数
disp(p);
```
在上述示例中,拟合的是一阶多项式,即直线。
运行代码后,将输出拟合参数的值。
如果需要拟合更高阶的多项式,只需将`n`参数设置为相应的阶数即可。
matlab最小二乘法拟合曲线并计算拟合曲线的总长度

matlab最小二乘法拟合曲线并计算拟合曲线的总长度在MATLAB中,你可以使用最小二乘法拟合曲线,然后使用积分的方法计算拟合曲线的总长度。
下面是一种可能的方法:1. 首先,使用MATLAB的`polyfit`函数进行最小二乘法拟合。
这个函数可以拟合多项式到一组数据。
```matlabx = [x1, x2, ... , xn]; % 输入数据y = [y1, y2, ... , yn]; % 输出数据p = polyfit(x, y, n); % n是多项式的阶数,比如2代表二次函数```这将返回一个向量p,代表多项式的系数,从最高阶到最低阶。
2. 然后,你可以使用`polyval`函数来评估拟合的曲线。
```matlabyfit = polyval(p, x); % 计算拟合的y值```3. 计算拟合曲线的总长度。
你可以使用数值积分的方法,例如`integral`函数。
你需要知道曲线在[a, b]之间的长度。
例如,如果你的数据在[-10, 10],你可以这样做:```matlaba = -10; % 积分下限b = 10; % 积分上限L = integral((x) abs(diff(polyval(p, x))), a, b); % 计算长度```这里我们使用`diff`函数来计算拟合曲线的导数(即曲线的斜率),然后乘以x的差分(即dx)。
最后,我们使用`integral`函数来计算这个函数的积分,也就是曲线的长度。
注意,我们使用`abs`函数来确保每一段都是正的,因为曲线可能向上或向下弯曲。
注意:这种方法只适用于连续且可微的函数。
如果你的数据包含噪声或者有突变,那么这种方法可能不准确。
matlab最小二乘法曲线拟合

matlab最小二乘法曲线拟合在数据处理和拟合曲线中,最小二乘法是一种常用的数学方法。
通过最小化数据点到拟合曲线的垂直距离的平方和,最小二乘法可以在给定数据集上拟合出一条曲线。
在MATLAB中,最小二乘法曲线拟合可以通过使用polyfit函数来实现。
最小二乘法原理最小二乘法的目标是找到一条曲线,使得曲线上的点到原始数据点的垂直距离的平方和最小。
具体而言,对于给定的数据集{(x1, y1), (x2, y2), ... , (xn, yn)},最小二乘法拟合的目标是找到一个多项式函数y =f(x) = a0 + a1*x + a2*x^2 + ... + an*x^n,其中a0, a1, a2, ... , an为待定系数,使得下述式子最小化:这里,ei表示第i个数据点的观测误差。
在MATLAB中使用最小二乘法进行曲线拟合MATLAB提供了polyfit函数来进行最小二乘法曲线拟合。
polyfit函数采用两个输入参数:x和y,分别表示数据点的横坐标和纵坐标。
此外,用户还需要指定多项式的阶数n。
polyfit将返回一个包含拟合多项式系数的向量p。
用户可以使用polyval函数来计算拟合曲线上的点的纵坐标,具体使用如下:p = polyfit(x, y, n);y_fit = polyval(p, x);下面我们通过一个例子来演示如何使用MATLAB进行最小二乘法曲线拟合。
假设我们有如下数据集,表示了一个函数y = f(x) = 2x^3 + 3x^2 - 5x + 2上的一些离散数据点:x = [0, 1, 2, 3, 4, 5];y = [2, 3, 4, 5, 6, 7];我们可以使用polyfit函数进行二次多项式曲线拟合,代码如下:p = polyfit(x, y, 2);y_fit = polyval(p, x);接下来,我们可以绘制原始数据点和拟合曲线,代码如下:plot(x, y, 'o');hold on;plot(x, y_fit, '-');xlabel('x');ylabel('y');legend('原始数据', '拟合曲线');在图中,原始数据点以圆圈表示,拟合曲线以实线表示。
