初一数学期中测试题(2)上学期(人教版)

合集下载

【人教版】数学七年级上册《期中测试题》(带答案)

【人教版】数学七年级上册《期中测试题》(带答案)

人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷一、选择题1.-2的倒数是( )A. -2B. 12-C. 12D. 22.“天上的星星有几颗,7后跟上22个0”,这是国际天文学联合大会上宣布的消息,用科学记数法表示宇宙空间星星颗数为( )A. 21710⨯B. 22710⨯C. 23710⨯D. 230.710⨯3.一种货物进价a 元,提价20%后,再打9折,实际售价是( )A. 1.2aB. 1.08aC. 1.18aD. 0.9a4.下列去括号错误的共有( )①()a b c a b c -+=-+;②()a b c d a b c d -+-=--+;③2(2)22a b c a b c --=-+;④22[2()]22a a b c a a b c ---=--+A. 1个B. 2个C. 3个D. 4个 5.多项式1+xy ﹣xy 2的次数及最高次项的系数分别是( )A. 2,1B. 2,﹣1C. 3,﹣1D. 5,﹣16.按下面的程序计算:若输入20x,则输出结果( ) A. 81 B. 1296 C. 1300 D. 13017.若a 为有理数,则a a --一定是( )A. 零B. 非负数C. 正数D. 负数8.若32333M x x y y =-+,32325N x x y y =--,则3232714x x y y -+的值为( )A. M N +B. M N -C. 3M N -D. 3N M - 9.计算:122019(1)(1)(1)-+-++-的值是( )A. 1-B. 1C. 2019D. 2019- 10.若关于x 的一元一次方程ax +b =0(a≠0)的解是正数,则( )A. a ,b 异号B. b >0C. a ,b 同号D. a <0二、填空题11.方程2x ﹣5=0的解为_____.12.用四舍五入法对0.001368(精确到万分位)取近似值的结果是______________.13.单项式238ab c 的次数是_____________.14.如果22n a b 与34m a b 是同类项,则m n +=_____________.15.如果2|2|(1)0a b ++-=,那么()2019a b +=________________.16.我们规定一种运算:a c ad bc b d =-,若4221x x =-,则x =______________.17.已知代数式4321ax bx cx dx ++++,当2x =时,代数式的值是10,当2x =-时代数式的值是8,则4a c +=________________.18.观察下列图形:它们是按一定规律排列,依照此规律,第n 个图中共有___________个★.三、解答题19.计算:(1)7777188191919⎛⎫⎛⎫⎛⎫-⨯-+⨯-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (2)224(2)(4)(4)⎡⎤-⨯-÷---⎣⎦(3)22111110(2)23⎛⎫⎡⎤---⨯⨯-- ⎪⎣⎦⎝⎭ 20.化简:(1)()2222252xy x y x y xy ---(2)(){}2222215458293a a a a a a a a ⎡⎤--+---+-⎣⎦ 21.先化简,再求值:2222(3)5()2mn m m mn m mn ⎡⎤-----+⎣⎦ ,其中m=1,n=-2.22.解方程:(1))72(65)8(5-=-+x x (2)3157146x x ---= (3)0.10.40.2111.20.3x x -+-= 23.小明解方程26152x x a -++=时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此得到方程的解为1x =-,试求a 的值,并正确地求出原方程的解.24.已知m 、n 为整数,且21m m n -+-=,求m n +的值. 25.用同样规格的黑白两种颜色的正方形,按如图①的方式拼图,请根据图中的信息完成下列的问题(1)图②中用了___________块黑色正方形,在图③中用了_____________块黑色正方形;(2)按如图的规律继续铺下去,那么第n 个图形要用____________块黑色正方形;(3)如果有足够多白色正方形,能不能恰好用完2020块黑色正方形,拼出具有以上规律的图形?如果可以请说明它是第几个图形;如果不能,说明你的理由.26.如图所示,用三种大小不同的六个正方形和一个缺角的正方形拼成长方形ABCD ,其中,2GH cm =,2GK cm =,设BF xcm =.()1用含x的代数式表示CM=________cm,DM=________cm.()2求长方形ABCD的面积.答案与解析一、选择题1.-2的倒数是()A. -2B.12- C.12D. 2【答案】B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-1 2故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握2.“天上的星星有几颗,7后跟上22个0”,这是国际天文学联合大会上宣布的消息,用科学记数法表示宇宙空间星星颗数为()A. 21710⨯ B. 22710⨯ C. 23710⨯ D. 230.710⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【详解】解:将“7后跟上22个0”用科学记数法表示为:7×1022.故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.一种货物进价a元,提价20%后,再打9折,实际售价是()A. 1.2aB. 1.08aC. 1.18aD. 0.9a【答案】B【解析】【分析】先求出提价之后的价钱,然后再求出打折之后的售价.【详解】解:根据题意,得:(120%)0.9 1.08a a +⨯=;故选:B.【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.4.下列去括号错误的共有( )①()a b c a b c -+=-+;②()a b c d a b c d -+-=--+;③2(2)22a b c a b c --=-+;④22[2()]22a a b c a a b c ---=--+A. 1个B. 2个C. 3个D. 4个 【答案】C【解析】【分析】 根据去括号法则,括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号,对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】解:①a b +c a b c -=--(),故①错误;②()a b c d a b c d -+-=--+,故②正确;③2(2)24a b c a b c --=-+,故③错误;④22[2()]22a a b c a a b c ---=-+-,故④错误;∴错误的选项有3个;故选:C.【点睛】本题考查了去括号与添括号的知识,注意去括号法则的熟练掌握.5.多项式1+xy ﹣xy 2的次数及最高次项的系数分别是( )A. 2,1B. 2,﹣1C. 3,﹣1D. 5,﹣1【答案】C【解析】根据多项式次数和单项式的系数的定义求解.多项式的次数是多项式中最高次项的次数,即﹣xy 2的次数. 解:多项式1+xy ﹣xy 2的次数及最高次项的系数分别是3,﹣1.故选C .6.按下面的程序计算: 若输入20x,则输出结果为( ) A. 81B. 1296C. 1300D. 1301 【答案】D【解析】【分析】 当输入一次x=20,求出结果,与500进行比较,若小于500,则继续代入计算,直到结果大于500,则输出结果.【详解】解:当20x 时,代入计算,得 41420181x , 81500; 当81x =时,代入计算,得 414811325x , 325500; 当325x =时,代入计算,得 41432511301x , ∵1301500, ∴输出的结果是1301. 故选:D. 【点睛】本题主要考查的是代数式求值,弄清题中的程序框图是解本题的关键. 7.若a 为有理数,则a a --一定是( ) A. 零 B. 非负数 C. 正数 D. 负数【答案】B【解析】【分析】根据题意,对a 进行讨论,然后分别化简a a --,即可得到答案.【详解】解:当0a >时,有0a a a a --=-=;当0a =时,有000a a --=-=;当0a <时,有20a a a a a --=--=->; ∴0a a --≥;故选:B.【点睛】本题考查了绝对值的意义,解题的关键是熟练掌握绝对值的意义进行判断.8.若32333M x x y y =-+,32325N x x y y =--,则3232714x x y y -+的值为( )A. M N +B. M N -C. 3M N -D. 3N M -【答案】C【解析】【分析】 根据整式的加减混合运算的运算法则,分别求出每个选项的结果,然后进行判断,即可得到答案.【详解】解:A 、323323323(33)(25)252M N x x y y x x y y x x y y +=-++--=--,故A 错误;B 、32332323(33)(25)8x x y y x x y y x y N y M -+---=+=--,故B 错误;C 、323323323(33)(25)273143x x y y x x y y x x y y M N -+---=-+-=,故C 正确;D 、3233233233(25)3(33)2714N M x x y y x x y y x x y y -=----+=-+-,故D 错误;故选:C.【点睛】本题考查了整式的加减混合运算,合并同类项,解题的关键是熟练掌握运算法则进行解题. 9.计算:122019(1)(1)(1)-+-++-的值是( ) A. 1-B. 1C. 2019D. 2019-【答案】A【解析】【分析】根据题意,1-的奇数次幂等于1-,1-的偶数次幂等于1,然后两个加数作为一组和为0,即可得到答案.【详解】解:∵1-的奇数次幂等于1-,1-的偶数次幂等于1,∴122019(1)(1)(1)-+-++-=1234201720182019[(1)(1)][(1)(1)][(1)(1)](1)-+-+-+-++-+-+- =2019(1)-=1-;故选:A.【点睛】本题考查了数字规律性问题,有理数的混合运算,解题的关键是熟练掌握1-的奇数次幂等于1-,1-的偶数次幂等于1.10.若关于x 的一元一次方程ax +b =0(a≠0)的解是正数,则( )A. a ,b 异号B. b >0C. a ,b 同号D. a <0 【答案】A【解析】【分析】可以先根据一元一次方程ax +b =0解得方程的解x ,然后再根据题中要求都是正数,得x >0,即可判断a 、b .【详解】由ax +b =0得x =−b a , 又x >0,所以−b a>0, 故a 、b 异号,故选A .【点睛】本题考查了一元一次方程的解法及不等式的性质,是一个小型的综合题,切记细心. 二、填空题11.方程2x ﹣5=0的解为_____.【答案】x=2.5【解析】【分析】根据一元一次方程的解法,移项,系数化为1即可求解.【详解】解:∵2x-5=0∴2x=5∴x=2.5故答案为x=2.5.【点睛】此题主要考查了一元一次方程的解法,熟练利用一元一次方程的解题步骤解题是关键,注意移项要变号.12.用四舍五入法对0.001368(精确到万分位)取近似值的结果是______________.【答案】0.0014【解析】【分析】根据近似数的精确度求解.【详解】解:0.001368(精确到万分位)的近似数为:0.0014;故答案为:0.0014.【点睛】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.单项式238ab c 的次数是_____________.【答案】6【解析】【分析】根据单项式的系数和次数的定义,即可得到答案.【详解】解:单项式238ab c 的次数是:1236++=;故答案为:6.【点睛】本题考查了单项式的系数和次数的定义,解题的关键是熟记定义.14.如果22n a b 与34m a b 是同类项,则m n +=_____________.【答案】5【解析】【分析】根据同类项的定义,先求出m 、n 的值,然后即可得到答案.【详解】解:∵22n a b 与34m a b 是同类项,∴2m =,3n =,∴235m n +=+=;故答案为:5.【点睛】本题考查了同类项的定义,解题的关键是熟记定义,正确求出m 、n 的值.15.如果2|2|(1)0a b ++-=,那么()2019a b +=________________.【答案】-1【解析】【分析】根据非负数的性质,先求出a 、b ,然后即可得到答案.【详解】解:∵2|2|(1)0a b ++-=,∴20a +=,10b -=,∴2a =-,1b =,∴()20192019(21)1a b +=-+=-;故答案为:1-.【点睛】本题考查了求代数式的值,非负数的性质,解题的关键是熟练掌握非负数的性质,正确求出a 、b 的值.16.我们规定一种运算:a c ad bcb d =-,若4221x x =-,则x =______________. 【答案】3【解析】【分析】根据题意给出的运算法则,然后将其原式进行化简即可求出答案. 【详解】解:∵a c ad bc b d =-, ∴424(1)221x x x x =--=-,∴26x =,∴3x =;故答案为:3.【点睛】本题考查整式的运算,以及新定义的运算,解题的关键是熟练运用整式的运算法则以及一元一次方程的解法,本题属于基础题型.17.已知代数式4321ax bx cx dx ++++,当2x =时,代数式的值是10,当2x =-时代数式的值是8,则4a c +=________________.【答案】2【解析】【分析】把2x =和2x =-代入,联合两个方程进行计算,得到821b d +=,然后整体代入计算,即可得到答案.【详解】解:当2x =时,有16842110a b c d ++++=①,当2x =-时,有1684218a b c d -+-+=②,由①-②,得821b d +=③,把③代入①,得1641110a c +++=,∴1648a c +=,∴42a c +=;故答案为:2.【点睛】本题考查了求代数式的值,熟练掌握运算法则,利用整体代入法进行解题是解决本题的关键. 18.观察下列图形:它们是按一定规律排列的,依照此规律,第n 个图中共有___________个★.【答案】222n n ++【解析】【分析】根据题意,先得到每个图形中的数量,然后找到规律,进而求出第n 个图中的数量.【详解】解:根据题意,第1个图的数量有5个,即2215+=个;第2个图的数量有10个,即23110+=个;第3个图的数量有17个,即24117+=个;第4个图的数量有26个,即25126+=个;……第n 个图的数量有22(1)122n n n ++=++;故答案为:222n n ++.【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.三、解答题19.计算:(1)7777188191919⎛⎫⎛⎫⎛⎫-⨯-+⨯-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (2)224(2)(4)(4)⎡⎤-⨯-÷---⎣⎦(3)22111110(2)23⎛⎫⎡⎤---⨯⨯-- ⎪⎣⎦⎝⎭ 【答案】(1)-7;(2)85;(3)-2 【解析】【分析】(1)直接利用乘法分配律进行计算,即可得到答案;(2)先计算乘方和括号内的运算,然后计算乘除,即可得到答案;(3)先计算乘方和括号内的运算,然后计算乘除,再计算加减运算,即可得到答案. 【详解】解:(1)7777188191919⎛⎫⎛⎫⎛⎫-⨯-+⨯-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭7(7188)19⎛⎫=-++⨯- ⎪⎝⎭ 71919⎛⎫=⨯- ⎪⎝⎭7=-;(2)224(2)(4)(4)⎡⎤-⨯-÷---⎣⎦ 16(2)(164)=-⨯-÷+3220=÷85=; (3)()22111110223⎛⎫⎡⎤---⨯⨯-- ⎪⎣⎦⎝⎭ 111(104)23=--⨯⨯- 1166=--⨯ 112=--=-.【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则进行解题.20.化简:(1)()2222252xy x y x y xy ---(2)(){}2222215458293a a a a a a a a ⎡⎤--+---+-⎣⎦ 【答案】(1)2246xy x y -;(2)2203a a -【解析】【分析】(1)先去括号,然后合并同类项,即可得到答案;(2)先去括号,然后合并同类项,即可得到答案.【详解】解:(1)()2222252xy x y x y xy ---2222252xy x y x y xy =--+2246xy x y =-;(2)(){}2222215458293a a a a a a a a ⎡⎤--+---+-⎣⎦()2222215458293a a a a a a a a ⎡⎤=--+--++-⎣⎦ ()22215463a a a a a =---+-221553a a a =+-2203a a =-.【点睛】本题考查了整式加减混合运算,解题的关键是熟练掌握去括号,合并同类项的运算法则进行解题. 21.先化简,再求值:2222(3)5()2mn m m mn m mn ⎡⎤-----+⎣⎦ ,其中m=1,n=-2. 【答案】mn ,-2.【解析】【分析】首先根据整式的加减运算法则,将整式化简,然后把给定的值代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【详解】原式=﹣2mn +6m 2﹣m 2+5(mn ﹣m 2)﹣2mn=﹣2mn +6m 2﹣m 2+5mn ﹣5m 2﹣2mn=mn当m =1,n =﹣2时,原式=1×(﹣2)=﹣2. 【点睛】本题考查了整式的乘法、去括号、合并同类项的知识点.注意运算顺序以及符号的处理.22.解方程:(1))72(65)8(5-=-+x x (2)3157146x x ---= (3)0.10.40.2111.20.3x x -+-= 【答案】(1)11x =;(2)1x =-;(3)8x =-【解析】【分析】(1)先去括号,然后移项,合并同类项,系数化为1,即可得到答案;(2)先去分母,去括号,然后移项,合并同类项,系数化为1,即可得到答案;(3)先去分母,去括号,然后移项,合并同类项,系数化为1,即可得到答案.【详解】(1)解:5(8)56(27)0x x +---=540512420x x +--+=7770x -+=777x -=-11x =;(2)解:3157146x x ---= ()()33125712---=x x93101412x x --+=12314x -=+-1x -=1x =-;(3)解:42101123x x -+-= 4124(210)x x --=+16840x x -=+84016x x -=+756x -=8x =-.【点睛】本题考查了解一元一次方程,解题的关键是熟练掌握解一元一次方程的方法和步骤.23.小明解方程26152x x a -++=时,由于粗心大意,在去分母时,方程左边的1没有乘以10,由此得到方程的解为1x =-,试求a 的值,并正确地求出原方程的解.【答案】2a =-,8x =【解析】【分析】先根据错误的做法:“方程左边的1没有乘以10”而得到1x =-,代入错误方程,求出a 的值,再把a 的值代入原方程,求出正确的解.【详解】解:412155x x a -+=+∵1x =-为412155x x a -+=+的解∴16155a -+=-+∴2a =-;∴原方程为:262152x x --+= 去分母得:41210510x x -+=-∴45101012x x -=--+∴8x -=-∴8x =.【点睛】本题考查了解一元一次方程,本题易在去分母、去括号和移项中出现错误.由于看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.24.已知m 、n 为整数,且21m m n -+-=,求m n +的值.【答案】2或3或5或6.【解析】【分析】由m 、n 为整数,则可分为20m -=或0m n -=两种情况进行讨论,即可求出答案.【详解】解:∵m 、n 为整数,且21m m n -+-=,①当20m -=时,1m n -=,此时2m =,1n =或3;∴m n +的值是3或5;②当0m n -=时,21m -=,此时1m n ==或3,∴m n +的值是2或6.综合上述,m n +的值是2或3或5或6.【点睛】本题考查了求代数式的值,绝对值的化简,解题的关键是熟练掌握绝对值的化简,正确得到m 、n 的值.25.用同样规格的黑白两种颜色的正方形,按如图①的方式拼图,请根据图中的信息完成下列的问题(1)在图②中用了___________块黑色正方形,在图③中用了_____________块黑色正方形;(2)按如图的规律继续铺下去,那么第n 个图形要用____________块黑色正方形;(3)如果有足够多的白色正方形,能不能恰好用完2020块黑色正方形,拼出具有以上规律的图形?如果可以请说明它是第几个图形;如果不能,说明你的理由.【答案】(1)7,10;(2)31n +;(3)可以,它是第673个图形【解析】【分析】(1)观察如图可直接得出答案;(2)认真观察题目中给出的图形,结合问题(1),通过分析,即可找到规律,得出答案;(3)根据问题(2)中总结的规律,列出算式3n+1=2020,如果结果是整数,则能够拼出具有以上规律的图形,否则,不能.【详解】解:(1)观察如图可以发现,图②中用了7 块黑色正方形,在图③中用了10 块黑色正方形; 故答案为:7,10;(2)在图①中,需要黑色正方形的块数为:3×1+1=4;在图②中,需要黑色正方形的块数为:3×2+1=7;在图③中,需要黑色正方形的块数为:3×3+1=10;由此可以发现,第几个图形,需要黑色正方形的块数就等于3乘以几,然后加1.所以,按如图的规律继续铺下去,那么第n 个图形要用3n+1块黑色正方形;故答案为:31n +;(3)可以,假设第n 个图形恰好能用完2020块黑色正方形,则312020n +=,解得:673n =,∴它是第673个图形. 【点睛】此题主要考查了图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,通过分析、思考,总结出图形变化的规律,属于难题.26.如图所示,用三种大小不同的六个正方形和一个缺角的正方形拼成长方形ABCD ,其中,2GH cm =,2GK cm =,设BF xcm =.()1用含x 的代数式表示CM =________cm ,DM =________cm .()2求长方形ABCD 的面积.【答案】(1)()2;22x x ++;(2)140.【解析】【分析】(1)根据正方形的性质和线段的和差关系即可得出CM 和DM ;(2)先求出长方形ABCD 的长和宽,再用长×宽即可得出长方形ABCD 的面积.【详解】解:(1)CM =(x +2)cm ,DM =MK =2(x +2)−2=2x +2(cm ),故答案为(x +2),2x +2;(2)长方形的长为:x +x +x +x +2+x +2=14cm ,宽为:4x +2=4×2+2=10cm . 所以长方形ABCD 的面积为:14×10=140cm 2. 【点睛】此题考查了列代数式的知识,主要是能够用不同的方法表示同一个长方形的宽,注意各个正方形的边长之间的数量关系.。

