翻译成品
52以农业研究为优先领域的针对性扶贫(精准扶贫)中英文双语外文文献翻译成品

夕卜文t示题:Targeting poverty alleviation in priority setting for agricultural research 外文作者:Derek B yerl ee文献出处:《Food Policy》,2000,25 (4) =429-445英文308丨单词,18698字符,中文4178汉字。
此文档是外文翻译成品,无需调整复杂的格式哦!下载之后直接可用,方便快捷!彳介格不贵。
Targeting poverty alleviation in priority setting for agricultural researchDerek ByerleeAbstractThis paper provides a brief overview of research priority setting methods at various levels in national research systems, noting the changing emphasis from supply- to demand-driven approaches at both macro- and micro-lcvcls of priority setting. The scope for incorporating a |x>vcrty dimension into priority setting is then reviewed within a general framework that recog- nises the complexity of the link between research investments and |x>veny alleviation. The effectiveness of this tajgeting is likely to be ve^ situation specific. A case study of macro priority setting in Pakistan shows the limited scope to target benefits co the poor through re- allocation of research resources among commodities, relativeto a ranking based on the efficiency objective. Given present knowlalgc, enhancing the cfficicnc'y and effectiveness of research systems in promoting broad-based technical change should be emphasised more than major efforts to tajget poveny directly. This will involve a combination of supply- and demand-driven a|)proaches to priority setting at different levels in the research system that will enhance both the efficiency and poverty alleviation impacts of research.Keywords: Agricultural reseaich: Poverty alleviation; Research priority setting; PakistanIntroductionInvestment in agricultural reseaich at both international and national levels has undoubtedly been a major success story of development experience in the past four decades. However, with growing pressure on public-sector budgets, the potential for agricultural research organisations (AROs) to use scarce resources more efficiently and effectively is widely recognised. Accordingly, many AROs have institutedfor-mal priority setting exercises, oflcn with donor support, to ensure that research resources arc allocalcd in ways consistcnl with national objectives and client needs. Research priority setting has involved multiple objectives and a variety of methods. Many have used the economic surplus approach and emphasised efficiency objectives by prioritising research programmes according to the net present value (NPV)of benefits generated (Alston et al”1995), Sometimes, a variety of other objectives have been incorporated, including variables related co equity and poverty alleviation, c.g. fann size, regional per capita income or the amounl of benefits cap- lured by the poor. However, few priority-setting efforts have given poverty allevi-ation a central role.Recemly,donors and governments have given greater weight to p(werty alleviateinvcstmcnis. The intcnialional agricultural research centres have, for example, embraced poverty allcvialion as ihcir overarching objective. However, the relationship between agricultural research and poverty alleviation is complex, involving both direct and indirect effects. Althoughthe general consensus is that investment in agricultural research in aggregate has largely been beneficial for the poor, some obsei-vers have cautioned against explicit targeting of individual research investments on poverty alleviation. They argue that research which results in broad-based icchnology-Icd growth will have the most impact on poverty alleviation in the long run (David and Olsuka, 1994).Overview of research priority setting methodsBroad approaches to priority settingPriority setting is carried out explicitly or implicitly in all research programmes through the allocation of research resources to different commodities, regions, disci- plines, problems and types of technology. In AROs, priority setting occure ai various levels of decision-making most commonly at the nationaK programme, subprog- ramme and project levels. Resource allocation questions vary depending on the level at which priorities are set. Table 1 shows the types of decisions typically made at each level of priority setting.In practice, priority selling employs a range of approaches that can be broadly classified into supply- and deniand-orienied, although some combination of approaches is often used. In supply-oriented approaches, priorities are largdy set within 出 e research system. A variety of methods might be used from informal methods based on previous allocations (i.e. precedence), infonnal discussions and consensus among research managers taking account of sectoral strategies and pri- orities, and formal quantitative methods using scoring models, congruence or econ- omic suiplus models, Tn demand-orienced approaches, priorities are set based on j)erspeccives of major stakeholders from outside the research syslcm, especially usci^s. These might employ consultative and participatory methods, or users themselves might be empowered to make decisions on research prioritiesMacro- or national-level resource allocations across major research programmes and institutes provide the greatest strategic leverage in priority setting. To the extent that ihc^c allocations can be targeted to maximise benefns to