最小二乘法 matlab

最小二乘法(附MATLAB代码)今天我主要是从如何使用MATLAB实现最小二乘法,首先给出今天重点使用的两个函数。
比如我想拟合下面这组数据x=[9,13,15,17,18.6,20,23,29,31.7,35];y=[-8,-6.45,-5.1,-4,-3,-1.95,-1.5,-0.4,0.2,-0.75];我先用matlab将这组离散点画出来,plot(x,y,'o')嗯,大概这个样子,这时我们想使用一次函数拟合上述曲线,可使用以下代码clearclcx=[9,13,15,17,18.6,20,23,29,31.7,35];y=[-8,-6.45,-5.1,-4,-3,-1.95,-1.5,-0.4,0.2,-0.75];coeff icient=polyfit(x,y,1); %用一次函数拟合曲线,想用几次函数拟合,就把n设成那个数y1=polyval(coefficient,x);%plot(x,y,'-',x,y1,'o'),这个地方原来'-'和'o'写反了,现已更正,可以得到正确的图形。
plot(x,y,'o',x,y1,'-')得到的结果是coefficient=[0.2989,-9.4107]所以得到的一次函数为y=0.2989*x-9.4107同理如果用二次函数拟合该曲线,得到的各项系数为coefficient=[-0.0157 1.0037 -16.2817]所以得到的二次函数为y=-0.0157*x^2+1.0037*x-16.2817其他阶数依此类推。
但是使用polyfit(x,y,n)函数有一个注意事项:举个例子,比如说我们想用9阶多项式拟合上述曲线时,我们发现拟合的曲线是正常的,得到的各项系数也是正常的但是当我们用10阶多项式拟合曲线时,此时各项系数如下,得到的曲线如下很明显出现了问题,所以使用polyfit(x,y,n)函数时要严格遵守上述事项。
matlab最小二拟合

matlab最小二拟合
最小二乘拟合是一种常用的数学方法,用于通过拟合函数与实际观测数据之间的差异来找到最佳拟合曲线。
在MATLAB中,可以使用polyfit函数进行最小二乘拟合。
首先,需要准备好实际观测数据的输入向量x和输出向量y。
假设有n个观测数据点,那么x和y都是大小为n的向量。
然后,可以使用polyfit函数进行拟合。
该函数的基本语法如下:
p = polyfit(x, y, n)
其中,x和y分别是输入和输出向量,n是希望拟合的多项式的次数。
函数polyfit将返回一个包含拟合多项式的系数的向量p。
这个向量的长度为n+1,从p(1)到p(n+1)依次表示拟合多项式的最高次项到最低次项的系数。
接下来,可以使用polyval函数来计算拟合曲线在指定x值处的输出值。
该函数的基本语法如下:
y_fit = polyval(p, x_fit)
其中,p是拟合多项式的系数向量,x_fit是待拟合的x值,y_fit是拟合曲线在x_fit处的输出值。
此外,还可以使用plot函数将实际观测数据点和拟合曲线绘制在同一张图上,以便进行可视化比较。
综上所述,使用MATLAB进行最小二乘拟合的基本步骤如下:
1. 准备实际观测数据的输入向量x和输出向量y。
2. 使用polyfit函数进行拟合,得到拟合多项式的系数向量p。
3. 使用polyval函数计算拟合曲线在指定x值处的输出值。
4. 使用plot函数将实际观测数据点和拟合曲线绘制在同一张图上。
用MatLab画图(最小二乘法做曲线拟合)

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 用MatLab画图(最小二乘法做曲线拟合) 用 MatLab 画图(最小二乘法做曲线拟合) 帮朋友利用实验数据画图时,发现 MatLab 的确是画图的好工具,用它画的图比Excel光滑、精确。