七年级数学上册期中考试卷及答案人教版

七年级数学上册期中考试卷及答案人教版

七年级数学上册期中考试卷及答案人教版人教版数学七年级上学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1. 比小的数是 ( )A. B. C. D.2. 在式子 , , , , , 中 , 整式有 ( )A. 个B. 个C. 个D. 个3. 算式的值为 ( )A. B. C. D.4. 若和相减的结果是, 则的值是 ( ) A. B. C.D.5. 下列计算正确的是 ( )A.B.C.D.6. 若 , 互为相反数 , , 互为倒数 ,.则的值为 ( )A. B. C. 或 D.7. 若, 则 a-b 的值是 ( ) A. B. C.D. 8. 如图 , 在数轴上 , 点 , 所表示的数分别为,, 则 , 两点之间表示整数的点一共有 ( )A. 个B. 个C. 个D. 个9. 按如图所示程序流程计算 , 若开始输入的值.则最后输出的结果是 ( )A. B. C. D.10. 如图 , 把张形状大小完全相同的小长方形卡片不重叠地放在一个底面为长方形的盒子底部 , 盒子底面未被覆盖的部分用阴影部分表示则图中两块阴影部分的周长的和是 ( )A.B.C.D.二、填空题(每小题3分,共15分)11.的相反数是 ____ . 12. 多项式的次数是____. 13. 目前 , 第五代移动通信技术正在阔步前行 , 按照产业间关联关系测算 , 2020 年 ,间接拉动增长将超过亿元数据“亿”用科学记数法表示为_____. 14. 已知数 , 在数轴上的位置如图所示 , 则 , , ,的大小关系是____.15. 观察下列式子:, , 它们是按照一定规律排列的 , 依照此规律 , 则第个式子为 _______ .三.解答题(本大题共8个小题,满分75分)16. 计算:( 1 ); ( 2 ).17. 化简:( 1 ); ( 2 ). 18. 化简并求值:, 其中,.19. 小王在新藏公路某路段设置了一个加水站 , 他每天开着加水车沿东西方向给过路的汽车加水.如果约定向西为正.向东为负 , 加水车当天的行驶记录如下 ( 单位:千米 ) :+8 , -9 , +7 , -4 , -3 , +5 , -6 , -8 , +6 , +7 .( 1 ) 加水车最后到达地方在出发点的哪个方向 ? 距出发点多远 ?( 2 ) 若加水车行驶过程中每千米耗油量为升 , 求这天加水车共耗油多少升 ?20. 小刚同学做一道题:“已知两个多项式 , , 计算.”小刚同学误将看作, 求得结果.若多项式. ( 1 ) 请你帮助小刚同学求出的正确答案; ( 2 ) 若的值与的取值无关 , 求的值.21. 学校让综合实践活动课外学习小组参与学校校办工厂的足球生产活动 , 在工人师傅的指导和帮助下 , 综合实践活动课外学习小组一周计划生产 700 个足球 , 平均每天生产 100 个 , 由于各种原因实际每天生产产量与计划量相比有出入 , 下表是某周的生产情况 ( 超产为正、减产为负 ) :( 1 ) 根据记录可知前四天共生产个;( 2 ) 产量最多的一天比产量最少的一天多生产个;( 3 ) 该校办工厂实行每周计件奖励制 , 生产一个足球奖励给综合实践活动课外学习小组元.超额完成任务超额部分每个再奖元 , 那么该校的综合实践活动课外学习小组这一周得到的奖励总额是多少元 ?22. 某校准备到服装超市购一批演出服装 ( 男 , 女服装价格相同 ) 以供文艺汇演使用 , 一套服装定价元 , 领结 ( 花 ) 每条定价元 , 适逢新中国成立周年 , 服装超市开展促销活动 , 向客户提供两种优惠方案:①买一套服装送一条领结 ( 花 ) ;②服装和领结 ( 花 ) 都按定价的销售. 现该校要到该服装超市购买服装套 , 领结 ( 花 ) 条.( 1 ) 若该校按方案①购买.需付款 _______ 元 ( 用含的式子表示 ) ;若该校按方案②购买.需付款元 ( 用含的式子表示 ) ;( 2 ) 若, 通过计算说明此时按哪种方案付款比较合算; ( 3 ) 当时 , 你能给出一种更为省钱的购买方案吗 ? 试写出你的购买方案 , 并计算出需付款多少元.23. ( 1 ) 如图 , 点 M 在数轴上对应数为 -4 .点 N 在点 M 右边距 M 点 6 个单位长度 , 求点 N 对应的数;( 2 ) 在 ( 1 ) 的条件下.保持 N 点静止不动 , 点 M 沿数轴以每秒 1 个单位长度的速度匀速向右运动 , 经过多长时间 M , N 两点相距 4 个单位长度;( 3 ) 若已知点 M , N 在数轴上对应的数分别为 -6 、 2 .点 M 以每秒 3 个单位长度的速度沿数轴向右运动 , N 以每秒 2 个单位长度的速度同时沿数轴向右运动 , 当 M , N 两点相距个单位长度时 , 请直接写出点 M 所对应的数.初一数学21个必考知识点1.数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向。

七年级数学上学期期中测试题人教版

七年级数学上学期期中测试题人教版

七年级数学上学期期中测试题本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分120分.第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,共30分)1.下列各数中,互为相反数的是( )A .-3与|3|--B .2(3)-与32 C .(25)--与25- D .a -与||a -2. 2008年5月12日,在我国四川省汶川县发生里氏8.0级强烈地震.面对地震灾害,中央和各级政府快速作出反应,为地震灾区提供大量资金用于救助和灾后重建,据统计,截止5月31日,各级政府共投入抗震救灾资金22600000000元人民币,22600000000用科学记数法表示为( ) A .1022.610⨯B .112.2610⨯C .102.2610⨯D .822610⨯3.多项式 22x x -+中,第一项2x -的系数是( ) A .1 B .-1 C .0 D .2 4.代数式中:0,3x -,n m -,3x ,1-,2t ,2a 中,单项式的个数是P,多项式的个数是q ,p+q 为 ( )A.6B.5C.4D.35.下列各式中22211,2,2,,3,1,613x xy x y x y xπ-++-+是整式的有( )A.6个B.5个C.4个D.3个6.下列各对单项式中,不是同类项的是( )A.0与31 B.23n m x y +-与22m n y x + C.213x y 与225yx D.20.4a b 与20.3ab 7.若||3a =,||2b =,则a b +的值有( ) A .1个 B .2个 C .3个 D .4个 8.甲数的23比乙数小1,设甲数为x ,则乙数为( ) A .213x - B .213x + C .2(1)3x - D .2(1)3x +9.已知a 、b 互为相反数,c 、d 互为倒数,x 等于4的2次方,则式子1()2cd a b x x ---的值为( )A .2B .4C .8D .-8 10.已知a 、b 、c 大小如图所示,则a b ca b c++的值( ) A .1 B .1- C .1± D .0第Ⅱ卷(非选择题 共90分)二、填空题(共8小题,每小题3分,共24分)11.在“迎奥运,展风采”校运会 中,小明的跳远比赛跳出了4.25米,若小明的跳远成绩记做+0.25,那么小东跳出了3.85米,记作 . 12. 已知(2r +4)2+∣9-3s ∣=0,则r s = .13. 一个正常人的平均心跳速率约为每分钟70次,一个月大约跳_____次.(用科学计数法表示,一个月以30天计算)14.多项式234312xy xy -+中次数最高项的次数和系数分别为 .15.已知622x y 和313m n x y -是同类项,则29517m mn --的值是 .16.化简()()234x x ---+= .17.观察下面的一列数,按某种规律在横线上填上适当的数:,201,121,61,21 …,前20个数的和为________.18.符号“f ”表示一种运算,它对一些数的运算结果如下: (1)(1)0f =,(2)1f =,(3)2f =,(4)3f =,…(2)122f ⎛⎫=⎪⎝⎭,133f ⎛⎫= ⎪⎝⎭,144f ⎛⎫= ⎪⎝⎭,155f ⎛⎫= ⎪⎝⎭,… 利用以上规律计算:1(2008)2008f f ⎛⎫-=⎪⎝⎭. 三、解答题(共7小题,共66分) 19.(8分)计算:(1))9.0()522()2.7(9132-⨯-÷-⨯.(2))5.1(21)32()211()32(222-÷----⨯.20.(8分)计算:(1)()()32223232yxyyxxyy---+-;(2)5(m-n)+2(m-n)-4(m-n)。

人教版2020---2021学年度七年级数学(上)期中考试卷及答案(含三套题)

人教版2020---2021学年度七年级数学(上)期中考试卷及答案(含三套题)