the poor, the poverty alleviation potential in macro-priorily setting might be large. These benefits may only be realised over the longer temi because flexibility to shift specialised human and physical research infrastructure is limited in the short run. Conversely, priority setting at lower levels in the system, especially in selecting type.s of technologies and technology characteristics through more participatoiy approaches, can potentially enhance the poverty allevi ation effects of research in ihc short- to mcdium-tcrni, by increasing the chance that resource-pcK>r fannci>; will immediately use research results.Decision levelDecision type National Programme SubprogrammeProject Simplified \i c w of decision loxls for pnont>* setting ui national research organisationsCommon decision maker in supply-led approachesBy programme (commodity,factor)~-sometimes by regionacross programmesBy subprogramme {disciplinary Supremeresearch body such as agricultural research council orResearch programme co-or technology type) and byordinator or institute director region within programmesBy project (technology type and Subprogramme leader or characteristics) departmental bead By technology characteristics Lead scientist for projectFormal economic methods for priority settingFormal economic methods have been applied to reseajch priority setting at some time in most AROs in developing counu ies, although few have institutionalised them as an ongoing process (e.g. Collion and Kissi, 1995). Alston ei al. (1995) provide a comprehensive treatment of formal methods. Although methods vary in complexity, most have applied a variani of ihc economic surplus approach to allocate resources across commodities at the national level. If efficiency is the main decision-making criterion, commcxlities can be ranked according to the Net Present Value (NPV) of the stream of benefits (net of research costs) per unit of investment in research on the commodity (Alston et al., 1995). Economic surplus consists of producer suiplus and consumer surplus, each of which can be distributed between different income groups. On the consumer side, this is relatively straightforward because consumer expenditure information siralificd by income or expenditure group is widely available (Pinstmp-Andersen et al ” 1976). On the producer side, lack of data on income sources by commodity for different income strata is a major constraint, although the increasing availability of household povert>, sur\r ey data should help in this regard. More commonly, a proxy such as farm size is employed (e.g. Muiangadura and Nortoiu 1999).The scope lor targeting poverly alleviation in priority sellingThe complexity of the research poverty link results partly from ihc interaction of several effects (Renkow, 1991): (i) direct effects on piXKluccr incomes, (ii) indirect effects on consumer welfare through changes in consumer prices, (iii) indirect effects on non-adopting producers throughmarket prices, (iv) employment and wage effects, and (iv) growth-induced effects throughout the economy resulting from increased incomes. Aconceptual unde_nding of the complexity of these effects is a prerequi-sitesetting.Direct effects on producer surplusDirect effects of re.seaich result from increases in incomes of farmers and other direct users of innovations produced by the research system. Targeting of poor far- mers through research is the vehicle for maximising direct |X)ve «y alleviation effects. Because research is not conducted for individual fanners, this targeting must be done through proxy variables such as the selection of commodities, regions, technology types or technology characteristics. The effectiveness of this targeting will depend on the extent that; (i) prcxlucei-s capture research benefits, (ii) poor producers depend on agricultural income relative to other sources, (iii) |X)veity is correlated to the targeting variable, (iv) the targeted research can generate economic surplus higher than costs of the research and (v) the degree and nature of technological spillovers. Table 2 shows possibilities for targeting al different levels of research priority setting. At ihc macro-lcvcK research resources arc usually allocalcd by commodity, factor or region. The effectiveness of this tcirgeting is hirgely an empirical issue depending on agrarian structure, theimportance of agricultural income in the incomes of pcx^r households and agro-climatic variables/1Commcxlity targeting, for example, might be efficient if certain prcxiucis are relatively more irnixmanc in the incomes of |x>or producer, especially if a comniodiiy is closely identified with ethnic or religious groups wilh a high level of poverty (Cox ct al M1998).Decision level Decision typeDecision level Potential for targeting Supply-led approaches Demand-led approaches National for applied research By commodity depending Economic surplus on variation in commodity approaches and mix of producers and coRsuincn by incomelevel By factor and region ifwide income vanalionbetween regions withregion-specific resourcemanagement problems zongmcncc Limited~subject topolitical processes andcommodity/ regionalmembership of governingCompetitive funding Nationalfor strategic Technology types and Yield loss studies research