利用一组数据要计算出这组数据对应的函数表达式从而得到相应图像,MatLab 的程序如下:x=[1 5 10 20 30 40 60 80] y=[15. 4 33. 9 42. 2 50. 556 62. 7 72 81. 1] plot(x, y, ‘ r*’ ) ; legend(‘ 实验数据(xi, yi) ‘ ) xlabel(‘ x’ ) , ylabel(‘ y’ ) , title(‘ 数据点(xi, yi) 的散点图’ ) syms a1 a2 a3 x=[15 10 20 30 40 60 80]; fi=a1. *x. +a2. *x+a3 y=[15. 4 33.9 42. 2 50. 5 56 62. 7 72 81. 1] fi =[a1+a2+a3,25*a1+5*a2+a2+(400*a1+20*a2+a3-101/2) +(900*a1+30*a2+a3-56) +(1600*a1+40*a2+a3-627/10) +(3600*a1+60*a2+a3-72)+(6400*a1+80*a2+a3-811/10) ; Ja1=diff(J, a1) ;Ja2=diff(J, a2) ; Ja3=diff(J, a3) ; Ja11=simple(Ja1) ,Ja21=simple(Ja2) , Ja31=simple(Ja3) A=[114921252, 1656252, 26052; 1656252, 26052, 492; 26052, 492, 16]; B=[9542429/5, 166129/5, 4138/5]; C=B/A, f=poly2sym(C) xi=[1 5 10 20 3040 60 80] ; y=[15. 4 33. 9 42. 2 50. 5 56 62. 7 72 81. 1]; n=length(xi) ; f=-0. 0086. *xi. +1. 3876. *xi+23. 1078;1 / 6x=1: 1/10: 80; F=-0. 0086. *x. +1. 3876. *x+23. 1078; fy=abs(f-y) ; fy2=fy. ; Ew=max(fy) , E1=sum(fy) /n,E2=sqrt((sum(fy2) ) /n) plot(xi, y, ‘ r*’ ) , hold on, plot(x, F, ‘ b-’ ) , hold off legend(‘ 数据点(xi, yi) ‘ , ‘ 拟合曲线f(x) = -0. 0086x +1. 3876x+23. 1078’ ) , xlabel(‘ x’ ) , ylabel(‘ y’ ) , title(‘ 实验数据点(xi, yi) 及拟合曲线f(x) ‘ ) 下图是程序运行后得到的:Su7Tw8VxaW ybXAcZB d#Cf!Eg%FhGj*Ik(Jl-Kn+M o0Np2Or3Ps4R t6Sv7Tw8VxaWzbXAcZBe#Cf! Eg%Fi Gj*Ik)Jl-Kn+Mo1Np2Or3Qs4Rt6Sv7 Uw8Vx aWzbYAc ZBe#Df!Eg%FiHj*Ik) Jm-Kn +Mo1Nq2Or3Qs 5Rt6Sv7Uw9VxaWzbYAdZBe#D f$Eg%F iHj(I k) Jm-Ln+Mo1Nq2Pr3Qs5Ru6S v7Uw9V yaWzbY AdZCe#Df$Eh%FiHj(Il) Jm-Ln0Mo1Nq2Pr4 Qs5Ru6Tv8Uw9VyaXzbYAdZCe !Df$Eh %GiHj (Il) Km-Ln0Mp1Nq2Pr4Qt5Ru 6Tv8U x9VyaXz cYAdZCe! Dg$Eh%Gi*Hj(Il) Km+Ln0M p1Oq2P r4Qt5Su6Tv8Ux9WyaXzcYBdZ Ce!Dg$Fh%Gi* Hk(Il) Km+Lo0Mp1Oq3Pr4Qt5 Su7Tv8Ux9Wyb