密线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年度上学期七年级数学(上)期中测试卷及答案(满分:150分 时间: 120分钟)一、选择题(本大题共12小题,每小题4分,共48分) 1.(4分)某种速冻水饺的储藏温度是﹣18±2°C,四个冷藏室的温度如下:A 冷藏室,﹣17°C;B 冷藏室,﹣22°C;C 冷藏室,﹣18°C;D 冷藏室,﹣19°C.则不适合储藏此种水饺的是( )A .A 冷藏室B .B 冷藏室C .C 冷藏室D .D 冷藏室 2.(4分)下列各式结果是负数的是( ) A .﹣|﹣3| B .()2 C .﹣(﹣3) D .(﹣3)2 3.(4分)如果m 是一个有理数,那么﹣m 是( ) A .正数 B . 0C .负数D .以上三者情况都有可能4.(4分)下列方程中,是一元一次方程的是( ) A .3x ﹣1= B .x 2﹣4x=3 C .x+2y=1 D .xy ﹣3=55.(4分)大树的价值很多,可以吸收有毒气体,防止大气污染,增加土壤肥力,涵养水源,为鸟类及其他动物提供繁衍场所等价值,累计计算,一棵50年树龄的大树总计创造价值超过160万元,其中160万元用科学记数法表示为( ) A .1.6×105 B .1.6×106 C .1.6×107 D .1.6×108 6.(4分)如图,数轴上的A ,B ,C 三点所表示的数是分别是a 、b 、c ,其中AB=BC ,如果|a|>|b|>|c|,那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点B 与点C 之间(靠近点C )或点C 的右边 7.(4分)下列式子:x 2+1, +4,,,﹣5x ,0中,整式的个数是( ) A .6 B .5 C .4 D .38.(4分)关于多项式0.3x 2y ﹣2x 3y 2﹣7xy 3+1,下列说法错误的是( )A .这个多项式是五次四项式B .四次项的系数是7C .常数项是1D .按y 降幂排列为﹣7xy 3﹣2x 3y 2+0.3x 2y+19.(4分)如图是某年3月份的日历表,任意圈出一竖列上相题号一 二 三 四 五 总分 得分封线内邻的三个数,运用方程思想来研究,发现这三个数的和不可能是()A.69 B.54 C.40 D.2710.(4分)多项式x3﹣2x2+5x+3与多项式2x2﹣x3+4+9x的和一定是()A.奇数 B.偶数 C.2与7的倍数D.以上都不对11.(4分)观察下面的一列单项式:﹣x、2x2、﹣4x3、8x4、﹣16x5、…根据其中的规律,得出的第10个单项式是()A.﹣29x10 B.29x10 C.﹣29x9 D.29x912.(4分)古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+31二、填空题(本大题共6小题,每小题413.(4分)某天的气温从﹣3℃上升14.(4分)﹣17的相反数是.15.(4分)若a,b互为倒数,则a2b﹣(a﹣16.(4分)若x的2倍与3的和是﹣15,17.(4分)如图,边长为(m+3为m隙),若拼成的矩形一边长为318.(4分)有依次排列的3个数:3,9,8个数,都用右边的数减去左边的数,可产生一个新数串:3,6,9,﹣1,89,﹣10,﹣1,9,8三、解答题(本大题共2小题,每小题719.(7分)计算:()2﹣|﹣1÷0.2|+(﹣5)3×(﹣)20.(7分)(1)合并同类项:3a2﹣2a+4a2﹣7a.(2)解方程:﹣2x﹣=x+.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题四、解答题(本大题共4小题,每小题10分,共40分)21.(10分)(1)解方程:﹣=1﹣; (2)先化简,再求值:2x 2﹣[3(﹣x 2+xy )﹣2y 2]﹣2(x 2﹣xy+2y 2),其中x=,y=﹣1.22.(10分)已知A=2x 2+3xy ﹣2x ﹣1,B=﹣x 2+xy ﹣1; (1)求3A+6B ;(2)若3A+6B 的值与x 无关,求y 的值.23.(10分)一辆出租车从A 地出发,在一条东西走向的街道上往返,每次行驶的路程(记向东为正)记录如下(x >9且x <26,单位:km )第一次 第二次第三次 第四次 xx ﹣52(9﹣x )(1)说出这辆出租车每次行驶的方向.(2)求经过连续4次行驶后,这辆出租车所在的位置. (3)这辆出租车一共行驶了多少路程?24.(10分)李师傅下岗后,做起来小生意,第一次进货,他以每件a 元的价格购进了30件甲种小商品,以每件b 元的价格购进了40件乙种小商品,且a <b .(1)若李师傅将甲种商品提价40%,乙种商品提价30%全部出售,他获利多少元?(用含有a ,b 的式子表示结果)(2)若李师傅将两种商品都以元的价格全部出售,他这次买卖是赚钱还是亏本,请说明理由?五、解答题(本大题共2小题,每小题12分,共24分) 25.(12分)探索规律:观察下面由※组成的图案和算式,并解答问题. 1+3=4=22 1+3+5=9=32 1+3+5+7=16=42 1+3+5+7+9=25=52(1)试猜想1+3+5+7+9+…+19= ;(2)试猜想1+3+5+7+9+…+(2n ﹣1)+(2n+1)+(2n+3)= ; (3)请用上述规律计算:1001+1003+1005+…+2015+2017(请算出最后数值哦!)26.(12分)家乐福超市开展元旦促销活动出售A 、B 两种商品,活动方案有如下两种: 方案一A B 标价(单位:元)90100答 题每件商品返利 按标价的30% 按标价的15%例:买一件A 商品,只需付款90(1﹣30%)元方案二 若所购商品达到或超过100件(不同商品可累计),则按标价的20%返利.(同一种商品不可同时参与两种活动)(1)某单位购买A 商品30件,B 商品90件,选用何种活动划算?能便宜多少钱?(2)若某单位购买A 商品x 件(x 为正整数),购买B 商品的件数比A 商品件数的2倍还多一件,请问该单位该如何选择才能获得最大优惠?请说明理由.参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分) 1.【解答】解:﹣18﹣2=﹣20℃,﹣18+2=﹣16℃, 温度范围:﹣20℃至﹣16℃,A 、﹣20℃<﹣17℃<﹣16℃,故A 不符合题意;B 、﹣22℃<﹣20℃,故B 符合题意;C 、﹣20℃<﹣18℃<﹣16℃,故C 不符合题意;D 、﹣20℃<﹣19℃<﹣16℃,故D 不符合题意;故选:B . 2.【解答】解:A 、﹣|﹣3|=﹣3,故选项正确; B 、()2=,故选项错误;C 、﹣(﹣3)=3,故选项错误;D 、(﹣3)2=9,故选项错误.故选:A .3.【解答】解:如果m 是一个有理数,那么﹣m 负数,故选:D .4.最高次数为1且两边都为整式的等式.故选:A .5.解:将160万用科学记数法表示为1.6×106.故选:B 6.【解答】解:∵|a|>|b|>|c|,∴点A 到原点的距离最大,点B 其次,点C 最小, 又∵AB=BC ,∴在点B 与点C 之间,且靠近点C 的地方或点C 的右边,D .7.解:整式有x 2+1,,﹣5x ,0,共4个,故选:C .8.解:该多项式四次项是﹣7xy 3,其系数为﹣7,故选:B 9.【解答】解:设中间的数是x ,则上面的数是x ﹣7数是x+7.则这三个数的和是(x ﹣7)+x+(x+7)=3x , 因而这三个数的和一定是3的倍数. 则,这三个数的和不可能是40.故选:C .10.【解答】解:(x 3﹣2x 2+5x+3)+(2x 2﹣x 3+4+9x )=14x+7密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题果是个多项式;又14x+7=7(2x+1),此处x 为任意有理数,而并非只取正整数, ∴结果不确定.故选:D .11.【解答】解:依题意得:(1)n 为奇数,单项式为:﹣2(n﹣1)x n;(2)n 为偶数时,单项式为:2(n ﹣1)x n .综合(1)、(2),本数列的通式为:2n ﹣1•(﹣x )n ,∴第10个单项式为:29x 10.故选:B .12.【解答】解:显然选项A 中13不是“正方形数”;选项B 、D 中等式右侧并不是两个相邻“三角形数”之和.故选:C . 二、填空题(本大题共6小题,每小题4分,共24分) 13.【解答】解:由题意,的﹣3℃+2℃ =﹣1℃故答案为:﹣114.【解答】解:﹣17的相反数是17, 故答案为:17.15.【解答】解:∵a ,b 互为倒数, ∴ab=1,∴a 2b ﹣(a ﹣2017) =ab •a ﹣(a ﹣2017) =a ﹣a+2017 =2017.故答案为:2017.16.【解答】解:由题意:2x+3=﹣15, ∴x=﹣9, ∴x 2﹣1=80, 故答案为80.17.【解答】解:依题意得剩余部分为 (m+3)2﹣m 2=m 2+6m+9﹣m 2=6m+9, 而拼成的矩形一边长为3, ∴另一边长是(6m+9)÷3=2m+3. 故答案为:2m+3.18.【解答】解:一个依次排列的n 个数组成一个数串:a 1,a 2,a 3,…,a n ,依题设操作方法可得新增的数为:a 2﹣a 1,a 3﹣a 2,a 4﹣a 3,a n ﹣a n ﹣1,所以,新增数之和为:(a 2﹣a 1)+(a 3﹣a 2)+(a 4﹣a 3)+…+(a n ﹣a n ﹣1)=a n ﹣a 1,原数串为3个数:3,9,8,第1次操作后所得数串为:3,6,9,﹣1,8,根据(*)可知,新增2项之和为:6+(﹣1)=5=8﹣3, 第2次操作后所得数串为:3,3,6,3,9,﹣10,﹣1,9,8,内 答 根据(*)可知,新增2项之和为:3+3+(﹣10)+9=5=8﹣3, 按这个规律下去,第100次操作后所得新数串所有数的和为: (3+9+8)+100×(8﹣3)=520, 故答案为:520.三、解答题(本大题共2小题,每小题7分,共14分) 19.【解答】解:原式=﹣5+75=72. 20.【解答】解:(1)3a 2﹣2a+4a 2﹣7a =3a 2+4a 2﹣7a ﹣2a =7a 2﹣9a .(2)﹣2x ﹣=x+, ﹣12x ﹣9=6x+2, ﹣12x ﹣6x=2+9, ﹣18x=11, x=﹣.四、解答题(本大题共4小题,每小题10分,共40分) 21.【解答】解:(1)去分母,得2(x+2)﹣5(x ﹣1)=10﹣2x ,去括号,得2x+4﹣5x+5=10﹣2x , 移项,合并得﹣x=1, 系数化为1,得x=﹣1;(2)原式=2x 2+x 2﹣2xy+2y 2﹣2x 2+2xy ﹣42y 2, =x 2﹣40y 2,当x=,y=﹣1,原式=﹣40=﹣39.22.【解答】解:(1)原式=3(2x 2+3xy ﹣2x ﹣1)+6(﹣x 2﹣1)=6x 2+9xy ﹣6x ﹣3﹣6x 2+6xy ﹣6 =15xy ﹣6x ﹣9(2)原式=(15y ﹣6)x ﹣9 由题意可知:15y ﹣6=0 y=23.【解答】(1是向东,第四次是向西.(2)解:x+(﹣x )+(x ﹣5)+2(9﹣x )=13﹣x , ∵x >9且x <26, ∴13﹣x >0,∴经过连续4次行驶后,这辆出租车所在的位置是向东(13﹣x )km .(3)解:|x|+|﹣x|+|x ﹣5|+|2(9﹣x )|=x ﹣23, 答:这辆出租车一共行驶了(x ﹣23)km 的路程.24.【解答】解:(1)由题意可得:30×40%a+40×30%b=(密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题元;(2)他这次买卖亏本; 理由:70×﹣(30a+40b )=5(a ﹣b )∵a <b ,∴5(a ﹣b )<0, ∴他这次买卖是亏本.五、解答题(本大题共2小题,每小题12分,共24分) 25.【解答】解:(1)1+3+5+7+9+…+19=()2=100;(2)1+3+5+7+9+…+(2n ﹣1)+(2n+1)+(2n+3) =()2=(n+2)2.故答案为:100;(n+2)2;(3)1001+1003+1005+…+2009+2017 =()2﹣()2=10092﹣5002 =1018081﹣250000 =768081.26.【解答】解:(1)选择方案一所需费用为:30×90×(1﹣30%)+90×100×(1﹣15%)=9540(元),选择方案二所需费用为:(30×90+90×100)×(1﹣20%)=9360(元),∵9540>9360,9540﹣9360=180(元), ∴选择方案二划算,答:选用方案二划算,能便宜180元钱;(2)当0≤x ≤99时,选择方案一,当x ≥100时,选择方案二,理由:由题意可得,选择方案一所需费用为:90×(1﹣30%)x+100×(1﹣15%)×(2x+1)=233x+85,选择方案二所需费用为:当0≤x ≤99时,90x+100(2x+1)=290x+100,当x ≥100时,[90x+100(2x+1)]×(1﹣20%)=232x+80, 由题意可得,当0≤x ≤99时,选择方案一, 当x ≥100时,233x+85<232x+80,得x <﹣5, 233x+85=232x+80,得x=﹣5, 233x+85>232x+80,得x >﹣5, 则当x ≥100选择方案二,由上可得,当0≤x ≤99时,选择方案一,当x ≥100时,选择方案二.人教版2020—2021学年度上学期七年级密封线内得答题数学(上)期中测试卷及答案(满分:100分时间:100分钟)一、精心选择,相信自己判断力!(共10小题,每小题2分,满分20分)1.(2分)计算:﹣2+5的结果是()A.﹣7B.﹣3C.3D.72.(2分)有理数a、b在数轴上的位置如图所示,则a、b的大小关系是()A.a<b B.a>b C.a=b D.无法确定3.(2分)在﹣(﹣3)、﹣|﹣3|、(﹣3)2、(﹣3)3四个数中,负数有()个.A.1B.2 C.3D.74.(2分)下列对整式说法不正确的是()A.单项式﹣5xy的系数为﹣5B.单项式﹣5xy的次数为2C.多项式x2﹣x﹣1的次数为3D.多项式x2﹣x﹣1的常数项为﹣15.(2分)下列说法正确的是()A.0的倒数是0B.若a为有理数,则a2>0C.有理数可分为整数,0,分数D.当a≤0时,则|a|=6.(2分)下列计算正确的是()A.2a+3b=5ab B.﹣2(a﹣b)=﹣2a+bC.﹣3a+2a=﹣a D.a3﹣a2=a7.(2分)x与y差的平方,正确列式是()A.x﹣y2B.(x﹣y)2C.x2﹣y D.x2﹣y28.(2分)计算=()A.B.C.D.9.(2分)如图所示:两个圆的面积分别为19、11部分的面积分别为a、b(a>b),则a﹣b的值为()A.5B.6C.7D.810.(2表示1的点与表示﹣3的点重合,若数轴上A、B距离为2017(A在B的左侧),且A、B合,则A点表示的数为()A.﹣1007.5B.﹣1008.5C.﹣1009.5D.﹣2010.5密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题二、耐心填空,试试自己的身手!(共6小题,每小题3分,满分18分)11.(3分)我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么﹣1场表示: .12.(3分)我国计划在2020年左右发射火星探测卫星,据科学研究,火星距离地球的最近距离约为55 000 000千米,这个数据用科学记数法可表示为 .13.(3分)计算:3÷(﹣)×(﹣2)= . 14.(3分)观察下面的一列单项式:2x 2,﹣4x 3,8x 4,﹣16x 5,…根据其中的规律,得出第5个单项式是: .15.(3分)已知四部互不相等的整数,a 、b 、c 、d ,且满足abcd=4.则a +b +c +d= .16.(3分)若a <b ,ab <0:则﹣a +b= (用含|a |和|b |的式子表示)三、用心解答,相信自己能行!(本大题共9题,满分62分) 17.(12分)计算:(1)﹣4+13﹣(﹣6)﹣(﹣7) (2)16÷(﹣8)﹣(﹣)×(﹣4) (3)﹣14﹣(﹣4)2﹣|3﹣7|÷(﹣) 18.(8分)计算: (1)3a ﹣2+(4a ﹣5)(2)x 2﹣2(x 2﹣y )﹣(x 2﹣y ) 19.(5分)阅读下面的解题过程并回答问题 计算:8a 2﹣[3a +2(a ﹣4a )2]解:原式=8a 2﹣3a ﹣2a ﹣8a 2=(8﹣8)a 2+(﹣2﹣3)a=﹣5a① ② ③回答问题:(1)上面解题过程中错误的步骤是: (填上面序号)(2)上面由第①步到第②步的计算过程中,所用到的运算律是(3)请给出正确的计算过程.20.(5分)先化简,再求值:﹣4y +6x 2+3(y ﹣x 2),其中x=,y=﹣1.21.(5分)若a 、b 互为相反数,c 、d 互为倒数,|x |=3,求式子: 3a +b ﹣(x ﹣b )﹣(cd )2017的值.22.(6分)出租车司机小刘某天下午的营运全是在东西走向的大道上.如果规定向东为正,向西为负.他这天下行车情况如下(单位:千米)+5,﹣3,﹣8,﹣6,+10,﹣6,+11,﹣9(1)将最后一名乘客送到目的地时,小刘在下午出车地点A 的东面还是西面?离点A 的距离是多少千米?(2)在下午营运开始前出租车油箱内有(58a ﹣a 2﹣1)升汽油,汽车耗油量a升/千米,问:小刘这个下午从营运开始到送完最后一位乘客,途中是否需要加油?23.(7分)定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减运算与整式的加、减运算类似.复数的乘方意义与有理数的乘方的意义类似,例如:(1)i3=i•i•i=i2•i=﹣i(2)(2﹣i)+(5+3i)=(2+5)+(﹣1+3)i=7+2i根据以上信息,完成下列问题:(1)填空:(﹣1+i)(1﹣i)=;i﹣4=.(2)化简:i+i2+i3+i4+ (i2017)24.(6分)如图①所示是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)图②中的阴影部分的正方形的边长等于.(2)请用两种不同的方法表示图②中阴影部分的面积.方法①;方法②.(3)观察图②,请写出(m+n)2、(m﹣n)2、mn这三个代数式之间的等量关系:.(4)若a+b=6,ab=5,则求a﹣b的值.25.(8分)在一条不完整的数轴上从左到右有点A,B,其中点A到点B的距离为3,点C到点B的距离为7,示:设点A,B,C所对应的数的和是m.(1)若以B为原点,则点C所对应的数是;若以为原点,则m的值是.(2)若原点O在图中数轴上,且点C到原点O的距离为求m的值.(3)动点P从A点出发,以每秒2C移动,动点Q同时从B点出发,以每秒1点C移动,当几秒后,P、Q两点间的距离为2答案.参考答案一、选择题1.C.2.B.3.B.4.C.5.D.6.C.7.B.8.B.9.D.10.C二、填空题密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题11.中国队输1场.12.5.5×107. 13.12. 14.32x 615.0 16.|a |+|b |.三、解答题17.解:(1)原式=﹣4+13+6+7 =﹣4+26 =22;(2)原式=﹣2﹣ =﹣2;(3)原式=﹣1﹣16﹣4÷(﹣) =﹣17+6 =﹣11.18.(1)解:原式=(3a +4a )+(﹣2﹣5) =7a ﹣7;(2)原式=x 2﹣2x 2+y ﹣x 2+y =(x 2﹣2x 2﹣x 2)+(y +y ) =﹣2x 2+y .19.解:(1)①.(2)加法交换律、加法结合律、乘法分配律; (3)原式=8a 2﹣[3a +2(﹣3a )2] =8a 2﹣3a ﹣2(9a 2) =8a 2﹣3a ﹣18a 2 =(8﹣18)a 2﹣3a =﹣15a 2﹣3a .20.解:﹣4y +6x 2+3(y ﹣x 2) =﹣4y +6x 2+3y ﹣2x 2 =4x 2﹣y ,当x=,y=﹣1时,原式=4×()2﹣(﹣1)=2.21.解:由题意得:a +b=0,cd=1,x=±3;当x=3时,原式=3×0﹣3﹣(﹣1)2017=0﹣3+1=﹣2; 当x=﹣3时,原式=3×0+3﹣(﹣1)2017=0+3+1=4.22.解:(1)5﹣3﹣8﹣6+10﹣6+11﹣9=﹣6(千米) 所以小刘在出发点的A 西面,离A 的距离是6 千米. (2)|5|+|﹣3|+|﹣8|+|﹣6|+|+10|+|﹣6|+|+11|+|﹣9|=58(千米)(58a﹣a2﹣1)﹣58a=﹣a2﹣1<0,所以需要加油.23.解:(1)原式=﹣(1﹣i)2=﹣1+2i+1=2i;原式==1;故答案为:2i;1;(2)原式=(i﹣1﹣i+1)×504+i=i.24.解:(1)图②中的阴影部分的小正方形的边长=m﹣n;(2)方法①(m+n)2﹣4mn;方法②(m﹣n)2;(3)这三个代数式之间的等量关系是:(m﹣n)2=(m+n)2﹣4mn;(4)(a﹣b)2=(a+b)2﹣4ab,∵a+b=6,ab=5,∴(a﹣b)2=36﹣20=16,∴a﹣b=±4.故答案为m﹣n;(m+n)2﹣4mn (m﹣n)2;(m+n)2﹣4mn=(m﹣n)2.25.解:(1)当B为原点时,点C对应的数是7;当以C为原点时,A、B对应的数分别为﹣7,﹣10,m=﹣10+(﹣7)+0=﹣17,故答案为:7,﹣17;(2)当O在C的左边时,A、B、C分别为﹣6、﹣3、4,则m=﹣6﹣3+4=﹣5,当O在C的右边时,A、B、C为﹣14、﹣11、﹣4,则m=﹣14﹣11﹣4=﹣29,综上所述:m=﹣5或﹣29;(3)假如以C为原点,则A、B、C对应的数为﹣10,﹣7,Q对应的数是﹣(7﹣t),P对应的数是﹣(10﹣2t),当P在Q的左边时,[﹣(7﹣t)]﹣[﹣(10﹣2t)]=2,解得:t=1当P在Q的左边时,[﹣(10﹣2t)]﹣[﹣(7﹣t)]=2,解得:t=5,即当1秒或5秒后,P、Q两点间的距离为2.人教版2020—2021学年度上学期七年级数学(上)期中测试卷及答案(满分:100分时间:100分钟)密线学校 班级 姓名 学号密 封 线 内 不 得 答 题一、选择题(每小题所给4个选项中只有一个符合要求,每小题3分,共30分). 1.﹣2的相反数是( )A .B .2C .﹣D .﹣22.将数据15 000 000用科学记数法表示为( )A .15×106B .1.5×107C .1.5×108D .0.15×1083.在数8,﹣6,0,﹣|﹣2|,﹣0.5,﹣,(﹣1)2015,﹣14中,负数的个数有( ) A .4B .5C .6D .7 4.下列说法正确的是( )A .一个数前面加上“﹣”号这个数就是负数B .非负数就是正数C .正数和负数统称为有理数D .0既不是正数也不是负数5.下列各图中,数轴表示正确的是( )A .B .C .D .6.如果单项式与2x 4y n+3是同类项,那么m 、n 的值分别是( )A .B .C .D .7.下面运算正确的是( )A .3ab+3ac=6abcB .4a 2b ﹣4b 2a=0C .2x 2+7x 2=9x 4D .3y 2﹣2y 2=y 28.下列式子中去括号错误的是( )A .5x ﹣(x ﹣2y+5z )=5x ﹣x+2y ﹣5zB .2a 2+(﹣3a ﹣b )﹣(3c ﹣2d )=2a 2﹣3a ﹣b ﹣3c+2dC .3x 2﹣3(x+6)=3x 2﹣3x ﹣6D .﹣(x ﹣2y )﹣(﹣x 2+y 2)=﹣x+2y+x 2﹣y 29.若2是关于x 的方程x+a=﹣1的解,则a 的值为( )A .0B .2C .﹣2D .﹣610.如图,M ,N ,P ,Q ,R 分别是数轴上五个整数所对应的点,其中有一点是原点,并且MN=NP=PQ=QR=1.数a 对应的点在N 与P 之间,数b 对应的点在Q 与R 之间,若|a|+|b|=3,则原点可能是( )A .M 或QB .P 或RC .N 或RD .P 或Q二、填空题(每小题2分,共16分). 11.比较大小:﹣2 ﹣3.题号一 二 三 四 五 六 总分 得分不12.单项式﹣的系数是 ,次数是 次.13.将多项式﹣2+4x 2y+6x ﹣x 3y 2按x 的降幂排列: . 14.已知x ﹣3y=3,则6﹣x+3y 的值是 . 15.若(m ﹣2)x|m|﹣1=3是关于x 的一元一次方程,则m 的值是 .16.若关于x 的方程mx+2=2(m ﹣x )的解是,则m= .17.若|a|=2,|b|=4,且|a ﹣b|=b ﹣a ,则a+b= . 18.观察下列一组图形中点的个数,其中第1个图形中共有4个点,第2个图形中共有10个点,第3个图形中共有19个点,…按此规律第5个图形中共有点的个数是 .三、计算题(每题4分,共20分)19.①12﹣(﹣18)②(﹣3)×(﹣)÷(﹣1)③﹣6.5+4+8﹣3 ④(+﹣)×(﹣12)⑤(﹣)×(﹣8)+(﹣6)÷(﹣)2. 四、先化简、再求值:(本题5分)20.先化简,再求值:a 2+(5a 2﹣2a )﹣2(a 2﹣3a ),其中﹣5.五、解下列方程(每题4分,共8分)21.解方程:(1)2x ﹣(x+10)=6x ; (2)=3+.六、解答题:(本题21分,第1-4题各4分,第5小题题分)22.已知a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为求a ﹣2cd+b+m 的值.23.有理数在数轴上的对应点位置如图所示,化简:﹣2|a ﹣b|.24.已知|2a+1|+(4b ﹣2)2=0,求:(﹣ a+b 2)﹣(a ﹣b 2)﹣(+b )的值.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题25.用“☆”定义一种新运算:对于任意有理数a 、b ,都有a ☆b=ab+a 2,例如(﹣3)☆2=﹣3×2+(﹣3)2=3(1)求(﹣5)☆3的值;(2)若﹣a ☆(1☆a )=8,求a 的值.26.已知点A 在数轴上对应的数是a ,点B 在数轴上对应的数是b ,且|a+4|+(b ﹣1)2=0.现将A 、B 之间的距离记作|AB|,定义|AB|=|a ﹣b|.(1)|AB|= ;(2)设点P 在数轴上对应的数是x ,当|PA|﹣|PB|=2时,求x 的值.参考答案与试题解析一、选择题(每小题所给4个选项中只有一个符合要求,每小题3分,共30分).1.【解答】解:﹣2的相反数是2,故选:B .2.【解答】解:将15 000 000用科学记数法表示为:1.5×107. 故选:B .3.【解答】解:﹣|﹣2|=﹣2,(﹣1)2015=﹣1,﹣14=﹣1,负数有:﹣6,﹣|﹣2|,﹣0.5,﹣,(﹣1)2015,﹣14,负数的个数共6个, 故选:C .4.【解答】解:A 、不一定,例如0前面加上“﹣”号0还是0;B 、错误,0既不是正数也不是负数;C 、错误,正数和负数和0统称为有理数;D 、正确.故选D .5.【解答】解:A 、没有正方向,不是数轴,故本选项错误;B 、没有原点,不是数轴,故本选项错误;C 、没有单位长度,不是数轴,故本选项错误;D 、符合数轴的定义,故本选项正确.故选D . 6.【解答】解:∵单项式与2x 4y n+3是同类项,∴2m=4,n+3=1,解得:m=2,n=﹣2.故选A .7.【解答】解:A 、3ab+3ac=3a (b+c );B 、4a 2b ﹣4b 2a=4ab (a ﹣b );C 、2x 2+7x 2=9x 2;D 、正确.故选D .8.【解答】解:A 、5x ﹣(x ﹣2y+5z )=5x ﹣x+2y ﹣5z ,故本选项不符合题意;B 、2a 2+(﹣3a ﹣b )﹣(3c ﹣2d )=2a 2﹣3a ﹣b ﹣3c+2d ,故本选项不符合题意;C 、3x 2﹣3(x+6)=3x 2﹣3x ﹣18,故本选项符合题意;封线内不得答D、﹣(x﹣2y)﹣(﹣x2+y2)=﹣x+2y+x2﹣y2,故本选项不符合题意.故选C.9.【解答】解:把x=2代入方程得:1+a=﹣1,解得:a=﹣2,故选C10.【解答】解:∵MN=NP=PQ=QR=1,∴|MN|=|NP|=|PQ|=|QR|=1,∴|MR|=4;①当原点在N或P点时,|a|+|b|<3,又因为|a|+|b|=3,所以,原点不可能在N或P点;②当原点在N或R时且|Na|=|bR|时,|a|+|b|=3;③当原点在M点时,|a|+|b|>3,又因为|a|+|b|=3,所以,原点不可能在M点;综上所述,此原点应是在N或R点.故选:C.二、填空题(每小题2分,共16分).11.【解答】解:在两个负数中,绝对值大的反而小,可求出﹣2>﹣3.故答案为:>.12.【解答】解:单项式﹣的系数是﹣,次数是5,故答案为:﹣,5.13.【解答】解:多项式﹣2+4x2y+6x﹣x3y2按字母x列是:﹣x3y2+4x2y+6x﹣2.故答案是:﹣x3y2+4x2y+6x﹣2.14.【解答】解:∵x﹣3y=3,∴原式=6﹣(x﹣3y)=6﹣3=3,故答案为:315.【解答】解:∵(m﹣2)x|m|﹣1=3是关于x程,∴,解得m=﹣2.故答案为:﹣2.16.【解答】解:把x=代入方程,得:m+2=2(m﹣),解得:m=2.故答案是:2.17.【解答】解:∵|a|=2,|b|=4,∴a=±2,b=±4,∵|a﹣b|=b﹣a,∴或,∴a+b=6或2,故答案为:6或2.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题18.【解答】解:第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点, 第3个图中共有1+1×3+2×3+3×3=19个点,…第n 个图有1+1×3+2×3+3×3+…+3n 个点.所以第5个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3=46. 故答案为:46.三、计算题(每题4分,共20分)19.①12﹣(﹣18)②(﹣3)×(﹣)÷(﹣1) ③﹣6.5+4+8﹣3 ④(+﹣)×(﹣12)⑤(﹣)×(﹣8)+(﹣6)÷(﹣)2. 【解答】解:①原式=12+18=30. ②原式=﹣3××=﹣2. ③原式=﹣6.5+13﹣3.5=3.④原式=×(﹣12)+×(﹣12)﹣×(﹣12)=﹣5﹣8+9=﹣4.⑤原式=4+(﹣6)×9=﹣50. 四、先化简、再求值:(本题5分)20.【解答】解:原式=a 2+5a 2﹣2a ﹣2a 2+6a=4a 2+4a ,当a=﹣5时,原式=100﹣20=80. 五、解下列方程(每题4分,共8分)21.【解答】解:(1)方程去括号得:2x ﹣x ﹣10=6x , 移项合并得:5x=﹣10, 解得:x=﹣2;(2)方程去分母得:2(x+1)=12+2﹣x ,去括号得:2x+2=12+2﹣x , 移项合并得:3x=12, 解得:x=4.六、解答题:(本题21分,第1-4题各4分,第5小题题5分)22.【解答】解:∵a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,∴a+b=0,cd=1,m=±2,∴原式=(a+b )﹣2cd+m=﹣2±2, ∴a ﹣2cd+b+m 的值为0或﹣4.23.【解答】解:∵由图可知,a <﹣1<0<b <1,∴a+b <0,a ﹣b <0,∴原式=﹣a ﹣(a+b )+2(a ﹣b )=﹣a ﹣a ﹣b+2a ﹣2b密 封 =﹣3b .24.【解答】解:∵|2a+1|+(4b ﹣2)2=0,∴a=﹣,b=.(﹣a+b 2)﹣(a ﹣b 2)﹣(+b )=﹣a+b 2﹣a+b 2﹣﹣b =当a=﹣,b=时,原式==.25.【解答】解:(1)(﹣5)☆3=(﹣5)×3+(﹣5)2=﹣15+25=10;(2)∵﹣a ☆(1☆a )=﹣a ☆(a+1)=﹣a (a+1)+(﹣a )2=﹣a 2﹣a+a 2=﹣a=8, ∴a=﹣8.26.【解答】解:(1)∵|a+4|+(b ﹣1)2=0,∴a=﹣4,b=1, ∴|AB|=|a ﹣b|=5;(2)当P 在点A 左侧时,|PA|﹣|PB|=﹣(|PB|﹣|PA|)=﹣|AB|=﹣5≠2.当P 在点B 右侧时, |PA|﹣|PB|=|AB|=5≠2.∴上述两种情况的点P 不存在.当P 在A 、B 之间时,|PA|=|x ﹣(﹣4)|=x+4,|PB|=|x ﹣﹣x ,∵|PA|﹣|PB|=2,∴x+4﹣(1﹣x )=2.∴x=﹣,即x 的值为﹣; 故答案为:5.。