characteristicsf^ograminc Regional targeting withinprogramme, especially byagro-climatic zoneChoice of technology typefor a given region andsometimes by farm sizegender and other socialgroupings studies, surplus and scoring models Yield l o s s economic ! Project Selection of technology Scicharacteristics suited tospecific socio-economic Scientists ! judgement subjective Participator diagnosis Representation of commodity associations in uorkshop^ advisory groups etc.Participator rural appraisal, lcxral fanner research committeesOpportunities for targeting poYoty alicviation at difTcrcnt levels of priority setting Limited but may aggregate results of diagnostic studies acrossregionsCompetitive fundingA case study of Uirgeting by commodity in research priority setting in PakistanPriority setting for national commodity research was analysed for Pakistan where data on commodity-research pay-offs and on poverty were readily available. Rural households predominate in poverty profiles for Pakistan (70% of the 34% of ihc population classified as below the poverty line are rural). About half of rural poor households are small farmers, although a significant shaie (11%) are landless labour- ers and non-farm workers (World Bank, 1995). Food consumption accounts for half the exj>enditures of pcx)r households. Wheat is the main focxl staple throughout the country but livestock products, especially milk, are the largest expenditure item.An examination of (he consumption and produclion patlcms of poor householdssuggests considerable potential for commodity targeting through research. Coarse cereals and pulses aj*e relatively more important to poor households, both in pro- duction and consumption. Conversely, most fruits, vegetables and live.st(K'k products are relatively more im|X)rtant to non-poor consuming households. On the production side, a mixed group of coarse grains and pulses, some vegetables and livestock are relatively more important to the poor.Economic surplus, computed as NPV for each commodity for a set of national commodity research programmes, was based on Na gy and Quddus (1998). Research costs were subtracted and benefits discounted and cumulated following scandaid pro- cedures. Total economic surplus was then divided between producer sun>lus and consumer surplus based on linear supply and demand curves paying particular alien- tion IO the tradable status of the commodity, and then further divided among poor producers and consumers according to their share in produclion and consumption, respectively. The poverty line was defined according to World Bank (1995). House- hold data collected for the poveny study were re-analysed to provide estimates of tlie share of commodity production and consumption by the |x>or for each of 22 com- modities.ConclusionsAlthough a variety of methods are available for targeting poverty alleviation through the allocation and use of research resources , a comprehensive incoqx>ration of direct and indirect effectsresources and analytical skills. At the macro-level, concerns for poverty alleviation can be buill into standard economic methods for prioritising commodities and regions. Increasingly, data on poverty arc becoming available at the country level to apply these mclhods, although these data need to be made available in a morc usej -friendly format (e.g. tables of consumer expendi- tures and producer sources of income by commodity and income group, and by region). A fuller accounting of technological and price spillovers, labour market effects, inter-regional dislribution and growth linkages on poverty is usually beyond the resources of most public research organisations. However, a 'na Vc" targeting of research resources on poor producers based only on direct benefits may produce quite misleading results in terms of overall poverty alleviation effects.Even if poverty cffccis of research can be comprehensively estimated ex ante, it is VC17much an open question whether including a poverty dimension in research priority setting will, in fact, result in a significant shift in priorities at the macro-level. As the Pakistan case study shows, macro-level research priorities may be relatively insensitive to inclusion of poveny-related variables. Where focxl staples can be classi- fied as non-tradable for most producers and consumers, a fcKUS on major food staples is likely to have the greatest benefits for ptK)r households, as conventionally rccog- nised in the literature. However, trade liberalisation, changes in prcKlucl demands with rising incomes, and a shift in poverty to non-farm groups in rural and urban areas, is leading to more complex interactions between research resource allocations and their poverty alleviation effects. Regional taigeting may be appropriate in some cases, but both technological and price spillovers will often dominate the direct effects of research on prcxiucer and consumer incomes in a given region. Overall impacts are likely to be highly situation specific and more in-depth analysis across coumrics with a range of poverty profiles and economic structures is urgently required lo genera lise about the shape of the efficiency-equity trade-off frontier in allocation of research resources.Finally, whether analysing policy options