XzcYBd#Ce!Dg$FhGi*Hk(Jl ) Km+L o0Np1Oq 3Ps4Rt 5Su7Tw8Ux9WybXAcY Bd#Cf!Dg$FhGj*Hk(Jl-Km+Lo0Np2Oq3Ps4 Rt6Su7Tw8Vx9 WybXAcZBd#Cf!Eg$FhGj*Ik (Jl-Kn +Lo0Np2Or3Ps4Rt6Sv7Tw8VxaWybXA cZBe#Cf!Eg%F hGj*Ik) Jl-K n+Mo0Np2Or3Q s4Rt6Sv 7Uw8V xaWzbXAcZBe# D f! Eg%FiGj* Ik) Jm- Kn+Mo1 Nq2Or3Qs5Rt6Sv7Uw9VxaWzb YAcZBe#Df$Eg %FiHj*Ik)---------------------------------------------------------------最新资料推荐------------------------------------------------------ Jm-Ln+Mo1Nq2Pr 3Qs5Ru 6Sv7Uw 9VyaWzbYAdZBe#Df$Eh%FiH j(Ik) J m-Ln0M o1Nq2Pr4Qs5Ru6Tv7Uw9VyaX zbYAdZC e#Df$ Eh%GiHj(Il) Jm-Ln0Mp1Nq2 Pr4Qt5Ru6Tv8 Uw9VyaXzcYAdZCe!Df$Eh%Gi *Hj(Il) Km+Ln 0Mp1Oq2Pr4Qt5Su6Tv8Ux9Vy aXzcYB dZCe!D g$Eh%Gi*Hk(Il) Km+Lo0Mp1O q3Pr4Qt5Su7Tv8Ux9WyaXzc Y Bd#Ce!Dg$Fh %Gi*Hk( Jl) Km +Lo0Np1Oq3Ps 4 Qt5Su7Tw8Ux 9WybXzcYBd#C f!Dg$FhGi*H k (Jl-Km+Lo0N p2Oq3Ps4Rt5S u7Tw8Vx9WybX AcYBd#Cf! Eg$ FhGj*Ik (Jl- Kn+Lo0Np2Or3 P s4Rt6Su7Tw8 VxaWybXA cZBd #Cf!Eg%FhGj * Ik) Jl-Kn+Mo 0Np2Or3Qs4Rt 6Sv7Tw8VxaWz bXAcZBe#Cf!E g%FiGj*Ik) J m-Kn+Mo1Np2O r 3Qs5Rt6Sv7U w8VxaWzbYAcZ Be#Df! Eg%Fi H j*Ik) Jm-Ln+ Mo1Nq2O r3Qs5 Ru6Sv7Uw9Vxa W zbYAdZBe#Df $Eh%Fi Hj(Ik ) Jm-Ln0Mo1Nq 2Pr3Qs5Ru6Tv 7Uw9Vya WzbYA dZCe#Df$Eh%G iHj(Il) Jm-L n0Mp1Nq2Pr4Q s5Ru6Tv8Uw9V ya XzbYAdZCe! Df$Eh%Gi*Hj( Il) Km-Ln0Mp1 Oq 2Pr4 Qt5Ru6Tv8Ux9Vy aXz cYAdZCe!Dg$E h%G i*Hk(Il) K m+Ln0Mp1O q3P r4Qt5Su6Tv8U x9WyaXzcYBd# Ce!Dg$Fh% Gi* Hk(Jl) Km+Lo0 Mp1Oq3Ps4Qt5 Su7Tv8Ux9Wyb XzcYBd#Cf! Dg $F hGi*Hk(Jl -Km+Lo0N p1Oq 3Ps4Rt5Su7Tw 8U x9WybXAcYB d#Cf!Eg$F hG j*Hk(Jl-Kn+Lo0Np2O q3Ps4Rt 6Su7Tw8Vx9WybXAcZBd#Cf!E g%FhGj*Ik(J l-Kn+Mo0Np2O r3Ps4Rt6Sv7T w8Vxa WzbXAcZ Be#Cf! Eg%Fi Gj*Ik) Jl-Kn+ Mo1Np2Or3Qs4 Rt6Sv7Uw8VxaWzbYAcZBe#Df !Eg%FiHj*Ik )3 / 6Jm-Kn+Mo1Nq2Or3Qs5Rt6Sv 7Uw9Vx aWzbYA