人教版七年级上册数学期中测试卷(含答案)

人教版七年级上册数学期中测试卷(含答案)

初一年级第一学期期中测试题七年级数学注意事项:本试卷共三大题25小题,共5页,满分150分.考试时间120分钟. 1.答卷前,考生务必在答题卡第1、3面上用黑色字迹的钢笔或签字笔填写自己的考号、姓名;再用2B 铅笔把对应考号的标号涂黑.2.选择题和判断题的每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.填空题和解答题都不要抄题,必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生不可以...使用计算器.必须保持答题卡的整洁,考试结束后,将答题卡交回.第Ⅰ卷(100分)一、 细心选一选(本题有10个小题,每小题3分,满分30分,下面每小题给出的四个选项中,只有一个是正确的. )1. 下列各数中,是负数的是 ( ) A.-(-5) B. |-5| C. (5) D. -522. 如果0)2(32=-++b a ,那么代数式2015)(b a +的值是( )A. -2 015B. 2 015C. -1D. 13.人类的遗传物质是DNA ,DNA 是一个很长的链,最短的染色体也长达30 000 000个核苷酸。

30 000 000用科学记数法表示为( )A.7103⨯B.61030⨯C.7103.0⨯D.8103.0⨯ 4.把(+5)-(+3)-(-1)+(-5)写成省略括号的和的形式是( ) A .—5-3+1-5 B.5-3+1-5 C.5+3+1-5 D.5-3-1-55.已知a 、b 为有理数,且a<0,b>0,|b|<|a|,则a ,b ,-a ,-b 的大小关系是( ) A.-b<a<b<-a B.-b<b<-a<a C.a<-b<b<-a D.-a<b<-b<a6. 当1<a<2时,│a-2│+│1-a │的值是 ( ) A. -1B. 1C. 3D. -37. 已知a ,b 互为相反数,e 的绝对值为2,m 与n 互为倒数,mn e b a 432-++的值为( )A .0或-8B .-8C .0D .无法确定8. 小刚做了一道数学题:“已知两个多项式为A ,B ,,求的值.”他误将“”看成了“”,结果求出的答案是,那么原来的的值应该是( ) A .B .C .D .9.下列说法正确的个数有( )(1)倒数等于本身的数只有1;(2)相反数等于本身的数只有0;(3)平方等于本身的数只有0、1、-1;(4)有理数不是整数就是分数;(5)有理数不是正数就是负数。

福建省福州市长乐市七年级数学上学期期中试题(含解析) 新人教版-新人教版初中七年级全册数学试题

福建省福州市长乐市七年级数学上学期期中试题(含解析) 新人教版-新人教版初中七年级全册数学试题

某某省某某市长乐市2015-2016学年七年级数学上学期期中试题一、选择题(每题2分,共20分)1.的倒数是( )A.﹣2015 B.2015 C.﹣D.2.下列计算正确的是( )A.2+a=2a B.2a﹣3a=1 C.3a+2b=5ab D.5ab﹣ab=4ab3.单项式的系数和次数分别是( )A.,4 B.,2 C.,3 D.,24.若﹣3x m y2n与2xy6是同类项,则m﹣n的值为( )A.﹣2 B.2 C.﹣4 D.45.下列各式中,去括号正确的是( )A.﹣(2x+y)=﹣2x+y B.2(x﹣y)=2x﹣yC.3x﹣(2y+z)=3x﹣2y﹣z D.x﹣(﹣y+z)=x﹣y﹣z6.若有理数a、b在数轴上对应点的位置如图所示,则ab2的值( )A.大于1 B.等于1 C.大于0 D.小于07.下列各组数中,结果相等的为( )A.﹣32与(﹣3)2B.32与﹣(﹣3)2C.﹣33与(﹣3)3D.(﹣3)3与﹣(﹣3)38.计算2.7×108﹣2.6×108,结果用科学记数法表示为( )A.0.1×108B.0.1×107C.1×108D.1×1079.二月份的月历中,竖着取连续的三个数字,则它们的和可能是( )A.72 B.35 C.33 D.1810.如图,两个正方形的面积分别为9、4,两个阴影部分的面积分别为S1、S2,(S1>S2),则S1﹣S2的值为( )A.5 B.4 C.3 D.2二、填空题(每题3分,共18分)11.列式表示:a的2倍与1的和为__________.12.某天的气温是﹣3℃~3℃,则这天的温差是__________℃.13.用四舍五入法得到的近似数6.6×103,精确到__________位.14.在﹣1,2,﹣3,0,5这五个数中,任取两个相除,其中商最小的是__________.15.若a2+2ab=﹣5,b2+2ab=12,则a2+4ab+b2=__________.16.已知x与y互为相反数,m与n互为倒数,且|a|=2,则(x+y)3﹣的值为__________.三、解答题(62分)17.把下列各数填入相应的集合中:﹣80,0.1,﹣整数集合:{__________…}正数集合:{__________…}负分数集合:{__________…}有理数集合:{__________…}.18.计算:(1)﹣18+(﹣10)﹣(﹣18)+11(2)3×(﹣2)+(﹣14)÷7(3)﹣22+3×(﹣1)2﹣(﹣1)3.19.化简:8x+3y+2(x﹣2y)20.先化简,再求值:3(4a2b﹣ab2)﹣(a2b﹣3ab2),其中a=﹣,b=4.21.某学校七年级有七(1)﹣七(6)共六个班,现以50人为标准,超过50人记作“+”,不足50人记作“﹣”,如:某班有51人记作+1,采用这种表示法后,七(1)﹣七(6)各班的人数分别表示为:﹣2,0,﹣1,+4,+2,﹣1.(1)求七(1)﹣七(6)各班的人数;(2)人数最多的班比人数最少的班多几人?(3)求该校七年级学生的总人数.22.如图,长方形的长是a,宽是b,以b为半径作2个四分之一的圆.(1)用式子表示阴影部分的面积S.(2)当a=12cm,b=4cm时,求S(π取3.14)23.观察下列式子:23=3+533=7+9+1143=13+15+17+1953=21+23+25+27+29…一个大于1的自然数n的立方可以分成n个连续奇数的和,即n3=x1+x2+x3+…+x n.(1)当n=6时,x6=__________;(2)当n3=x1+x2+x3+…+x n时,①第1个数可以写成x1=n2﹣n+__________;②求第n个数x n.24.同学们,我们在《有理数》中学过:数轴上表示数a的点与原点的距离记作|a|.一般地,|a﹣b|表示数轴上数a的点与数b的点的距离.(1)|x﹣1|表示__________;(2)数轴上是否存在数x,使|x﹣1|+2|x﹣2|+|x﹣4|的值最小?若存在,请求出最小值及x的值;若不存在,请说明理由;(3)若|x﹣1|+2|x﹣2|的值为8,求x的值.2015-2016学年某某省某某市长乐市七年级(上)期中数学试卷一、选择题(每题2分,共20分)1.的倒数是( )A.﹣2015 B.2015 C.﹣D.【考点】倒数.【分析】根据倒数的定义,即可解答.【解答】解:的倒数是2015.故选:B.【点评】本题考查了倒数的定义,解决本题的关键是熟记倒数的定义.2.下列计算正确的是( )A.2+a=2a B.2a﹣3a=1 C.3a+2b=5ab D.5ab﹣ab=4ab【考点】合并同类项.【分析】根据合并同类项的法则,系数相加作为系数,字母和字母的指数不变,据此即可判断.【解答】解:A、不是同类项,不能合并,选项错误;B、2a﹣3a=﹣a,选项错误;C、不是同类项,不能合并,选项错误;D、5ab﹣ab=4ab,选项正确.故选D.【点评】本题考查了合并同类项,系数相加作为系数,字母和字母的指数不变,理解法则是关键.3.单项式的系数和次数分别是( )A.,4 B.,2 C.,3 D.,2【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义可知:单项式的系数是;次数是3.故选C.【点评】解答此题关键是构造单项式的系数和次数,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.4.若﹣3x m y2n与2xy6是同类项,则m﹣n的值为( )A.﹣2 B.2 C.﹣4 D.4【考点】同类项.【分析】根据同类项的概念求解.【解答】解:∵﹣3x m y2n与2xy6是同类项,∴m=1,2n=6,∴m=1,n=3,则m﹣n=1﹣3=﹣2.故选A.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.5.下列各式中,去括号正确的是( )A.﹣(2x+y)=﹣2x+y B.2(x﹣y)=2x﹣yC.3x﹣(2y+z)=3x﹣2y﹣z D.x﹣(﹣y+z)=x﹣y﹣z【考点】去括号与添括号.【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【解答】解:A、原式=﹣2x﹣y,故本选项错误;B、原式=2x﹣2y,故本选项错误;C、原式=3x﹣2y﹣z,故本选项正确;D、原式=x+y﹣z,故本选项错误;故选:C.【点评】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.6.若有理数a、b在数轴上对应点的位置如图所示,则ab2的值( )A.大于1 B.等于1 C.大于0 D.小于0【考点】数轴.【分析】根据数轴上点的位置得到a小于0,b大于0,即可作出判断.【解答】解:由数轴可得:a<0,b>0,则ab2<0,故选:D.【点评】本题考查了数轴,解决本题的关键是根据数轴确定a,b的取值X围.7.下列各组数中,结果相等的为( )A.﹣32与(﹣3)2B.32与﹣(﹣3)2C.﹣33与(﹣3)3D.(﹣3)3与﹣(﹣3)3【考点】有理数的乘方.【分析】根据有理数的乘方,逐一进行计算进行判断.【解答】解:A、﹣32=﹣9,(﹣3)2=9,不相等,故错误;B、32=9,﹣(﹣3)2=﹣9,不相等,故错误;C、﹣33=﹣27,(﹣3)3=﹣27,相等,正确;D、(﹣3)3=﹣27,﹣(﹣3)3=27,不相等,故错误;故选:C.【点评】本题考查了有理数的乘方,解决本题的关键是熟记有理数的乘方.8.计算2.7×108﹣2.6×108,结果用科学记数法表示为( )A.0.1×108B.0.1×107C.1×108D.1×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2.7×108﹣2.6×108,=0.1×108=1×107.故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.二月份的月历中,竖着取连续的三个数字,则它们的和可能是( )A.72 B.35 C.33 D.18【考点】列代数式.【分析】首先设出中间一个数为x,则它上面的数是x﹣7,下面的数是x+7,三个数的和为3的倍数,再根据每个月的日期X围求出3x的X围,即可判断选择项.【解答】解:设中间一个数为:x,则它上面的数是x﹣7,下面的数是x+7,由题意得,x+x﹣7+x+7=3x,故一定是3的倍数,又∵,∴8≤x≤22,∴24≤3x≤66,且一定是3的倍数.则满足条件的只有33.故选C.【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.10.如图,两个正方形的面积分别为9、4,两个阴影部分的面积分别为S1、S2,(S1>S2),则S1﹣S2的值为( )A.5 B.4 C.3 D.2【考点】整式的加减.【分析】设空白部分的面积是S,则S1=9﹣S,S2=4﹣S,再求出S1﹣S2的值即可.【解答】解:设空白部分的面积是S,∵两个正方形的面积分别为9,4,∴S1=9﹣S,S2=4﹣S,∴S1﹣S2=(9﹣S)﹣(4﹣S)=9﹣S﹣4+S=5.故选A.【点评】本题考查的是整式的加减,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.二、填空题(每题3分,共18分)11.列式表示:a的2倍与1的和为2a+1.【考点】列代数式.【分析】先表示出a的2倍为2a,然后表示2a与1的和即可.【解答】解:a的2倍与1的和表示为2a+1.故答案为2a+1.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.12.某天的气温是﹣3℃~3℃,则这天的温差是6℃.【考点】有理数的减法.【专题】应用题.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:3﹣(﹣3)=3+3=6,故答案为:6【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.13.用四舍五入法得到的近似数6.6×103,精确到百位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:用四舍五入法得到的近似数6.6×103,精确到百位.故答案为:百.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.14.在﹣1,2,﹣3,0,5这五个数中,任取两个相除,其中商最小的是﹣5.【考点】有理数的除法;有理数大小比较.【分析】首先根据有理数大小比较的方法,把所给的五个数从小到大排列;然后根据有理数除法的运算方法,要使任取两个相除,所得的商最小,用最大的数除以绝对值最小的负数即可.【解答】解:∵﹣3<﹣1<0<2<5,∴所给的五个数中,最大的数是5,绝对值最小的负数是﹣1,∴任取两个相除,其中商最小的是:5÷(﹣1)=﹣5.故答案为:﹣5.【点评】(1)此题主要考查了有理数除法的运算方法,要熟练掌握,解答此类问题的关键是要明确:除以一个不等于0的数,等于乘这个数的倒数.(2)此题还考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.15.若a2+2ab=﹣5,b2+2ab=12,则a2+4ab+b2=7.【考点】整式的加减.【专题】计算题.【分析】已知两式相加即可确定出原式的值.【解答】解:∵a2+2ab=﹣5,b2+2ab=12,∴a2+4ab+b2=(a2+2ab)+(b2+2ab)=﹣5+12=7,故答案为:7【点评】此题考查了整式的加减,熟练掌握去括号及合并同类项法则是解本题的关键.16.已知x与y互为相反数,m与n互为倒数,且|a|=2,则(x+y)3﹣的值为﹣4.【考点】代数式求值;相反数;绝对值;倒数.【分析】根据互为相反数的和为0,互为倒数的积为1,即可解答.【解答】解:∵x与y互为相反数,m与n互为倒数,且|a|=2,∴x+y=0,mn=1,a2=4,(x+y)3﹣=03﹣=﹣4,故答案为:﹣4.【点评】本题考查了相反数、倒数,解决本题的关键是熟记互为相反数的和为0,互为倒数的积为1.三、解答题(62分)17.把下列各数填入相应的集合中:﹣80,0.1,﹣整数集合:{﹣80,15,0…}正数集合:{0.1,15…}负分数集合:{﹣…}有理数集合:{﹣80,0.1,﹣…}.【考点】有理数.【分析】根据整数,正数,有理数,负分数的定义可得出答案.【解答】解:整数集合:{﹣80,15,0…}正数集合:{0.1,15…}负分数集合:{﹣,﹣5.32…}有理数集合:{﹣80,0.1,﹣,15,0,﹣5.32…}.故答案为:﹣80,15,0;0.1,15;﹣,﹣5.32;﹣80,0.1,﹣,15,0,﹣5.32.【点评】本题考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点,注意整数和正数的区别,注意0是整数,但不是正数.18.计算:(1)﹣18+(﹣10)﹣(﹣18)+11(2)3×(﹣2)+(﹣14)÷7(3)﹣22+3×(﹣1)2﹣(﹣1)3.【考点】有理数的混合运算.【专题】计算题.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣18﹣10+18+11=1;(2)原式=﹣6﹣2=﹣8;(3)原式=﹣4+3+1=0.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.化简:8x+3y+2(x﹣2y)【考点】整式的加减.【分析】先去括号,再合并同类项即可.【解答】解:原式=8x+3y+2x﹣4y=10x﹣y.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.20.先化简,再求值:3(4a2b﹣ab2)﹣(a2b﹣3ab2),其中a=﹣,b=4.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=12a2b﹣3ab2﹣a2b+3ab2=11a2b,当a=﹣,b=4时,原式=11.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.某学校七年级有七(1)﹣七(6)共六个班,现以50人为标准,超过50人记作“+”,不足50人记作“﹣”,如:某班有51人记作+1,采用这种表示法后,七(1)﹣七(6)各班的人数分别表示为:﹣2,0,﹣1,+4,+2,﹣1.(1)求七(1)﹣七(6)各班的人数;(2)人数最多的班比人数最少的班多几人?(3)求该校七年级学生的总人数.【考点】正数和负数.【分析】(1)根据正负数的意义分别求解即可;(2)由(1)求出人数最多的班额,人数最少的班额,然后相减即可;(3)用标准人数加上记录的各班人数的和,计算即可得解.【解答】解:(1)一班:50﹣2=48(人),二班:50+0=50(人),三班:50﹣1=49(人),四班:50+4=54(人),五班:50+2=52(人),六班:50﹣1=49(人),所以,六个班人数依次是48,50,49,54,52,49;(2)4﹣(﹣2)=6(人),所以,人数最多的班比人数最少的班多6人;(3)50×6+(﹣2+0﹣1+4﹣2﹣1)=302(人).所以,七年级的总人数为302人.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.22.如图,长方形的长是a,宽是b,以b为半径作2个四分之一的圆.(1)用式子表示阴影部分的面积S.(2)当a=12cm,b=4cm时,求S(π取3.14)【考点】列代数式;代数式求值.【分析】(1)利用长方形面积减去四分之一圆的面积和半圆的面积即可求解;(2)把a和b的值代入(1)所得的式子即可求解.【解答】解:(1)S=ab﹣πb2;(2)a=12cm,b=4cm时,S=12×4﹣π×42≈22.88(cm2).【点评】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.23.观察下列式子:23=3+533=7+9+1143=13+15+17+1953=21+23+25+27+29…一个大于1的自然数n的立方可以分成n个连续奇数的和,即n3=x1+x2+x3+…+x n.(1)当n=6时,x6=41;(2)当n3=x1+x2+x3+…+x n时,①第1个数可以写成x1=n2﹣n+1;②求第n个数x n.【考点】规律型:数字的变化类.【分析】由题意可知:n3分裂后得到的第一个数是x1=n(n﹣1)+1=n2﹣n+1,最后一个数字是x n=n(n﹣1)+1+2(n﹣1)=n2+n﹣1由此规律计算得出答案即可.【解答】解:(1)当n=6时,x6=36+6﹣1=41;(2)当n3=x1+x2+x3+…+x n时,①第1个数可以写成x1=n2﹣n+1;②第n个数x n=n2+n﹣1.【点评】此题主要考查了数字变化规律,解决此类问题要发现数字与数之间存在的关系,再用类比的方法可以得出答案.24.同学们,我们在《有理数》中学过:数轴上表示数a的点与原点的距离记作|a|.一般地,|a﹣b|表示数轴上数a的点与数b的点的距离.(1)|x﹣1|表示数轴表示数x的点与表示数1的点的距离;(2)数轴上是否存在数x,使|x﹣1|+2|x﹣2|+|x﹣4|的值最小?若存在,请求出最小值及x的值;若不存在,请说明理由;(3)若|x﹣1|+2|x﹣2|的值为8,求x的值.【考点】绝对值;数轴.【分析】(1)由|a﹣b|表示数轴上数a的点与数b的点的距离可知|x﹣1|表示数轴上表示x 的点与数1的点的距离;(2)当x=2时,|x﹣1|+2|x﹣2|+|x﹣4|可转化为数轴上表示2的点到1和4的距离之和;(3)可分为x≤1,1<x≤2,x>2三种情况进行化简计算.【解答】解:(1)|x﹣1|表示数轴表示数x的点与表示数1的点的距离;故答案为:数轴表示数x的点与表示数1的点的距离.(2)当x=2时,|x﹣1|+2|x﹣2|+|x﹣4|可转化为数轴上表示2的点到1和4的距离之和,∴当x=2时,|x﹣1|+2|x﹣2|+|x﹣4|的最小值为3;(3)当x≤1时,1﹣x+2(2﹣x)=8.解得:x=﹣1.当1<x≤2时,x﹣1+2(2﹣x)=8,解得:x=﹣5(不合题意).当x>2时,x﹣1+2(x﹣2)=8,解得:x=.综上所述,x的值为﹣1或【点评】本题主要考查的是绝对值、数轴、解含绝对值的方程,分类讨论是解题的关键.。