dZBe#Df$Eg%FiHj(Ik) Jm-L n+Mo1Nq2Pr3Q s5Ru6Sv7Uw9VyaWzbYAdZCe# Df$Eh %FiHj( Il) Jm-Ln0Mo1Nq2Pr4Qs5Ru6 Tv8Uw9VyaXzb YAdZCe!Df$Eh%GiHj(Il) Km -Ln0Mp 1Nq2Pr 4Qt5Ru6Tv8Ux9VyaXzcYAdZC e!Dg$E h%Gi*H j(Il) Km+Ln0Mp1Oq2Pr4Qt5S u6Tv8U x9WyaX zcYBdZCe! Dg$Fh%Gi*Hk(Il) Km+Lo0Mp1Oq3 Pr4Qt5Su7Tv8Ux9WybXzcYBd #Ce!D g$FhGi *Hk(Jl ) Km+Lo0Np1Oq3Ps4R t5Su7Tw8Ux9T v7Uw9VyaXzbYAdZCe#Df$Eh% GiHj( Il) Jm- Ln0Mp1Nq2Pr4Qs5Ru6Tv8Uw9 VyaXzcY AdZCe !Df$Eh%Gi*Hj(Il) Km-Ln0Mp 1Oq2Pr 4Qt5Ru 6Tv8Ux9VyaXzcYBdZCe! Dg$E h%Gi*Hk(Il) K m+Ln0Mp1Oq3Pr4Qt5Su6Tv8U x9WyaX zcYBd# Ce!Dg$Fh%Gi*Hk(Jl) Km+Lo0 Mp1Oq3P s4Qt5 Su7Tw8Ux9Wyb X zcYBd#Cf!Dg $FhGi*Hk(Jl -Km+Lo0Np1Oq3Ps4Rt5Su7Tw 8Vx9Wy bXAcYB d#Cf! Eg$FhGj*Hk(Jl-Kn+L o0Np2O q3Ps4R t6Su7Tw8VxaWybXAcZBd#Cf! Eg%Fh Gj*Ik( Jl-Kn+Mo0Np2Or3Ps4Rt6Sv7 Tw8Vxa WzbXAc ZBe#Cf!Eg%FiGj*Ik) Jl-Kn +Mo1Np2Or3Qs 5Rt6Sv7Uw8Vx a WzbYAcZBe#D f! Eg%FiHj*Ik) Jm-Kn+Mo1 Nq 2Or3Qs5Ru6 Sv7Uw9Vx aWzb YAdZBe#Df$Eg %F iHj(Ik) Jm -Ln+Mo1N q2Pr 3Qs5Ru6Tv7Uw 9VyaWzbYAdZC e#Df$Eh%FiH j(Il) Jm-Ln0M o1Nq2Pr4Qs5R u6Tv8Uw9VyaX zbYAdZCe! Df$ E h%GiHj(Il) Km-Ln0Mp 1Oq2 Pr4Qt5Ru6Tv8 U x9VyaXzcYAd ZCe!Dg$E h%Gi *Hj(Il) Km+Ln 0Mp1Oq3Pr4Qt 5Su6Tv8Ux9Wy aXzcYBdZCe!D g $Fh%Gi*Hk(I l)---------------------------------------------------------------最新资料推荐------------------------------------------------------ Km+Lo0Mp1O q3Ps4Qt5Su7T v 8Ux9WybXzcY Bd#Ce! D g$Fh Gi*Hk(Jl) Km+ L o0Np1Oq3Ps4 Rt5Su7T w8Ux9 WybXAcYBd#Cf !Dg$FhGj*Hk (Jl-Km+ Lo0Np 2Oq3Ps4Rt6Su 7Tw8Vx9WybXA cZBd#Cf ! Eg$F hGj*Ik(Jl-K n+Mo0Np2Or3P s4Rt6Sv 7Tw8V xaWybXAcZBe# C f!Eg% FhGj*Ik) Jl-K n+Mo 1Np2Or3Qs4Rt 6Sv 7Uw8VxaWz bXAcZBe#D f!E g%FiGj*Ik) J m- Kn+Mo1Nq2O r3Qs5Rt6Sv7U w9VxaWzbYAcZ Be#Df$Eg%Fi Hj*Ik) Jm-Ln+ Mo1Nq2Pr3Qs5 Ru6Sv7Uw9Vya WzbYAdZBe#Df $Eh%FiHj(Il ) Jm -Ln0Mo1Nq 2Pr4Qs5Ru 6Tv 7Uw9VyaXzbYA dZCe#Df$Bd#C f! Eg%FhGj*I k(Jl-Kn+Mo0Np2O r3Qs4Rt 6Sv7Tw8VxaWzbXAcZBe#Cf!E g%FiGj*Ik) J l-Kn+Mo1Np2O r3Qs5Rt6Sv7U w8Vxa WzbYAcZ Be#Df! Eg%Fi Hj*Ik) Jm-Kn+ Mo1Nq2Or3Qs5 Ru6Sv7Uw9VxaWzbYAdZBe#Df $Eg%FiHj(Ik ) Jm-Ln0Mo1Nq2Pr3Qs5Ru6Tv 7Uw9Vy aWzbYA dZCe#Df$Eh%FiHj(Il) Jm-L n0Mp1Nq2Pr4Q s5Ru6Tv8Uw9VyaXzbYAdZCe! Df$Eh %GiHj( Il) Km-Ln0Mp1Oq2Pr4Qt5Ru6 Tv8Ux9VyaXzc YAdZCe!Dg$Eh%Gi*Hj(Il) Km +Ln0Mp 1Oq3Pr 4Qt5Su6Tv8Ux9WyaXzcYBdZC e!Dg$F h%Gi*H k(Jl) Km+Lo0Mp1Oq3Ps4Qt5S u7Ts5R u6Sv7U w9VyaWzbYAdZBe#Df$Eh%Fi Hj(Ik)Jm-Ln0 Mo1Nq2Pr4Qs5Ru6Tv7Uw9Vya XzbYA dZCe#Df $Eh%Gi Hj(Il) Jm-Ln0Mp1N q2Pr4Qt5Ru6T v8Uw9VyaXzcYAdZCe!Df$Eh% Gi*Hj( Il) Km- Ln0Mp1Oq2Pr4Qt5Su6Tv8Ux9 VyaXzcY BdZCe !Dg$Eh%Gi*Hk(Il) Km+Ln0Mp 1Oq3Pr4Qt5Su5 / 67Tv8Ux9WyaXzcYBd#Ce! Dg$F h%Gi*Hk (Jl) K m+Lo0Np1Oq3Ps4Qt5Su7Tw8U x9WybX zcYBd# Cf!Dg$FhGi*Hk(Jl-Km+Lo0 Np2Oq3Ps4Rt5 Su7Tw8Vx9WybXAcYBd#Cf!Eg $FhGj*Hk(Jl -Kn+Lo0Np2Or3Ps4Rt6Su7Tw 8VxaWy bXAcZB d#Cf! Eg%FhG j*Ik(Jl-Kn+M o0Np2O r3Qs4R t6Sr4Qt5Su6Tv8Ux9WyaXzcY BdZCe!Dg$Fh% Gi*Hk(Il) Km+Lo0Mp1Oq3Pr4 Qt5Su7Tv8Ux9 WybXzcYBd#Ce! Dg$FhGi*Hk (Jl) Km +Lo0Np 1Oq3Ps4Rt5Su7Tw8Ux9WybXA cYBd#Cf!Dg$FhGj*Hk(Jl- K m+Lo0Np2Oq3 Ps4Rt6Su7Tw8 Vx9WybXAcZBd # Cf!Eg$FhGj *Ik(Jl- Kn+Lo 0Np2Or3Ps4Rt 6Sv7Tw8VxaWy bXAcZBe#Cf!E g%FhGj*Ik) J l-Kn+Mo0Np2O r3Qs4Rt6Sv7U w8VxaWzbXAcZ B e#Df!Eg%Fi Gj*Ik) J m-Kn+ Mo1Nq2Or3Qs5 R t6Sv7Uw9Vxa WzbYAcZB e#Df $Eg%Ff! Dg$Fh Gi*Hk(Jl-Km +Lo0Np1Oq3Ps 4Rt5Su7Tw8Vx 9W ybXAcYBd#C f!Eg$Fh Gj*H k(Jl-Kn+Lo0N p2Oq3Ps4Rt6S u7Tw8Vxa WybX AcZBd#Cf!Eg% F hGj*Ik(Jl- Kn+Mo0N p2Or3 Ps4Rt6Sv7Tw8 V xaWzbXAcZBe #Cf!Eg% FiGj *Ik) Jl-Kn+Mo 1Np2Or3Qs5Rt 6Sv7Uw8V xaWz bYAcZBe#Df!E g%FiHj*Ik) J m-Kn+Mo1Nq2O r3Qs5Ru6Sv7U w9VxaW zbYAdZBe#Df$Eg %Fi Hj(Ik) Jm-Ln +M o1Nq2Pr3Qs 5Ru6Tv7U w9Vy aWzbYAdZCe#D f$Eh%FiHj(I l) Jm-Ln0Mo1N q2Pr4Qs5Or3P s4Rt6Su7Tw8V xaWybXAcZ Be# Cf! Eg%FhGj* I。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