人教版数学七年级上学期《期中考试试卷》(含答案解析)

人教版数学七年级上学期《期中考试试卷》(含答案解析)
答案与解析
一、选择题(本大题共10个小题,每小题3分,共30分)
1.在 中,表示正分数的有()
A.1个B.2个C.3个D.4个
【答案】B
【解析】
【分析】
根据正分数的定义即可求解.
【详解】在 中, 整数, 是负分数,
只有: 是正分数,共2个,
故选:B.
【点睛】本题考查了有理数的分类,熟练掌握有理数的分类方法是解本题的关键.
23.近期电影《少年 你》受到广大青少年的喜爱,某校七年级1班2班的几名同学请他们的家长在网上买票,家长了解到某电影院的活动,设购买电影票的张数为
购买张数
每张票的价格



家长沟通后决定两个班的同学在期中考试结束后去观看。两个班共有 人,期中 班人数多于 不足 人。经过估算,如果两个班都以班为单位购买,则一共应付 元。
15.已知|a|=5,|b|=3,且|a-b|=b-a,那么a+b=________.
16.已知等式 ,无论 取何值等式都成立,则 __________.
三、解答题(共8题,共72分)
17.
18. 化简:
化简求值: ,其中
19.解方程:
20.在军运会期间,七年级1班志愿者小组准备利用午休时间把校门口的自行车摆放整齐,小组长进行分工时(小组长也参与摆放)发现:如果每人摆放 辆自行车,则还剩 辆自行车需要最后再摆;如果每人摆放 辆自行车,则有一名同学少摆放 辆自行车。请问:这个志愿者小组有几名同学,校门口有几辆自行车需要摆放?
2.下列式子是单项式的是()
A. B. C. D.
【答案】A
【解析】
【分析】
直接利用单项式的定义分析得出答案.
【详解】A、1是整式,此选项符合题意;

人教版数学七年级上册《期中检测试卷》(附答案解析)

人教版数学七年级上册《期中检测试卷》(附答案解析)

人教版数学七年级上学期期中测试卷一、选择题:1.14-的相反数是()A.14- B.14C. -4D. 42.据报道,截至到2016年6月30日,我国移动电话用户总规模达到1300000000户,4G用户总数达到613000000.将613000000用科学记数法计数表示为()A. 661310⨯ B. 761.310⨯ C. 86.1310⨯ D. 100.61310⨯3.下列方程中,解为x=4的方程是()A. x﹣1=4 B. 4x=1 C. 4x﹣1=3x+3 D. 1(1)5x-=14.下列各式中运算正确的是()A. 4m﹣m=3B. xy﹣2xy=﹣xyC. 2a3﹣3a3=a3D. a2b﹣ab2=05.如图所示,阴影部分的面积是()A.112xyB. 132xyC. 6xyD. xy6.若(a+2)2+|b﹣1|=0,则(a+b)2019的值是()A. 0 B. 1 C. ﹣1 D. 2016 7.在a﹣(2b﹣3c)=﹣□中的□内应填的代数式为()A. ﹣a﹣2b+3c B. a﹣2b+3c C. ﹣a+2b﹣3c D. a+2b﹣3c 8.《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中记载:“以绳测井,若将绳三折测之,绳多4尺,若将绳四折测之,绳多1尺,绳长井深各几何?”译文:“用绳子测水井深度,如果将绳子折成三等份,井外余绳4尺;如果将绳子折成四等份,井外余绳1尺.问绳长、井深各是多少尺?”设井深为x 尺,根据题意列方程,正确的是( )A. 3(x +4)=4(x +1)B. 3x +4=4x +1C. 3(x ﹣4)=4(x ﹣1)D. 4134x x -=- 9.小博表演扑克牌游戏,她将两副牌分别交给观众A 和观众B ,然后背过脸去,请他们各自按照她的口令操作:a .在桌上摆3堆牌,每堆牌的张数要相等,每堆多于10张,但是不要告诉我;b .从第2堆拿出4张牌放到第1堆里;c .从第3堆牌中拿出8张牌放在第1堆里;d .数一下此时第2堆牌的张数,从第1堆牌中取出与第2堆相同张数的牌放在第3堆里;e .从第2堆中拿出5张牌放在第1堆中.小博转过头问两名观众:“请告诉我现在第2堆有多少张牌,我就能告诉你们最初的每堆牌数.”观众A 说5张,观众B 说8张,小博猜两人最初每一堆里放的牌数分别为( )A. 14,17B. 14,18C. 13,16D. 12,16二、填空题10.把多项式2m 2n 3+3mn 2﹣2﹣m 3n 按字母m 的降幂排列为_____.11.单项式223x y -的系数是_______,次数是__________. 12.用四舍五入法对0.01016(精确到千分位)取近似数是_____.13.3﹣|x ﹣1|的最大值是_____.14.已知a ﹣b =2,则多项式3a ﹣3b ﹣2的值是_____.15.如果x =﹣2是关于x 的方程3x +5=14x ﹣m 的解,则m ﹣1m =_____. 16.当x =﹣1时,代数式ax 3+bx +1的值为﹣2014,则当x =1时,代数式ax 3+bx +1的值为_____.17.有一组算式按如下规律排列,则第6个算式的结果为_____;第n 个算式的结果为_____(用含n 的代数式表示,其中n 是正整数).三.计算题18.﹣14×(+3)÷(﹣12)3 19.(49﹣1112+2﹣56)÷(﹣136). 20.[-12-(1-0.5×13)]×[-10+(-3)2] 四、解方程21.3x +7=32﹣2x .22.()()371323x x x --=-+五、化简求值23.先化简,再求值:a 2+(5a 2﹣2a )﹣2(a 2﹣3a ),其中a =﹣5. 24.已知A=2a 2-a ,B=-5a+1,求当a=-12时,3A-2B+1的值. 25.若2x 2+xy+3y 2=-5,求(9x 2+2xy+6)-(xy+7x 2-3y 2-5)的值.六、探究题26.已知数a ,b ,c 在数轴上的位置如图所示,试化简22a b b c a c +------.27.我们规定,若关于x 的一元一次方程ax =b 的解为b ﹣a ,则称该方程为“差解方程”,例如:2x =4的解为2,且2=4﹣2,则该方程2x =4是差解方程.请根据上边规定解答下列问题:(1)判断3x =4.5是否是差解方程;(2)若关于x 的一元一次方程6x =m +2是差解方程,求m 的值.28.如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.6a b c 2- 1 ···()1可求得c = ,第2016个格子中的数为 ;()2判断:前m 个格子中所填整数之和是否可能为2016?若能,求出m 的值,若不可能,请说明理由; ()3如果x ,y 为前3格子中的任意两个数,那么所有x y 的和可以通过计算6666a a a b b a b b -+-+-+-+-+-得到,若x ,y 为前20格子中的任意两个数,则所有x y 的的和为29.如图1,长方形OABC 的边OA 在数轴上,O 为原点,长方形OABC 的面积为12,OC 边长为3. (1)数轴上点A 表示的数为____________.(2)将长方形OABC 沿数轴水平移动,移动后的长方形记为''''O A B C ,移动后的长方形''''O A B C 与原长方形OABC 重叠部分(如图2中阴影部分)的面积记为S .① 当S 恰好等于原长方形OABC 面积的一半时,数轴上点'A 表示的数为____________② 设点A 的移动距离'AA x =ⅰ. 当4S =时,x =__________; ⅱ. D 为线段'AA 的中点,点E 在线段'OO 上,且1'3OE OO =,当点,D E 所表示的数互为相反数时,求x 的值.答案与解析一、选择题: 1.14-的相反数是( ) A. 14- B. 14 C. -4 D. 4【答案】B【解析】【详解】略 2.据报道,截至到2016年6月30日,我国移动电话用户总规模达到1300000000户,4G 用户总数达到613000000.将613000000用科学记数法计数表示为( )A. 661310⨯B. 761.310⨯C. 86.1310⨯D. 100.61310⨯ 【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同:当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】解:613 000 000=86.1310⨯.故答案为C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.下列方程中,解为x =4的方程是( )A. x ﹣1=4B. 4x =1C. 4x ﹣1=3x +3D. 1(1)5x -=1 【答案】C【解析】【分析】把x=4代入方程的左右两边,判断左边和右边是否相等即可判断.【详解】解:A 、当x=4时,左边=4-1=3≠右边,故选项不符合题意;B、当x=4时,左边=16≠右边,故选项不符合题意;C、当x=4时,左边=16-1=15,右边=13+3=15,则左边=右边,则x=4是方程的解,选项符合题意;D、当x=4时,左边=2(4-1)=6≠右边,故选项不符合题意.故选C.【点睛】本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,理解定义是关键.4.下列各式中运算正确的是()A. 4m﹣m=3B. xy﹣2xy=﹣xyC. 2a3﹣3a3=a3D. a2b﹣ab2=0【答案】B【解析】【分析】根据合并同类项得到4m-m=3m,2a3-3a3=-a3,xy-2xy=-xy,于是可对A、C、D进行判断;由于a2b与ab2不是同类项,不能合并,则可对B进行判断.【详解】解:A、4m-m=3m,所以A选项错误;B、xy-2xy=-xy,所以B选项正确;C、2a3-3a3=-a3,所以C选项错误;D、a2b与ab2不能合并,所以D选项错误.故选B.【点睛】本题考查了合并同类项:把同类项的系数相加减,字母和字母的指数不变.5.如图所示,阴影部分的面积是()A. 112xy B.132xy C. 6xy D. xy【答案】A【解析】【分析】阴影部分面积为长3x,宽2y的长方形面积减去长0.5x,宽y的长方形面积,然后合并同类项进行计算求解.【详解】解:由题意可得:阴影部分面积为111320.5(2)622x y x y y xy xy xy --=-= 故选:A 【点睛】本题考查列代数式及合并同类项的计算,根据图形找到图形面积之间的等量关系是解题关键. 6.若(a +2)2+|b ﹣1|=0,则(a +b )2019的值是( )A. 0B. 1C. ﹣1D. 2016 【答案】C【解析】【分析】直接利用互为相反数的定义结合绝对值的性质得出a ,b 的值,进而得出答案.【详解】解:∵|a+2|与| b-1|互相反数, ∴a+2=0,b-1=0,解得:a=-2,b=1,∴()2019a b +=-1.故选C .【点睛】此题主要考查了非负数的性质,正确应用绝对值的性质是解题关键.7.在a ﹣(2b ﹣3c )=﹣□中的□内应填的代数式为( )A. ﹣a ﹣2b +3cB. a ﹣2b +3cC. ﹣a +2b ﹣3cD. a +2b ﹣3c 【答案】C【解析】【分析】先去括号,然后再添括号即可.【详解】解:a-(2b-3c )=a-2b+3c=-(-a+2b-3c ),故选C.【点睛】本题考查了去括号与添括号的知识,解答本题的关键是熟记去括号及添括号的法则.8.《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中记载:“以绳测井,若将绳三折测之,绳多4尺,若将绳四折测之,绳多1尺,绳长井深各几何?”译文:“用绳子测水井深度,如果将绳子折成三等份,井外余绳4尺;如果将绳子折成四等份,井外余绳1尺.问绳长、井深各是多少尺?”设井深为x 尺,根据题意列方程,正确的是( )A. 3(x +4)=4(x +1)B. 3x +4=4x +1C. 3(x ﹣4)=4(x ﹣1)D. 4134x x -=- 【答案】A【解析】【分析】 用代数式表示井深即可得方程.此题中的等量关系有:①将绳三折测之,绳多四尺;②绳四折测之,绳多一尺.【详解】解:根据将绳三折测之,绳多四尺,则绳长为:3(x+4),根据绳四折测之,绳多一尺,则绳长为:4(x+1),故3(x+4)=4(x+1).故选A.【点睛】此题主要考查了由实际问题抽象出一元一次方程,不变的是井深,用代数式表示井深是此题的关键.9.小博表演扑克牌游戏,她将两副牌分别交给观众A 和观众B ,然后背过脸去,请他们各自按照她的口令操作:a .在桌上摆3堆牌,每堆牌的张数要相等,每堆多于10张,但是不要告诉我;b .从第2堆拿出4张牌放到第1堆里;c .从第3堆牌中拿出8张牌放在第1堆里;d .数一下此时第2堆牌的张数,从第1堆牌中取出与第2堆相同张数的牌放在第3堆里;e .从第2堆中拿出5张牌放在第1堆中.小博转过头问两名观众:“请告诉我现在第2堆有多少张牌,我就能告诉你们最初的每堆牌数.”观众A 说5张,观众B 说8张,小博猜两人最初每一堆里放的牌数分别为( )A. 14,17B. 14,18C. 13,16D. 12,16【答案】A【解析】【详解】解:a :设每堆牌的数量都是x (x >10);b :第1堆x+4,第2堆x-4,第3堆x ;c :第1堆x+4+8=x+12,第2堆x-4,第3堆x-8;d :第1堆x+12-(x-4)=16,第2堆x-4,第3堆x-8+(x-4)=2x-12,e :第1堆16+5=21,第2堆x-4-5=x-9,第3堆2x-12.如果x-9=5,那么x=14,如果x-9=8,那么x=17.故选A .二、填空题10.把多项式2m 2n 3+3mn 2﹣2﹣m 3n 按字母m 的降幂排列为_____.【答案】3232232m n m n mn -++-【解析】【分析】先分清多项式的各项,然后按多项式升幂排列的定义排列.【详解】解:把多项式2323232m n mn m n +--按字母m 的降幂排列是3232232m n m n mn -++-. 故答案为3232232m n m n mn -++-【点睛】考查了多项式,我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.此题还要注意分清按x 还是y 的降幂或升幂排列.11.单项式223x y -的系数是_______,次数是__________. 【答案】 (1). 23- (2). 3 【解析】【分析】根据单项式的定义以及性质直接写出系数和次数即可. 【详解】单项式223x y -的系数是23-,次数是3 故答案为:23-,3. 【点睛】本题考查了单项式的问题,掌握单项式的定义以及性质是解题的关键.12.用四舍五入法对0.01016(精确到千分位)取近似数是_____.【答案】0.010【解析】【分析】把万分位上的数字1进行四舍五入即可.【详解】解:0.01016(精确到千分位)取近似数是0.010.故答案为0.010.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.13.3﹣|x ﹣1|的最大值是_____.【答案】3【解析】【分析】利用表示数轴上的3减去x 到1的距离,求得它的最大值即可.【详解】解:∵|x-1|表示数轴上的 x 到1的距离,要使31x --最大,就要让|x-1|最小,当x=1时,31x --取得最大值,最大值等于3,故答案为3.【点睛】此题主要考查了此种类型的最值的求法,对于此种最值可以分析其几何意义,然后再求得最值. 14.已知a ﹣b =2,则多项式3a ﹣3b ﹣2的值是_____.【答案】4【解析】【分析】把a-b=2代入多项式3a-3b-2,求出算式的值是多少即可.【详解】解:∵a-b=2,∴3a-3b-2=3(a-b )-2=3×2-2=6-2=4故答案 4.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.15.如果x=﹣2是关于x的方程3x+5=14x﹣m的解,则m﹣1m=_____.【答案】3 2 -【解析】【分析】把x=-2代入方程即可得到一个关于m的方程,从而求解.【详解】解:把x=-2代入方程,得:-6+5=-12-m,解得:m=12,则m-1m=12-2=32-.故答案是:3 2 -.【点睛】本题考查了方程的解的定义,方程的解就是能使方程的左右两边相等的未知数的值.16.当x=﹣1时,代数式ax3+bx+1的值为﹣2014,则当x=1时,代数式ax3+bx+1的值为_____.【答案】2016【解析】分析】把x=1代入求出a+b的值,再把x=-1代入求解即可.【详解】解:x=-1时,-a-b+1=-2014,所以,a+b=2015,x=1时,ax3+bx+1=a+b+1=2015+1=2016.故答案为2016.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.17.有一组算式按如下规律排列,则第6个算式的结果为_____;第n个算式的结果为_____(用含n的代数式表示,其中n是正整数).【答案】 (1). -121 (2). 12(1)(21)n n +--【解析】【分析】每一个算式的第一个数的绝对值与行数相同,且偶数行每一个数字都是负数,数的个数是从1开始连续的奇数,所得的结果的绝对值是数的个数的平方,且偶数行的数字和是负数,由此得出算式的结果即可.【详解】解:第6个算式的结果为-(2×6-1)2=-121; 第n 个算式的结果为(-1)n+1(2n-1)2.故答案为-121;(-1)n+1(2n-1)2.【点睛】此题考查数字的变化规律,找出数字运算之间的规律,利用规律,解决问题.三.计算题18.﹣14×(+3)÷(﹣12)3 【答案】6【解析】【分析】按照有理数混合运算的顺序,先乘方,再乘除,后加减,有括号的先算括号里面的,计算过程中注意正负符号的变化.【详解】解:()311 342⎛⎫-⨯+÷- ⎪⎝⎭=11-+3-48⨯÷()() =1384⨯⨯ =6 【点睛】此题主要考查了有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:--得+,-+得-,++得+,+-得-.(3)整式中如果有多重括号应按照先去小括号,再去中括号,最后大括号的顺序进行.19.(49﹣1112+2﹣56)÷(﹣136). 【答案】-25【解析】【分析】利用乘法分配律简算. 【详解】解41151:2912636⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ =()41152369126⎛⎫-+-⨯-⎪⎝⎭ =()()()()41153636236?369126⨯--⨯-+⨯--⨯- =-16+33-72+30=-25【点睛】此题考查有理数的混合运算,抓住运算顺序,根据数字特点,灵活利用运算定律简算.20.[-12-(1-0.5×13)]×[-10+(-3)2] 【答案】116【解析】【分析】按有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【详解】解:][()221110.51033⎡⎤⎛⎫---⨯⨯-+- ⎪⎢⎥⎝⎭⎣⎦=[]1-1-1-0.5-10+93⎡⎤⨯⨯⎢⎥⎣⎦() =1-1-1--16⎡⎤⨯⎢⎥⎣⎦()() =5-1-(1)6⎡⎤⨯-⎢⎥⎣⎦=11(1)6-⨯- =116【点睛】本题考查了有理数的混合运算,注意运算顺序和符号;本题使用的运算技巧是:①转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.②凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.③巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.四、解方程21.3x +7=32﹣2x .【答案】5x =【解析】【分析】方程移项合并,把x 系数化为1,即可求出解.【详解】解:方程移项合并得:5x=25,解得:x=5.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.22.()()371323x x x --=-+【答案】5x =【解析】【分析】先去括号,再移项和合并同类项,即可求解.【详解】()()371323x x x --=-+377326x x x -+=--102x =5x =.【点睛】本题考查了一元一次方程的问题,掌握解一元一次方程的方法是解题的关键.五、化简求值23.先化简,再求值:a 2+(5a 2﹣2a )﹣2(a 2﹣3a ),其中a =﹣5. 【答案】80.【解析】试题分析:先去括号,再合并同类项,最后把字母的值代入计算即可.试题解析:222(52)2(3),a a a a a +---2225226,a a a a a =+--+244,a a =+,∵5a =-,∴原式24(5)4(5),=⨯-+⨯- 42520,=⨯-10020,=-80=.24.已知A=2a 2-a ,B=-5a+1,求当a=-12时,3A-2B+1的值. 【答案】2671a a +-;-3【解析】【分析】将A 与B 代入3A-2B 中,去括号合并得到最简结果,将a 的值代入计算即可求出值.【详解】解:∵A=2a 2-a ,B=-5a+1,∴3A-2B+1=3(2a 2-a )-2(-5a+1)+1=6a 2-3a+10a-2+1=6a 2+7a-1,当a=12-时,原式=32-72-1=-2-1=-3. 【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.25.若2x 2+xy+3y 2=-5,求(9x 2+2xy+6)-(xy+7x 2-3y 2-5)的值.【答案】6【解析】解:原式222926735x xy xy x y =++--++ 222311x xy y =+++当22235x xy y ++=-时原式511=-+6=六、探究题26.已知数a ,b ,c 在数轴上的位置如图所示,试化简22a b b c a c +------.【答案】-4.【解析】【分析】首先根据数a ,b ,c 在数轴上的位置,可得b<a<0<c<2,据此判断出a+b 、b-2、c-a 、2-c 的正负;然后去掉绝对值符号,根据整式的加减运算方法,计算即可求解.【详解】解:根据图示,可得02b a c <<<<,0a b ∴+<,20b -<,0c a ->,20c ->,22a b b c a c +------()()()()22a b b c a c =-++-----22a b b c a c =--+--+-+4=-.【点睛】熟练掌握绝对值化简和整式加减运算是解决本题的关键,本题难度一般,但是要注意先判断各绝对值中式子的正负性再化简计算.27.我们规定,若关于x 的一元一次方程ax =b 的解为b ﹣a ,则称该方程为“差解方程”,例如:2x =4的解为2,且2=4﹣2,则该方程2x =4是差解方程.请根据上边规定解答下列问题:(1)判断3x =4.5是否是差解方程; (2)若关于x 的一元一次方程6x =m +2是差解方程,求m 的值.【答案】(1)是;见解析;(2)265. 【解析】【分析】(1)求出方程的解,再根据差解方程的意义得出即可;(2)根据差解方程得出关于m的方程,求出方程的解即可.【详解】解:(1)∵3x=4.5,∴x=1.5,∵4.5﹣3=1.5,∴3x=4.5是差解方程;(2)∵关于x的一元一次方程6x=m+2是差解方程,∴m+2﹣6=26m+,解得:m=265.【点睛】本题考查了一元一次方程的解的应用,能理解差解方程的意义是解此题的关键.28.如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.()1可求得c=,第2016个格子中的数为;()2判断:前m个格子中所填整数之和是否可能为2016?若能,求出m的值,若不可能,请说明理由; ()3如果x,y为前3格子中的任意两个数,那么所有x y的和可以通过计算6666a a ab b a b b-+-+-+-+-+-得到,若x,y为前20格子中的任意两个数,则所有x y 的的和为【答案】(1)6,1 (2)不可能,证明见解析(3)1456【解析】【分析】(1)根据题意,归纳总结得到所求数字即可;(2)可先计算出这三个数的和,再照规律计算;(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.【详解】(1)由题意得∵6a b a b c ++=++∴6c =∵2a b c b c ++=+-∴2a =-∵其中第9个格子中的数为1,按规律正好是b 的值,∴1b =∴格子中的数为6,2,1-依次循环∵20163672÷=∴第2016个格子中的数为1故答案为:6,1;(2)不可能,由于格子中的数为6,2,1-依次循环,前三个数的和是5,而201654031÷=,也就是说前40331209⨯=位之和是40352015⨯=,而第1210位是6,所以前m 个格子中所填整数之和为2016是不可能的;(3)由于是三个数重复出现,前20个格子中,这三个数中,6和-2出现了7次,1出现了6次,故代入式子可得()()()6276167267216716712761456+⨯+-⨯⨯+--⨯+--⨯⨯+-⨯++⨯⨯=故答案为:1456.【点睛】本题考查了表格类的规律题,掌握表格中的规律、绝对值的计算方法是解题的关键.29.如图1,长方形OABC 的边OA 在数轴上,O 为原点,长方形OABC 的面积为12,OC 边长为3. (1)数轴上点A 表示的数为____________.(2)将长方形OABC 沿数轴水平移动,移动后的长方形记为''''O A B C ,移动后的长方形''''O A B C 与原长方形OABC 重叠部分(如图2中阴影部分)的面积记为S .① 当S 恰好等于原长方形OABC 面积的一半时,数轴上点'A 表示的数为____________② 设点A 的移动距离'AA x =ⅰ. 当4S =时,x =__________;ⅱ. D 为线段'AA 的中点,点E 在线段'OO 上,且1'3OE OO =,当点,D E 所表示的数互为相反数时,求x 的值.【答案】(1). 4(2). 6或2(3). 8 3【解析】【分析】(1)利用面积÷OC可得AO长,进而可得答案;(2)①首先计算出S的值,再根据矩形的面积表示出O′A的长度,再分两种情况:当向左运动时,当向右运动时,分别求出A′表示的数;②i、首先根据面积可得OA′的长度,再用OA长减去OA′长可得x的值;ii、此题分两种情况:当原长方形OABC向左移动时,点D表示的数为4−12x,点E表示的数为−13x,再根据题意列出方程;当原长方形OABC向右移动时,点D,E表示的数都是正数,不符合题意. 【详解】解:(1)∵长方形OABC的面积为12,OC边长为3,∴OA=12÷3=4,∴数轴上点A表示的数为4,故答案为4.(2)①∵S恰好等于原长方形OABC面积的一半,∴S=6,∴O′A=6÷3=2,当向左运动时,如图1,A′表示的数为2,当向右运动时,如图2,∵O′A′=AO=4,∴OA′=4+4-2=6,∴A′表示的数为6,故答案为6或2.②ⅰ.如图1,由题意得:CO•OA′=4,∵CO=3,∴OA′=43,∴x=4-43=83,同法可得:右移时,x=83.故答案为83;ⅱ.如图1,当原长方形OABC向左移动时,点D表示的数为4−12x,点E表示的数为−13x,由题意可得方程:4-12x-13x=0,解得:x=245,如图2,当原长方形OABC向右移动时,点D,E表示的数都是正数,不符合题意.【点睛】此题主要考查了一元一次方程的应用,数轴,关键是正确理解题意,利用数形结合列出方程,注意要分类讨论,不要漏解.。