曲线拟合的最小二乘法
学院:光电信息学院 姓名:赵海峰 学号:200820501001
一、曲线拟合的最小二乘法原理:
由已知的离散数据点选择与实验点误差最小的曲线
)(...)()()(1100x a x a x a x S n n ϕϕϕ+++=
称为曲线拟合的最小二乘法。
若记
),()()(),(0
i k i j m
i i k j x x x ϕϕωϕϕ∑==
k i k i m
i i k d x x f x f ≡=∑=)()()(),(0
ϕωϕ
上式可改写为),...,1,0(;),(n k d a k j n
o
j j k -=∑=ϕϕ这个方程成为法方程,可写成距阵
形式
d Ga =
其中,),...,,(,),...,,(1010T n T n d d d d a a a a ==
⎥
⎥
⎥⎥⎦
⎤
⎢
⎢⎢⎢⎣⎡=),(),(),()(),(),(),(),(),(1011
10
101000n n n n n n G ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕΛ
M M M Λ
Λ。
它的平方误差为:.)]()([)(||||20
22i i m
i i x f x S x -=
∑=ωδ
二、数值实例:
下面给定的是乌鲁木齐最近1个月早晨7:00左右(新疆时间)的天气预报所得到的温度数据表,按照数据找出任意次曲线拟合方程和它的图像。
下面应用Matlab编程对上述数据进行最小二乘拟合
三、Matlab程序代码:
x=[1:1:30];
y=[9,10,11,12,13,14,13,12,11,9,10,11,12,13,14,12,11,10,9,8,7,8,9,11,9,7,6,5,3,1]; a1=polyfit(x,y,3) %三次多项式拟合%
a2= polyfit(x,y,9) %九次多项式拟合%
a3= polyfit(x,y,15) %十五次多项式拟合%
b1=polyval(a1,x)
b2=polyval(a2,x)
b3=polyval(a3,x)
r1= sum((y-b1).^2) %三次多项式误差平方和%
r2= sum((y-b2).^2) %九次次多项式误差平方和%
r3= sum((y-b3).^2) %十五次多项式误差平方和%
plot(x,y,'*') %用*画出x,y图像%
hold on
plot(x,b1, 'r') %用红色线画出x,b1图像%
hold on
plot(x,b2, 'g') %用绿色线画出x,b2图像%
hold on
plot(x,b3, 'b:o') %用蓝色o线画出x,b3图像%
四、数值结果:
不同次数多项式拟和误差平方和为:
r1 = 67.6659
r2 = 20.1060
r3 = 3.7952
r1、r2、r3分别表示三次、九次、十五次多项式误差平方和。
拟和曲线如下图:
上图中*代表原始数据,红色曲线代表三次多项式拟合曲线,绿色曲线代表九次多项式拟合曲线,蓝色o线代表十五次多项式拟合曲线。
五、结论:
以上结果可以看到用最小二乘拟合来求解问题时,有时候他的结果很接近实际情况,有时候跟实际情况里的太远,因为所求得多项式次数太小时数据点之间差别很大,次数最大是误差最小但是有时后不符合实际情况,所以用最小二乘法时次数要取合适一点。
从上面的拟合中也可以得到多项式拟合误差平方和随着拟合多项式次数的增加而逐渐减小,拟合的曲线更靠近实际数据。
拟合更准确。