【人教版】数学七年级上学期《期中测试题》及答案

【人教版】数学七年级上学期《期中测试题》及答案

2020-2021学年度第一学期期中测试人教版七年级数学试题一、选择题:本大题共6个小题,每小题2分,共12分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在3,1,1,3--这四个数中,比2-小的数是( )A. 3-B. 1-C. 1D. 32.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的点是( )A. 点A 和点CB. 点B 和点DC. 点A 和点DD. 点B 和点C3.据统计,亚洲各经济体的基础设施如果要达到世界平均水平,至少需要8000000000000美元基建投资.数据8000000000000用科学记数法表示应为( )A. 130.810⨯B. 12810⨯C. 18810⨯D. 118010⨯4.下列计算正确的是( )A. 2a a a +=B. 3265x x x -=C. 623325x x x +=D. 22234-=-a b ba a b 5.老师让同学们写出单项式3x 2y 3的同类项,下面是四名同学写出的答案,正确的是( )A. 2x 5B. 3x 3y 2C. ﹣2312x y D. ﹣13y 3 6.火车站、机场、邮局等场所都有为旅客提供打包服务的项目.现有一个长、宽、高分别为a ,b ,c 的箱子,按如图所示的方式打包,则打包带的长(不计接头处的长)至少应为( )A. a+3b+2cB. 2a+4b+6cC. 4a+10b+4cD. 6a+6b+8c二、填空题(每题3分,满分24分,将答案填在答题纸上)7.比较大小:﹣45_____﹣1(填“>”或“<”). 8.用四舍五入法将有理数5.614精确到百分位,得到的近似数为_____.9.小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元.(用含a ,b 的代数式表示)10.﹣2xy 的系数是a ,次数是b ,则a +b =_____. 11.若3x 3y m +1与6x n +1y 2是同类项,则m +n =_____.12.把多项式x 2﹣2﹣3x 3+5x 的升幂排列写成_____.13.已知代数式234x x -的值为9,则2686x x --的值为__________.14.在有理数的原有运算法则中,我们定义一个新运算“★”如下:x ≤y 时,x ★y =x 2;x >y 时,x ★y =y .则(﹣2★﹣4)★1的值为_____.三、解答题 (本大题共4小题,共20分.解答应写出文字说明、证明过程或演算步骤.)15.计算(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96). 16.计算()2213602210--÷⨯+-. 17.计算:()()232323243x y x y x y +---. 18.计算:()()223221a a a a ----. 四、解答题(每小题 7分,共28分)19.已知A =3x 2+4xy ,B =x 2+3xy ﹣y 2,求2B ﹣A .20.先化简,再求值:22532(23)7x x x x ⎡⎤---+⎣⎦,其中12x = 21.小明做了如下一道有理数混合运算的题目﹣34÷(﹣27)﹣[(﹣2)×(﹣43)+(﹣2)]3 =81÷(﹣27)﹣[83+(﹣8)]=… 思考:(1)请用圆圈圈出小明第一步计算中错误;(2)正确的解答这道题.22.老师设计了一个数学实验,给甲、乙、丙三名同学各一张写有已化为最简的代数式的卡片,规则是两位同学的代数式相减等于第三位同学的代数式,则实验成功.甲、乙、丙的卡片如图所示,丙的卡片有一部分看不清楚了.(1)计算出甲减乙的结果,并判断甲减乙能否使实验成功;(2)嘉淇发现丙减甲可以使实验成功,请求出丙的代数式.五、解答题(每小题8分,共16分)23.长春市地铁1号线,北起北环站,南至红咀子站,共设15个地下车站,2017年6月30日开通运营,标志着吉林省正式迈进“地铁时代”,15个站点如图所示.某天,王红从人民广场站开始乘坐地铁,在地铁各站点做志愿者服务,到A 站下车时,本次志愿者服务活动结束,约定向红咀子站方向为正,当天的乘车记录如下(单位:站):+5,﹣2,﹣6,+8,+3,﹣4,﹣9,+8(1)请通过计算说明A 站是哪一站?(2)相邻两站之间的距离为1.3千米,求这次王红志愿服务期间乘坐地铁行进的路程是多少千米? 24.如图,长为50,cm 宽为xcm 的大长方形被分割为8小块,除阴影A B 、外,其余6块是形状、大小完全相同的小长方形,其较短一边长为acm .()1由图可知,每个小长方形较长的一边长是__ cm (用含a 的式子表示);()2当40x =时,求图中两块阴影,A B 周长和.六、解答题(每小题10分,共20分)25.如图,在数轴上点A 表示的数是8,若动点P 从原点O 出发,以2个单位/秒的速度向左运动;同时另一动点Q从点A出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t(秒).()1当0.5t时,求点Q到原点O的距离;=()2当 2.5t=时,求点Q到原点O的距离;()3当点Q到原点O的距离为4时,求点P到原点O的距离.26.为丰富校园体育生活,某校增设网球兴趣小组,需要采购某品牌网球训练拍30支,网球x筒(x>30).经市场调查了解到该品牌网球拍定价100元/支,网球20元/筒.现有甲、乙两家体育用品商店有如下优惠方案:甲商店:买一支网球拍送一筒网球;乙商店:网球拍与网球均按则90%付款,(1)方案一:到甲商店购买,需要支付元;方案二:到乙商店购买,需要支付元(用含x 的代数式表示)(2)若x=100,请通过计算说明学校采用以上哪个方案较为优惠.(3)若x=100,如果到甲店购买30支球拍(送30筒球),剩余的网球到乙店购买,能更省钱吗?如果可以省钱,请直接写出比方案一省多少钱?答案与解析一、选择题:本大题共6个小题,每小题2分,共12分.在每小题给出的四个选项中,只有一项是符合题目要求的.--这四个数中,比2-小的数是()1.在3,1,1,3A. 3-B. 1-C. 1D. 3【答案】A【解析】【分析】根据有理数的大小关系求解即可.【详解】在这四个数中-<-32故答案为:A.【点睛】本题考查了比较有理数大小的问题,掌握比较有理数大小的方法是解题的关键.2.如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是()A. 点A和点CB. 点B和点DC. 点A和点DD. 点B和点C【答案】C【解析】【分析】根据相反数的定义进行解答即可.【详解】解:由A表示-2,B表示-1,C表示0.75,D表示2.根据相反数和为0的特点,可确定点A和点D表示互为相反数的点.故答案为C.【点睛】本题考查了相反数的定义,掌握相反数和为0是解答本题的关键.3.据统计,亚洲各经济体的基础设施如果要达到世界平均水平,至少需要8000000000000美元基建投资.数据8000000000000用科学记数法表示应为()A. 13810⨯ C. 18⨯ B. 120.810⨯ D. 11810⨯8010【答案】B【解析】【分析】根据科学记数法的定义以及性质进行表示即可.【详解】128000000000000810=⨯故答案为:B .【点睛】本题考查了科学记数法的应用,掌握科学记数法的定义以及性质是解题的关键.4.下列计算正确的是( )A. 2a a a +=B. 3265x x x -=C. 623325x x x +=D. 22234-=-a b ba a b【答案】D【解析】【分析】根据同类项的定义及合并同类项的方法进行判断即可.【详解】解:A :2a a a +=,故A 错误;B :36x 与25x -不是同类型,故不能合并,故B 错误;C :23x 与32x 不是同类型,故不能合并,故C 错误;D :22234-=-a b ba a b ,故D 正确;故选择D . 【点睛】本题考查了同类项,合并同类项.解题的关键是掌握同类项的定义:所含字母相同,相同字母的指数相同;合并同类项的方法:字母和字母的指数不变,只把系数相加减.不是同类项的一定不能合并.5.老师让同学们写出单项式3x 2y 3同类项,下面是四名同学写出的答案,正确的是( )A. 2x 5B. 3x 3y 2C. ﹣2312x yD. ﹣13y 3 【答案】C【解析】【分析】根据同类项的定义进行判断即可.【详解】A.3x 2y 3与2x 5中,所含字母不尽相同,不是同类项,故本选项错误;B.3x 2y 3与3x 3y 2中,相同字母的指数不相同,不是同类项,故本选项错误;C.3x 2y 3与2312x y -中,x 、y 的指数均相同,是同类项,故本选项正确; D.3x 2y 3与313y -中,所含字母不尽相同,不是同类项,故本选项错误. 故选:C .【点睛】本题考查同类项,熟记同类项的定义是解题的关键.6.火车站、机场、邮局等场所都有为旅客提供打包服务的项目.现有一个长、宽、高分别为a ,b ,c 的箱子,按如图所示的方式打包,则打包带的长(不计接头处的长)至少应为( )A. a+3b+2cB. 2a+4b+6cC. 4a+10b+4cD. 6a+6b+8c【答案】B【解析】【分析】 根据图形,不难看出:打包带的长有长方体的两个长、四个宽、六个高.【详解】两个长为2a ,四个宽为4b ,六个高为6c.∴打包带的长是2a+4b+6c.故答案选B.【点睛】本题考查了列代数式,解题的关键是根据题中的等量关系列出代数式.二、填空题(每题3分,满分24分,将答案填在答题纸上)7.比较大小:﹣45_____﹣1(填“>”或“<”). 【答案】>【解析】【分析】根据有理数比较大小的法则进行比较即可.【详解】∵4|1|5-<-, ∴415->-. 故答案为:>.【点睛】本题考查有理数比较大小,掌握负数比较大小的法则:绝对值越大,这个数本身越小,是解题的关键.8.用四舍五入法将有理数5.614精确到百分位,得到的近似数为_____.【答案】5.61【解析】【分析】把千分位上的数字4 进行四舍五入即可.【详解】5.614精确到百分位,得到的近似数为5.61.故答案为5.61.【点睛】本题考查近似数,掌握“四舍五入”法是解题的关键.9.小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元.(用含a ,b 的代数式表示)【答案】410a b +【解析】由题意得总价为410a b +.10.﹣2xy 的系数是a ,次数是b ,则a +b =_____. 【答案】32 【解析】【分析】根据单项式的系数与次数的定义得出a 、b 的值,再代入计算即可. 【详解】单项式-2xy 的系数为:-12,次数为:2, 则a +b =-12+2=32. 故答案为:32. 【点睛】本题考查单项式的系数和次数,熟记系数及次数的定义是解题的关键.11.若3x 3y m +1与6x n +1y 2是同类项,则m +n =_____.【答案】3【解析】【分析】根据同类项的定义列方程得出m 、n 的值,再代入计算即可.【详解】∵3x 3y m +1与6x n +1y 2是同类项,∴n +1=3,m +1=2,解得m =1,n =2.∴m +n =1+2=3.故答案为:3.【点睛】本题考查了同类项,掌握同类项的定义:所含字母相同,相同字母的指数也相同,是解题的关键. 12.把多项式x 2﹣2﹣3x 3+5x 的升幂排列写成_____.【答案】﹣2+5x +x 2﹣3x 3【解析】【分析】先分清多项式的各项,然后按多项式升幂排列的定义排列.【详解】多项式x 2﹣2﹣3x 3+5x 的各项是x 2,﹣2,﹣3x 3,5x ,按x 升幂排列为﹣2+5x+x 2﹣3x 3.故答案为﹣2+5x+x 2﹣3x 3.【点睛】本题主要考查了多项式的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号. 13.已知代数式234x x -的值为9,则2686x x --的值为__________.【答案】12【解析】【分析】根据已知得出3x2-4x=9,再将原式变形得出答案.【详解】∵2349x x -=,∴26818x x -=,∴268618612x x --=-=.故答案为12.14.在有理数的原有运算法则中,我们定义一个新运算“★”如下:x ≤y 时,x ★y =x 2;x >y 时,x ★y =y .则(﹣2★﹣4)★1的值为_____.【答案】16【解析】【分析】根据题目规定的新运算进行列式计算即可.【详解】∵x ≤y 时,x ★y =x 2;x >y 时,x ★y =y ,∴(-2★-4)★1=-4★1=(-4)2=16,故答案为:16.【点睛】本题考查有理数的运算,明确题目给出的新运算是解题的关键.三、解答题 (本大题共4小题,共20分.解答应写出文字说明、证明过程或演算步骤.)15.计算(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96). 【答案】﹣4【解析】【分析】先凑成整数,再相加即可求解.【详解】解:(﹣3.14)+(+4.96)+(+2.14)+(﹣7.96)=(﹣3.14+2.14)+(4.96﹣7.96)=﹣1﹣3=﹣4.【点睛】考查了有理数的加法,解题的关键是灵活运用运算律简便计算.16.计算()2213602210--÷⨯+-. 【答案】9.5.【解析】分析】根据运算顺序,先计算乘方运算,(﹣3)2表示两个﹣3的乘积,22表示两个2的乘积,然后利用除以运算法则将除法运算化为乘法运算,约分后合并即可得到结果.【详解】解:原式=9﹣60÷4×110+2=9﹣60×14×110+2=9﹣1.5+2=9.5. 【点睛】考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算.17.计算:()()232323243x y x yx y +---. 【答案】23x y【解析】【分析】先去括号,再合并同类项即可.【详解】()()232323243x y x y x y +--- 232323243x y x y x y =-+23x y =.【点睛】本题考查了整式的混合运算问题,掌握整式的混合运算法则和合并同类项的方法是解题的关键. 18.计算:()()223221a a a a ----.【答案】22+a【解析】【分析】先去括号,再合并同类项即可. 【详解】解:原式222322222a a a a a =--++=+【点睛】本题考查了整式的混合运算问题,掌握整式的混合运算法则和合并同类项的方法是解题的关键.四、解答题(每小题 7分,共28分)19.已知A =3x 2+4xy ,B =x 2+3xy ﹣y 2,求2B ﹣A .【答案】﹣x 2+2xy ﹣2y 2【解析】【分析】先把A 、B 代入,再去括号合并即可【详解】解:∵A =3x 2+4xy ,B =x 2+3xy -y 2,∴2B -A =2(x 2+3xy -y 2)-(3x 2+4xy )=2x 2+6xy -2y 2-3x 2-4xy=-x 2+2xy -2y 2.【点睛】本题考查整式加减的应用,注意代入时要加括号,掌握去括号、合并同类项法则是解题的关键.20.先化简,再求值:22532(23)7x x x x ⎡⎤---+⎣⎦,其中12x = 【答案】226x x -+-,-6.【解析】【详解】解:22532(23)7x x x x ⎡⎤---+⎣⎦22532(23)7x x x x =-+--2253467x x x x =-+--226x x =-+-当12x =时,原式=2112622⎛⎫-⨯+- ⎪⎝⎭ =11622-+- =-621.小明做了如下一道有理数混合运算的题目﹣34÷(﹣27)﹣[(﹣2)×(﹣43)+(﹣2)]3 =81÷(﹣27)﹣[83+(﹣8)]=… 思考:(1)请用圆圈圈出小明第一步计算中的错误;(2)正确的解答这道题.【答案】(1)见解析;(2) 19227,过程见解析. 【解析】【分析】根据有理数混合运算的运算顺序及运算法则进行判断计算即可.【详解】解:(1)-34÷(-27)-[(-2)×(-43)+(-2)]3(2)正确的解法如下所示:-34÷(-27)-[(-2)×(-43)+(-2)]3 =-81÷(-27)-(83-2)3 =81×127-(23)3 =3-827=19227. 【点睛】本题考查有理数的混合运算,熟练掌握运算顺序及运算法则是解题关键.22.老师设计了一个数学实验,给甲、乙、丙三名同学各一张写有已化为最简的代数式的卡片,规则是两位同学的代数式相减等于第三位同学的代数式,则实验成功.甲、乙、丙的卡片如图所示,丙的卡片有一部分看不清楚了.(1)计算出甲减乙的结果,并判断甲减乙能否使实验成功;(2)嘉淇发现丙减甲可以使实验成功,请求出丙的代数式.【答案】(1)甲减乙不能使实验成功;(2)丙的代数式为2352x x -+.【解析】【分析】(1)根据整式减法,计算甲减乙即可,然后与丙比较即可判定;(2)根据题意,让甲加乙即可得出丙的代数式.【详解】(1)由题意,得()2222223123231234x x x x x x x x x x ----+=---+-=--则甲减乙不能使实验成功;(2)由题意,得()22223123352x x x x x x --+-+=-+∴丙的代数式为:2352x x -+.【点睛】此题主要考查整式的加减,解题关键是弄清题意,进行计算即可.五、解答题(每小题8分,共16分)23.长春市地铁1号线,北起北环站,南至红咀子站,共设15个地下车站,2017年6月30日开通运营,标志着吉林省正式迈进“地铁时代”,15个站点如图所示.某天,王红从人民广场站开始乘坐地铁,在地铁各站点做志愿者服务,到A站下车时,本次志愿者服务活动结束,约定向红咀子站方向为正,当天的乘车记录如下(单位:站):+5,﹣2,﹣6,+8,+3,﹣4,﹣9,+8(1)请通过计算说明A站是哪一站?(2)相邻两站之间的距离为1.3千米,求这次王红志愿服务期间乘坐地铁行进的路程是多少千米?【答案】(1)A站是繁荣路站;(2)这次王红志愿服务期间乘坐地铁行进的路程是58.5千米.【解析】【分析】(1)根据有理数的加法,可得答案;(2)根据绝对值的意义和有理数的加法可得一共的站数,再乘以1.3可得答案.【详解】解:(1)+5﹣2﹣6+8+3﹣4﹣9+8=3.答:A站是繁荣路站;(2)(5+2+6+8+3+4+9+8)×1.3 =45×1.3 =58.5(千米).答:这次王红志愿服务期间乘坐地铁行进的路程是58.5千米.【点睛】考查了正数和负数,根据题意列出算式是解题的关键.24.如图,长为50,cm宽为xcm的大长方形被分割为8小块,除阴影A B、外,其余6块是形状、大小完全相同的小长方形,其较短一边长为acm.()1由图可知,每个小长方形较长的一边长是__ cm(用含a的式子表示);()2当40x =时,求图中两块阴影,A B 的周长和.【答案】(1)()503a -;(2)160cm .【解析】【分析】(1)根据图形写出代数式即可;(2)根据图形列出代数式可得阴影部分的周长和为4x ,再代入求值即可.【详解】(1)由图形得,每个小长方形较长的一边长是()503a -;(2)阴影部分的周长和为:()()5022325034x a x a x ⨯+-+-⎤⎣⎦=⎡-. 当40x =时,周长和为160cm .【点睛】本题考查了图形与代数式的问题,掌握长方形周长公式是解题的关键.六、解答题(每小题10分,共20分)25.如图,在数轴上点A 表示的数是8,若动点P 从原点O 出发,以2个单位/秒的速度向左运动;同时另一动点Q 从点A 出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t (秒).()1当0.5=t 时,求点Q 到原点O 的距离;()2当 2.5t =时,求点Q 到原点O 的距离;()3当点Q 到原点O 的距离为4时,求点P 到原点O 的距离.【答案】(1)6;(2)2;(3)点P 到原点的距离为2或6.【解析】【分析】(1)求出AQ 的长度,再根据OQ OA AQ =-求解即可;(2)求出点Q 运动的距离,再根据OQ=点Q 运动的距离-OA 求解即可;(3)分两种情况:①Q 向左运动时;②Q 向右运动时,分别求出运动时间t ,即可求出OP 的长度.【详解】(1)由题意得440.52AQ t ==⨯=∵8OA =∴826OQ OA AQ =-=-=;(2)由题意得,点Q 运动的距离是44 2.510t =⨯=∵8OA =∴102OQ OA =-=;(3)①Q 向左运动时,∵8OA =,4OQ =,∴4AQ OA OQ =-=,∴441t =÷=,∴212OP =⨯=;②Q 向右运动时,∵8OA =,4OQ =,∴Q 的运动距离是8412+=,∴运动时间是1243t =÷=,∴236OP =⨯=.综上,点P 到原点的距离为2或6.【点睛】本题考查了数轴上的动点问题,掌握数轴的特点是解题的关键.26.为丰富校园体育生活,某校增设网球兴趣小组,需要采购某品牌网球训练拍30支,网球x 筒(x >30).经市场调查了解到该品牌网球拍定价100元/支,网球20元/筒.现有甲、乙两家体育用品商店有如下优惠方案:甲商店:买一支网球拍送一筒网球;乙商店:网球拍与网球均按则90%付款,(1)方案一:到甲商店购买,需要支付 元;方案二:到乙商店购买,需要支付 元(用含x 的代数式表示)(2)若x =100,请通过计算说明学校采用以上哪个方案较为优惠.(3)若x =100,如果到甲店购买30支球拍(送30筒球),剩余的网球到乙店购买,能更省钱吗?如果可以省钱,请直接写出比方案一省多少钱?【答案】(1)(20x+2400),(18x+2700);(2)甲商店购买合算,理由见解析;(3)能,能省140元【解析】【分析】(1)按照对应的方案的计算方法分别列出代数式即可;(2)把x=100代入求得的代数式求得数值,进一步比较得出答案即可;(3)根据两种方案的优惠方式,可得出先在甲商店购买30支球拍,送30筒球,另外70筒球在乙商店购买即可.【详解】解:(1)甲商店购买需付款30×100+(x-30)×20=3000+20x-600=(20x+2400)元;乙商店购买需付款100×90%×30+20×90%×x=(18x+2700)元.故答案为:(20x+2400),(18x+2700);(2)当x=100时,甲商店需20×100+2400=4400(元);乙商店需18×100+2700=4500(元);∵4400<4500,∴甲商店购买合算;(3)先在甲商店购买30支球拍,送30筒球需:100×30=3000(元),差70筒球在乙商店购买需:20×90%×70=1260(元),共需3000+1260=4260(元),∵4260<4400,且4400-4260=140(元).∴比方案一省钱,省140元钱.【点睛】本题考查列代数式及代数式求值,正确理解题意是解题的关键.。

2024年人教版初一上学期期中数学试卷及答案指导

2024年人教版初一上学期期中数学试卷及答案指导

2024年人教版数学初一上学期期中模拟试卷(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、一个长方形的长是8厘米,宽是5厘米,它的周长是多少厘米?选项:A、13厘米B、23厘米C、30厘米D、40厘米2、一个数加上它的两倍,再减去3,结果是7,这个数是多少?选项:A、1B、2C、3D、43、题目:一个长方形的长是10厘米,宽是5厘米,它的周长是多少厘米?选项:A. 15厘米B. 25厘米C. 30厘米D. 50厘米4、题目:一个数的2倍是12,这个数是多少?选项:A. 2B. 4C. 6D. 85、下列各数中,有理数是()A、√2B、πC、3.14D、-1/36、下列各数中,属于无理数的是()A、1.414B、-2/3C、3/5D、π7、下列各数中,是正数的是:A、-1/2B、-2C、0D、1/28、下列各数中,是负数的是:A、-1/2B、-2C、0D、1/29、选择题:一个长方形的长是6cm,宽是3cm,那么这个长方形的周长是多少平方厘米?A. 18cm²B. 15cm²C. 18cmD. 15cm² 10、选择题:一个圆的半径是4cm,那么这个圆的面积是多少平方厘米?(取π≈3.14)A. 50.24cm²B. 78.5cm²C. 25.12cm²D. 12.56cm²二、填空题(本大题有5小题,每小题3分,共15分)1、若一个等腰三角形的底边长为4cm,腰长为6cm,则该三角形的周长为______cm。

2、在直角坐标系中,点A的坐标为(2,3),点B的坐标为(-1,-2)。

那么线段AB的中点坐标为 ______ 。

3、若一个数的3倍减去12等于18,则这个数是 ______ 。

4、一个长方形的长是宽的3倍,若长方形的周长是48厘米,则这个长方形的面积是 ______ 平方厘米。

5、在等差数列{an}中,若a1=3,d=2,则前n项和Sn=______ 。

期中达标测试卷(含答案)2024-2025学年人教版(2024)数学七年级上册

期中达标测试卷(含答案)2024-2025学年人教版(2024)数学七年级上册

人教版(2024)数学七年级上册期中达标测试卷(本试卷满分120分)一、选择题(本大题共10小题,每小题3分,共30分)1.的倒数是( )A.B .C .D .2.李老师在实验室中发现了四个因操作不规范沾染污垢或被腐蚀的砝码,经过测量,超出标准质量的部分记为正数、不足标准质量的部分记为负数,它们中质量最接近标准质量的是( )ABCD3.单项式-12x 3y 的系数和次数分别是( )A .-12,4B .-12,3C .12,3D .12,44.著名的数学家苏步青被誉为“数学大王”.为纪念其卓越贡献,国际上将一颗距地球约218 000 000公里的行星命名为“苏步青星”.数据218 000 000用科学记数法表示为( )A .0.218×109B .2.18×108C .2.18×109D .218×1065.下列运算结果正确的是( )A .a +2a 2=3a 2B .3a 2b -2ba 2=a 2b C .5a -a =5D .2a +b =2ab6.下列说法中正确的是( )A .0不是单项式B .-a 一定小于0C .最大的负有理数是-1D .2-a -ab 是二次三项式7.若-x 3y m 与2x n y 是同类项,则2024m +n 的值为( )A .2027B .2021C .4051D .40458.2024年,第33届夏季奥林匹克运动会在法国巴黎举行.如图1,将5个城市的国际标准时间(单位:时)在数轴上表示,那么开幕式的巴黎时间7月26日19时30分对应的是( )A .纽约时间7月26日14时30分B .伦敦时间7月26日18时30分23-233232-23-C .北京时间7月27日3时30分D .汉城时间7月26日3时30分图19.多项式x 3-3x 2+2x +1与多项式-2x 3-3x 2+3x +5相减,化简后不含的项是( )A .三次项B .二次项C .一次项D .常数项10.【跨学科】苯是一种有机化合物,是组成结构最简单的芳香烃,可以合成一系列衍生物.如图2是某小组用小木棒摆放的苯及其衍生物的结构式,第1个图形需要9根小木棒,第2个图形需要16根小木棒,第3个图形需要23根小木棒……按此规律,第n 个图形需要的小木棒的根数是( )A .7n +2B .7n +5C .7n +7D .7n +9图2二、填空题(本大题共6小题,每小题4分,共24分)11.化简:-(-4)=__________.12.2024年3月8日,我国在南海珠江口盆地发现首个深水深层大油田——开平南油田,探明油气地质储量1.02亿吨油当量.该油田是全球核杂岩型凹陷最大的商业发现.数据“1.02亿”精确到的数位是______位. 13强p 与受力面积S 成__________比例关系.14=__________.15.如图3是一个数据转换器的示意图,它的作用是求转换器内各代数式的和.现输入x 的值,经过转换器,输出的值为y ,若无论输入的x 为何值,输出的y 不变,则m =__________.图3图416.如图4,若从一个宽为5 cm 的长方形纸片中剪去两个形状和大小完全相同的小长方形卡片,那么余下的两块阴影部分的周长之和是__________ cm .三、解答题(本大题共7小题,共66分)17.(6分)根据下列语句列代数式:(1)b 的倍的相反数;(2)比a 与b 的积的2倍小5的数;(3)一件商品原价为a 元,现按原价的九折销售,则售价是多少元?18.(8分)计算:.阅读下面的解答过程并完成相应任务:解:原式………… 第一步=(-15)÷(-1)………………………第二步=15.………………………………………第三步任务:(1)上面解题过程中,第__________步开始就出现了错误,错误的原因是____________________;(2)把正确的解题过程写出来.19.(8分)先化简,再求值:3(a 2b +b )-2(4a 2b -2),其中a =-3,b =2.43()1115632⎛⎫-÷-⨯ ⎪⎝⎭()11566⎛⎫=-÷-⨯ ⎪⎝⎭20.(10分)某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表:(增加的车辆数记为正数,减少的车辆数记为负数)(1)星期三生产了__________辆摩托车,本周产量最多的一天比产量最少的一天多生产__________辆;(2)本周总生产量与计划生产量相比,是增加还是减少了?增加或减少了多少辆?21.(10分)食品加工厂准备把一批新酿的醋装瓶运往商店,每瓶容量和所装瓶数如下表:(1)表中a=____________;(2)用n表示所装瓶数,m表示每瓶容量,用式子表示n与m的关系,n与m成什么比例关系?(3)如果把这批新酿的醋装了150瓶,那么每瓶的容量是多少毫升?22.(12分)用数学的眼光观察:甲、乙两位同学用标有数字1,2,…,9的9张卡片做游戏.甲同学:“你先从这9张卡片中随意抽取两张(按抽取的先后顺序分别称为“卡片A”和“卡片B”),别告诉我卡片上是什么数字,然后你把卡片A上的数字先乘5,再加7,再乘2,再加上卡片B的数字,把最后得到的数告诉我,我就能猜出你抽出的是哪两张卡片啦!”乙同学:“这么神奇?我不信.”……用数学的思维思考:(1)如果乙同学抽出的卡片A上的数字为3,卡片B上的数字为6,他最后得到的数M为__________;(2)若乙同学最后得到的数M为76,则卡片A上的数字为_________,卡片B上的数字为_________;用数学的语言表达:(3)请你说明:对任意告知的数M,甲同学是如何猜到乙抽出的是哪两张卡片的.23.(13分)已知A,B,P为数轴上三点,我们规定:点P到点A的距离是点P到点B的距离的k倍,则称P是[A,B]的“k倍点”,记作P[A,B]=k.例如:若点P表示的数为0,点A表示的数为-2,点B表示的数为1,则P是[A,B]的“2倍点”,记作P[A,B]=2.【知识运用】(1)如图5,A,B,P为数轴上三点,回答下面问题:①P[B,A]=__________;②若点C在数轴上,且C[A,B]=1,则点C表示的数为__________ ;③若D是数轴上一点,且D[A,B]=2,求点D所表示的数.图5【知识拓展】(2)E,F为数轴上两点(点E在点F的左边),M,N为线段EF上的两点,且M,N两点之间的距离为a,若M[E,N]=3,N[F,M]=2,直接写出E,F两点之间的距离.(用含a的代数式表示)期中自我评估 参考答案答案速览一、1. C 2. D 3. A 4. B 5. B 6. D 7. A 8. B 9. B 10. A 二、11. 4 12. 百万 13. 反 14. 9 15. -3 16. 20三、17.(1)-b ;(2)2ab -5;(3)0.9a .18.解:(1)二运算顺序错误(2)原式=(-15)×(-6)×6=540.19.解:原式=3a 2b +3b -8a 2b +4=-5a 2b +3b +4.当a =-3,b =2时,原式=-5×(-3)2×2+3×2+4=-5×9×2+3×2+4=-90+6+4=-80.20.解:(1)335 114(2)根据题意,得-50-72+35+42+10=-35(辆).答:本周总生产量与计划生产量相比,减少了35辆.21.解:(1)600(2.(3)每瓶的容量是2000毫升.22. 解:(1)50(2)6 2(3)设卡片A 上的数字为x ,卡片B 上的数字为y .经过题中的计算后得到的数M =2(5x +7)+y =10x +y +14.所以10x +y 的值为M-14.因为x ,y 都是1至9这9个数字,所以由告知的数M 减去14,所得两位数的十位上数字为卡片A 上的数字x ,个位上数字为卡片B 上的数字y .23. 解:(1)①4②2③因为D 是数轴上一点,且D [A ,B]=2,所以DA =2DB .因为点A 表示的数为-1,点B 表示的数为5,所以AB =5-(-1)=6.当点D 在点B 的右边时,点D 表示的数为-1+2×6=11.所以点D 表示的数为3或11.(2)E ,F 两点之间的距离为6a 或4a .43()11566⎛⎫=-÷-⨯ ⎪⎝⎭解析:因为M,N两点之间的距离为a,M[E,N]=3,N[F,M]=2,所以ME=3MN=3a,NF=2MN=2a.因为M,N为线段EF上的两点,所以分两种情况:当点M在点N的左边时,如图2-①,E,F两点之间的距离为ME+MN+NF=3a+a+2a=6a.①②图2当点M在点N的右边时,如图2-②,E,F两点之间的距离为ME-MN+NF=3a-a+2a=4a.综上,E,F两点之间的距离为6a或4a.。

七年级数学上学期期中测试题

七年级数学上学期期中测试题

七年级数学上学期期中测试题班级 姓名一、选择题(每小题2分,共12分)1 如果高出海平面20米,记作+20米,那么-30米表示( ).A.不足30米B. 低于海平面30米C.高出海平面30米D. 低于海平面20米2. 在代数式x x 3252-,y x 22π,x 1,5-,a 中,单项式的个数是 ()A .2个B .3个C .4个D .5个3、下列各对数中,互为相反数的是( ).A .-(+3)和+(-3) B. –(-3)和+(-3)C.–(-3) 和+ |-3|D. +(-3)和–|-3|4 .已知x -2y =-2,则3+2x -4y 的值是( ).A 、0B 、-1C 、3D 、55下列各组式子中,是同类项的是 ( )A . y x 23与23xy -B . xy 3与yx 2-C . x 2与22xD . xy 5与yz 56 已知a +b =0, a ≠b ,则化简a b(a +1)+b a(b +1)得( ).A .2a B. 2b C. +2 D. –2二、填空题(每小题3分,共24分)7.▕ 3.14─π▕─(+π)= ;8 。

用科学记数法表示13040000,应记作 。

9. 绝对值不大于2的非负整数有__________________。

10 冬季某天我国三个城市的最高气温分别是 -10℃,1℃, -7℃,它们 任意两城市中最大的温差是 .11 已知单项式32b a m 与4123n a b --的和是单项式,那么m = ,n = 。

12 一个多项式加上-x 2+x -2得x 2-1,这个多项式应该是__________。

13 用代数式表示:买一个球拍需要a 元,买一根跳绳需要b 元,则分别购买 50个球拍和50根跳绳,共需 元。

14下面由火柴棒拼出的一列图形中,第n 个图形由n 个正方形组成,通过观 察可以发现:第n 个图形中火柴棒的根数是 。

三、解答题(每题5分,共20分)15计算 )(421)149317365(-÷-+-n =1 n =2 n =3 n=416计算 724724×5724×8724×)2()+(-)-())+(-(--17 计算232)212(|18.0|)4(2⨯-+-÷-18 化简223[8(47)2]a a a a ----四、解答题(每题7分,共28分)19 化简求值:233+-+--+,其中a=-2 。

人教版七年级上数学期中测试题及答案

人教版七年级上数学期中测试题及答案

七年级上学期期中测试题一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项填入表格中。

1.-12的倒数的相反数是( ) A .23- B . 23C . 2D . -22.下列说法错误的个数是( )①一个数的绝对值的相反数一定是负数;②只有负数的绝对值是它的相反数; ③正数和零的绝对值都等于它本身;④互为相反数的两个数的绝对值相等。

A .3个 B .2个 C .1个 D .0个3.如果两个有理数的积是正数,和也是正数,那么这两个有理数( ) A .同号,且均为负数 B .异号,且正数的绝对值比负数的绝对值大 C .同号,且均为正数 D .异号,且负数的绝对值比正数的绝对值大 4.若a 3=a , 则a 这样的有理数有( )个。

A .0B .1C .2D .35.一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离是5个单位长度,那么这个数是( )A .5或-5B .5522-或 C .552-或 D .552-或 6.大于-2.5而小于3.5的整数共有( )A .7个B .6个C .5个D .4个 7.下列多项式中是二次三项式的是( )A .a + 3bB .3a + 4 a 2b + 5 bC .122++a aD .33b a + 8.下列各对数中,互为相反数的一对是( )A .2332与- B .()3322--与 C .()2233--与 D .()222323⨯-⨯-与9.某商场进了一批商品,每件商品的进价为a 元,提价%10后作为销售价,由于商品滞销,商场决定降价%10作为促销价,则商场对每件商品( ) A .赚了a 01.0元 B .亏了a 01.0元 C .赚了a 99.0元 D .不赔不赚 10.如图,梯形上、下底分别为a 、b ,高线长恰好等于圆的直径r 2,则图中阴影部分的面积是( )A .2()a b r r π+-B .2abr r π- C .22()a b r r π+- D .r abr 22π-11.如果代数式5242+-y y 的值为7,那么代数式122+-y y 的值为( ) A .-2 B .2 C .3 D .4(第10题图)12.有一列数1a ,2a ,3a ,…,n a ,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若12a =,则2011a 为( )A .2011B .2C .-1D .12二、填空题:本题共5小题,只要求填写最后结果。

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷(一)一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.3.用“<”“=”或“>”填空:﹣(﹣1)﹣|﹣1|.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为毫升.5.近似数2.30万精确到位.6.如果一个负数的平方等于它的相反数,那么这个数是.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为(用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 318.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= .9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= .10.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= .二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.913.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=317.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.018.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.505619.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?参考答案与试题解析一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm .【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm.故答案为:水位下降了16cm.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为310 ℃.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至﹣183℃,所以月球表面昼夜的温差为:127℃﹣(﹣183℃)=310℃.故答案为:310℃.3.用“<”“=”或“>”填空:﹣(﹣1)>﹣|﹣1|.【考点】有理数大小比较.【分析】先依据相反数和绝对值的性质化简各数,然后进行比较即可.【解答】解:﹣(﹣1)=1,﹣|﹣1|=﹣1.∵1>﹣1,∴﹣(﹣1)>﹣|﹣1|.故答案为:>.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为 1.44×103毫升.【考点】科学记数法—表示较大的数.【分析】首先把4小时化为秒,再用时间×0.05×2计算可得答案.【解答】解:0.05×2×4×3600=1440=1.44×103,故答案为:1.44×103.5.近似数2.30万精确到百位.【考点】近似数和有效数字.【分析】近似数2.30万精确到0.01万位,即百位.【解答】解:近似数2.30万精确到百位.故答案为百.6.如果一个负数的平方等于它的相反数,那么这个数是﹣1 .【考点】有理数的乘方;相反数.【分析】设这个数为x(x<0),由于一个负数的平方等于它的相反数得到x2=﹣x,解得x=0或x=﹣1,因此这个数只能为﹣1.【解答】解:设这个数为x(x<0),根据题意得x2=﹣x,x(x+1)=0,∴x=0或x=﹣1,∴这个数为﹣1.故答案为﹣1.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为3a (用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31【考点】列代数式.【分析】认真观察日历中,竖列相邻的三个数之间的规律,问题即可解决.【解答】解:任意圈出一竖列相邻的三个数,设中间一个数为a,则另外两个数为:a﹣7,a+7,∴这三个数之和=a+a﹣7+a+7=3a.故答案为3a.8.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= ﹣5 .【考点】多项式.【分析】根据单项式的系数和次数的定义,多项式的定义求解.【解答】解:∵x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,∴﹣p=﹣5.9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= 0 .【考点】有理数的混合运算;相反数;倒数.【分析】利用相反数,负倒数的定义求出m+n,xy与的值,代入原式计算即可求出值.【解答】解:根据题意得:m+n=0,xy=﹣1,即=﹣1,则原式=0﹣2010+2010=0.故答案为:010.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= ﹣1005a .【考点】整式的加减.【分析】首先去括号,然后再把化成(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,再合并即可.【解答】解:原式=a+3a+5a+…+2009a﹣2a﹣4a﹣6a﹣…﹣2010a,=(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,=﹣a+(﹣a)+(﹣a)+(﹣a)+…+(﹣a),=﹣1005a,故答案为:﹣1005a.二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④【考点】有理数的乘方;相反数;绝对值.【分析】根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.【解答】解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选B.12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9【考点】有理数的乘方.【分析】先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.【解答】解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.13.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解: a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个【考点】有理数大小比较;数轴.【分析】根据实数的分类以及绝对值的性质即可作出判断.【解答】解:①最大的负整数是﹣1,正确;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时,|a|=﹣a成立,正确;④a+5一定比a大,正确.故选D15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y【考点】多项式.【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选C.16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3【考点】解二元一次方程组;同类项.【分析】两个单项式的和为单项式,则这两个单项式是同类项再根据同类项的定义列出方程组,即可求出m、n的值.【解答】解:由题意,得,解得.故选C.17.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.0【考点】有理数的乘方.【分析】根据有理数乘方的含义,得(﹣1)2n+1=﹣1,(﹣1)2n=1,再计算求和即可.【解答】解:(﹣1)2n+(﹣1)2n+1=1+(﹣1)=0.故选D.18.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.5056【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数4.50所表示的准确值a的取值范围是4.495≤a<4.505.故选A.19.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【考点】代数式.【分析】根据代数式,可得代数式的表达意义.【解答】解:用数学语言叙述﹣bA、比a的倒数小b的数,故A正确;B、1除以a的商与b的绝对值的差,故B错误;C、1除以a的商与b的相反数的和,故C正确;D、b与a的倒数的差的相反数,故D正确;故选:B.20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)【考点】整式的加减;有理数的混合运算.【分析】利用实数的运算法则和整式的运算法则即可求出答案.【解答】解:(1)原式=3.5﹣2.5﹣1.4﹣4.6=1﹣6=﹣5;(2)原式=﹣4÷(﹣64)+0.2×=+=;(3)原式=[﹣(9+4﹣18)]÷5×(﹣1)=÷5×(﹣1)=﹣;(4)原式=x﹣2x﹣2+3x=2x﹣2;(5)原式=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(6)原式=4x2﹣20x﹣10x2﹣15x=﹣6x2﹣35x;22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,再按照从左到右的顺序用“<”连接起来即可.【解答】解:各点在数轴上的位置如图所示:故﹣2.5<﹣<0<1<2.5.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).【考点】数轴.【分析】(1)读出数轴上的点表示的数值即可;(2)根据两点的距离公式,即可求出A、B两点之间的距离;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A:1,B:﹣2;(2)依题意得:AB之间的距离为:1+2=3;(3)设这两点为C、D,则这两点为C:1+2=3,D:1﹣2=﹣1.如图所示:24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质,可求出a、b的值,然后再去括号、合并同类项,对原代数式进行化简,最后把a,b的值代入计算即可.【解答】解:∵|a﹣4|+(b+1)2=0,∴a=4,b=﹣1;原式=5ab2﹣(2a2b﹣4ab2+2a2b)+4a2b=5ab2﹣4a2b+4ab2+4a2b=9ab2=36.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.【考点】列代数式;代数式求值.【分析】(1)根据梯形的面积=(上底+下底)×高,阴影部分的面积等于梯形的面积减去半圆的面积,列式进行计算即可得解;(2)把a=10代入(1)中的代数式进行计算即可得解.【解答】解:(1)∵梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40,半圆的直径为4a,∴阴影部分的面积=(a2+2a﹣10+3a2﹣5a﹣80)×40﹣π()2,=80a2﹣60a﹣1800﹣2a2π,=80a2﹣60a﹣1800﹣2a2×3,=74a2﹣60a﹣1800;(2)当a=10时,74a2﹣60a﹣1800=74×102﹣60×10﹣1800=5000.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据一次用的时间乘以次数,可得答案.【解答】解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米,答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.人教版七年级上册期中考试数学试卷(二)一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和14.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×1035.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.210.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是.12.由四舍五入法得到的近似数10.560精确到位.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= .14.请写出一个只含有想x,y两个字母的三次四项式.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.18.化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?21.小明和小红在一起玩数学小游戏,他们规定:a*b=a2﹣2ab+b2;=a+b﹣c; =ad﹣bc.请你和他们一起按规定计算:(1)2*(﹣5)的值;(2)(3).22.我国出租车的收费标准因地而异,济宁市规定:起步价为6元,3千米之后每千米1.4元;济南市规定:起步价8元,3千米之后每千米1.2元.(1)求济宁的李先生乘出租车2千米,5千米应付的车费;(2)写出在济宁乘出租车行x千米时应付的车费;(3)当行驶路程超过3千米,不超过l3千米时,求在济南、济宁两地坐出租车的车费相差多少?(4)如果李先生在济南和济宁乘出租车所付的车费相等,试估算出李先生乘出租车多少千米(直接写出答案,不必写过程).参考答案与试题解析一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣【考点】绝对值.【分析】根据正数的绝对值等于它本身即可求解.【解答】解:的绝对值是.故选A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米【考点】有理数的减法;有理数的加法.【专题】常规题型.【分析】先定义向上爬为正,向下爬为负,用井深减去各个数就得到此时蜗牛离井口的距离.【解答】解:向上爬记作“+”,往下爬记作“﹣”蜗牛离井口的距离为10﹣3﹣(﹣1)﹣3﹣(﹣1)=10﹣3+1﹣3+1=6(米)故选C.【点评】本题考查了有理数的加减运算.计算有理数的加减,先把减法转化为加法,可以运用加法的交换律和结合律.3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和1【考点】相反数;有理数.【分析】根据相反数的概念解答即可.【解答】解:A、整数有负整数、0、正整数,故A错误;B、小于零的数是负数,故B错误;C、分数都是有理数,故C正确;D、相反数是它本身的数是非负数,故D错误;故选:C.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000万用科学记数法可表示为3×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值【考点】有理数的乘法;正数和负数;绝对值;有理数的加法.【分析】两有理数相乘,同号得正,异号得负,因为ab<0,所以a、b异号,再根据a+b<0进一步判定负数的绝对值大于正数的绝对值.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值大于正数的绝对值.故选:D.【点评】考查了有理数的乘法,有理数的加法,本题主要利用两有理数相乘,同号得正,异号得负.6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个【考点】多项式;单项式.【分析】根据单项式和多项式的系数、次数、项数的定义可得.【解答】解:①单独的数字或字母是单项式,正确;②单项式﹣的系数是﹣,次数是2,错误;③多项式x2+x﹣1的常数项是﹣1,错误;④多项式x2+2xy+y2的次数是2,正确;故选:B.【点评】本题主要考查单项式和多项式,熟练掌握单项式的系数、次数和多项式的项数、次数、常数项等概念是关键.7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母不同不是同类项,故B错误;C、相同字母的指数不同不是同类项,故C错误;D、字母相同,相同字母的指数相同,故D正确;故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y【考点】整式的加减.【分析】根据题意对两个多项式作差即可.【解答】解:(x+2y)﹣(2x﹣y)=x+2y﹣2x+y=﹣x+3y故选(A)【点评】本题考查多项式运算,要注意多项式参与运算时,需要对该多项式添加括号.9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.2【考点】代数式求值.【分析】先化简条件得a﹣2b=﹣2,再将(a﹣2b)2+2a﹣4b整理,代值即可得出结论.【解答】解:∵a﹣2b+1的值是﹣l,∴a﹣2b+1=﹣1,∴a﹣2b=﹣2,∴(a﹣2b)2+2a﹣4b=(a﹣2b)2+2(a﹣2b)=4+2×(﹣2)=0,故选C.【点评】此题是代数式求值,主要考查了整式的加减、整体思想,整体代入是解本题的关键.10.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405【考点】规律型:图形的变化类.【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n个图形中共有4(n﹣1)+1个小正方形.【解答】解:由图片可知:规律为小正方形的个数=4(n﹣1)+1=4n﹣3.n=100时,小正方形的个数=4n﹣3=397.故选B.【点评】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n﹣1)+1个小正方形.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是1或﹣1 .【考点】倒数.【专题】计算题.【分析】根据倒数的定义得倒数等于它本身只有1和﹣1.【解答】解:1或﹣1的倒数等于它本身.故答案为1或﹣1.【点评】本题考查了倒数:a的倒数为.12.由四舍五入法得到的近似数10.560精确到千分位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数10.560精确到千分位.故答案为千分位.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0,从而列方程求得x和y的值,进而求解.【解答】解:根据题意得:x﹣1=0,y+2=0,解得:x=1,y=﹣2,则原式=(1﹣2)2017=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.14.请写出一个只含有想x,y两个字母的三次四项式x3+xy+y+1(答案不唯一).【考点】多项式.【分析】由多项式的定义即可求出答案.【解答】解:故答案为:x3+xy+y+1(答案不唯一)【点评】本题考查多项式的概念,属于基础题型.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是πr2﹣ab .【考点】列代数式.【分析】利用大图形面积减去小图形面积即可求出答案.【解答】解:阴影部分面积=πr2﹣ab故答案为:πr2﹣ab【点评】本题考查列代数式,涉及圆面积公式,三角形面积公式.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)【考点】有理数的混合运算.【专题】常规题型;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=10+5=15;(2)原式=﹣8××=﹣8;(3)原式=(﹣+)×(﹣)=﹣3+2﹣=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.【考点】图形的剪拼;矩形的判定与性质;梯形.【分析】(1)直接利用已知图形进而拼凑出梯形与长方形;(2)直接利用已知图形得出其周长.【解答】解:(1)如图所示:;(2)大梯形的周长为:2a+4a+2b=6a+2b(cm),长方形的周长为:2(3a+a)=8a(cm).【点评】此题主要考查了图形的剪拼,正确得出符合题意的图形是解题关键.18.(1)化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=5x+2x+y﹣x+4y=6x+5y;(2)原式=2x2﹣1+x﹣2x+2x2+6=4x2﹣x+5,当x=﹣时,原式=1++5=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把M与N代入3M+2N中,去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:∵M=x3﹣3xy+2x+1,N=﹣3x+xy,∴3M+2N=3(x3﹣3xy+2x+1)+2(﹣3x+xy)=3x3﹣9xy+6x+3﹣6x+2xy=3x3﹣7xy+3,当x=﹣1,y=时,原式=﹣3++3=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?【考点】数轴;正数和负数.【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.若有理数a、b在数轴上对应的点的位置如图所示,则下列结论中错误的是( ) A. b a > B. b a -> C. a b > D. b a -<-
2.如果1=a ,2=b ,那么b a +等于( )
A. 1
B. 3
C. 1或3
D. ±1或±3
3.计算:4231)1()1(----= ;202)101()101()101(
-++= . 4.计算:2322)34(1)2(2⨯---+-= .
5.(1998年扬州市中考题)若a、b互为相反数,c、d互为倒数,则a+b+cd+1= .
6.计算:022)2003(10)21
(3+--+-= .
7.(北京市宣武区,2000)珠穆朗玛峰海拔高度8848米,吐鲁蕃盆地海拔高度-155米,珠穆朗玛峰比吐鲁蕃盆地高( )
A. 9003米
B. 8693米
C. -8693米
D. -9003米
8.某冷库的温度是零下C 010,下降C 03-以后,又下降C 05,两次变化后冷库的温度是 .
9.(贵州六盘水市,2000)出租车小李某天下午营运全是在东西走向的人民大道上进行的.如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米):+15 -3 +14 -11 +10 -12 +4 -15 +16 -18.
(1)将最后一名乘客送到目的地时,小李距下午出车地点的距离是 .
(2)若汽车耗油量为a公斤/千米,这天下午汽车共耗油 公斤.
10.-7的倒数是 ;-7的相反数是 ;-7的绝对值是 .
11.(黄山市,2000)2
1-的倒数的绝对值是 . 11.如果a、b、c是非零有理数,那么
c c
b b
a a
++的所有可能值是 . 12.如果a<b<0,那么下列式子成立的是( ) A. b a 11< B. 1<ab C. 1<b a D. 1<a
b 13. 国家计划生育委员会在泰国曼谷召开的第五届亚太人口会议上提出:中国制定的阶段性目标是到二00五年,全国人口总数控制在十三亿三千万以内,这个数字可用科学记数法表示为 .
14.(济南市,2000)一只苍蝇的腹内细菌多达2800万个,用科学记数法表示是 万个
.
15.(西安市,2000)实施西部大开发战略是党中央面向21世纪的重大决策.西部地区占我国国土面积的3
2,我国国土面积约为960万平方千米,用科学记数法表示我国西部地区的面积为( )平方千米. A. 5
1064⨯ B. 410640⨯ C. 7104.6⨯ D. 6104.6⨯ 16.若ab<0,求a ab
b b
a a
++的值.
17.已知a、b互为相反数,c、d互为倒数,并且x的绝对值等于2,试求:
200320022)()()(cd b a x cd b a x -+++++-的值
. 18.近似数3.0万有 个有效数字,它精确到 位.
19.下列结论正确的是( )
A.
近似数1.230和1.23的有效数字一样 B.
近似数79.0是精确到个位的数,它的有效数字是7、9 C.
近似数3.0324有5个有效数字 D. 近似数5千与近似数5000的精确度相同
20.对于由四舍五入得到的近似数51020.3⨯,下列说法正确的是( )
A. 有3个有效数字,精确到百分位
B. 有6个有效数字,精确到个数
C. 有2个有效数字,精确到万位
D. 有3个有效数字,精确到千位
21.(1999年山西省中考题)如图,若3=a ,
则a的相反数是 .
22.如果3-x =2,那么x= .
23.(1999年河北省中考题)若m、n满足0)2(122=++-n m ,则mn的值等于( )
A. -1
B. 1
C. -2
D. 2
24.计算:521)4(3)2(810--⨯--÷+-= .
25.已知a、b、c、d是四个互不相等的整数,且abcd =9,则a+b+c+d= .
26.计算:3)]}53()21(12[25.0{5)2(13
34÷-⨯-+---⨯---= .
27.若ab ab >,则下列结论正确的是( )
A. a<0,b<0
B. a<0,b>0
C. a,b异号
D. a>0,b>0
28. (2000年杭州市中考题)有一种“二十四点”的游戏,其游戏规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于24.
例如对1,2,3,4可作运算:(1+2+3)×4=24.(注意上述运算与4×(2+3+1)应视作相同方法的运算)
现有四个有理数3,4,-6,10.运用上述规则写出三种不同方法的运算式,使其结果等于24,运算式如下:
(1) ,(2) ,(3) . 另有四个数3,-5,7,-13.可通过算式(4) 使其结果等于24.
29. 和 统称有理数.
30.相反数等于它本身的数是 ;绝对值等于它本身的数是 ;倒数等于它本身的数是 ;平方等于它本身的数是 ;立方等于它本身的数是 .
31. b a +-的相反数是__________;若a<b,则b a -= .
32. 以下判断:
①在有理数集合中,没有最大的数.
②在整数集合中,最大的负数是-1,最小的正数是+1.
③在有理数集合中,绝对值最小的数是0.
④在整数集合中,绝对值最小的数是1.
其中正确的有( )
A . 1个 B. 2个 C. 3个 D. 4个
33. 以下判断:
① a 表示正有理数
② -a表示负有理数
③ a 与-a 必有一个负有理数。

④ a 与-a 互为相反数。

其中正确的有( )
A . 1个 B. 2个 C. 3个 D. 4个
34.已知0<b <1,化简b b +-1=_______.
35.把在数轴上表示-1的点移动3个单位长度后,所得到对应点的数是_______.
36.若0)2(12
=+-+-c b a ,则a +b +c =______.
37.已知02)3(2=++-y x ,则x y -= ;已知2a =16,则a = . 38.设32
2432321,32,21xy
xy y x xy y x +---==求的值.
39.已知有理数a在数轴上的对应点A 的位置 如图所示,试求a a -+-13.
40.已知a、b为有理数,且a<0,b>0,a b <,则a,b,-a,-b的大小关系是( )
A. -b<a<b<-a
B. -b<b<-a<a
C. a<-b<b<-a
D. -a<b<-b<a
41.若8=a ,5=b 且a+b>0,那么a-b=
.。

相关文档
最新文档