at the national level or fostering morepanicipatory approaches at the micro-level, allocation of resources to social science reseaich can greatly inform decision making onresearch priorities and poverty allevi- aiion. However, social sciences are usually among the weakest disciplines in cech- nology-orientedAROs. Until national research systems arc able (o sharply expand their capacity in the social sciences, cx|x:ciations about improvedtargeting of research resources for poverty alleviation must be modest.References八Iston,J.M.,Norion,G.W.,Pardey,RG.,1995. Science under Scarcity: Principles and Practice for Agriaihural EvaSetting. Cornell University Press, New York.Ashby, J.A., Gracia T., Guerrero, M, Quiros, C.A., Roa, J.I., Beltran, J.A., 1995. Institutionalizing farmer participation in adaptivetechnology testing with the CIAL. Agricultural Research and Hxtension Net-work Paj>er 57. Overseas Development Institute, London.Bigman,D.,Fofack, H.,1999. Geographic targeting for poverty alleviation: methodology and applications. Paper presented al theInternational Workshop on Assessing the Impact of Reseaich on Poverty Alleviation, San Jose, Costa Rica, Sept. 14-16.Biggs, S M 1989. Resource-p(X)r fanner panicipation in research: a synthesis of ex|>eriences from nine national agricultural reseaichsystems. OFCOR Comparative Study Paper 3. International Service for National Agricultural Research, Neths.Biggs,S.,Farrington,J.,1991. Agricultural Research and the Poor: A Review of Social Science Analysis. Intcrnalional DevelopmentReseiirch Center, Ottowa.Binswanger, H.P., Quizon, J.B., 1986. What can agriculture do for the pcx>rest rural groups? Re|X)rt No. 57, Agricultural and RuralDevelopment Deparcmenc, World Bank, Washington.Bycrlcc, D., 1973. Indirccl cmploymcnl and income distribution effects of agricultural dcvclopmcni sira- logics: a simulation approachapplied to Nigeria. African Rural Employment Paper No. 9, Michigan State University, Michigan.Byerlee, D., 1992. Dryland wheat in India: the impact of technical change and future research challenges. Economics Working Paper No.92-05, International Maize and WTieat Improvement Cenier, Mexico. Byerlee, D., Moiris, M.L., 1993. Calculating levels of protection: isit always appropriate lo use world reference prices based on currcni trading status? World Development 21 (50), 805 815.C’ollion,M.,Kissi,A.,1995. Guide to Program Planning and Priority Setting, Research ManagementGuidelines No. 2E. International wSen ice for National Agricultural Research, Netherlands.Collion, M, Rondoc, P., 1997. lessons from Fxj)eriences and Conclusions from a Workshop on Partner- ships between AgnculturalSciTiccs Inslitutions and Producer Organizations: Myth or Reality? World Bank, Washington.Cox, A., Farrington, J., Gilling, 1998. Reaching the poor? Developing a poverty screen for agriculturalresearch proposals. Working Paper 112, Overseas Development Institute, London.Coxhead, I.A., Wan*, P.G., 1991. Technical change, land quality, and income distribution: A generalequilibrium analysis. American Journal of Agriculiural Economics 73 (2), 345 360.David, C., Otsuka, K. (Eds.), 1994. Modem Rice Technology and Income Distribution in Asia. Lynn Rienner Publishei-s, Boulder* CO.de Janvry, A., Graff, G., Sadoulet, E., Zilbemian, D., 1999. Agricultural biotechnology and poverty: can the potential be made a reality?Paper prepared for the Conference, The Shaj)e of the Coming Agricul- tural Biotechnology Transformation: Scrategic Investment andPolicy Approaches from an EconomicPerspective, University of Rome Tor Vcrgatta\ June 17-19.Evenson, R.E., 1994. Analyzing the uansfer of agricultural technology. In: Anderson, J.R. (Ed.), Agricul- tural Technology: Policy Issuesfor the International Community. CAB International, Wallingford, pp-166-179.Fan, S., HazclK P., 1997. Should India invest more in less-favored areas? EPTD Discussion Paper No.25. Intcrnalional Food PolicyResearch Institute, Washington.Hazell, P., Haggblade, S., 1993. Farm-nonfarm growth linkages and the welfare of the poor. In: Lipton,M, Van der Gaag, J. (Hds.), Including the Pew. World Bank, Washington, pp. 190-205,Janssen,\V.,Kissi,八•,1997. Planning and Priority Selling for Regional Research:八 Practical Approach to Combine Natural ResourceManagement and Productivity Concerns, Reseaich Guidelines No. 4.International ‘Service for Agricultural Research,Netherlands.Janssen, W., Sanint, L., Rivas, I-., Henry, G., 1990. CIAT%s commodity portfolio reexamined: indicators of present and future importance.In: Janssen, W. (Ed.), Trends in CIAT Commodities. Inicrnational Center for Tropical Agriculture, Colombia, pp. 1 39.Lipton, M, Longhurst, R., 1989. New Seeds and Poor People. Johns Hopkins University Press, Balti-more, MD.Mills, B. (Ed.), 1998. Agricultural Research Priority Setting: Information Investments for the ImprovedUse of Reseaich Resources. Tncernational vService for National Agriculture Reseaich, Netherlands. Mills, B., M^Ragwa, I-., 1999. Beyondeconomic benefits: sorghum in Kenya, In: Mills, B. (Ed.), Agricul- cural Research Priority Selling: Information Investmenis for theImprovcxl Use of Research Resources. International SciVicc for National Agricultural Research, Netherlands, pp. 121 136.Mutangadura^ G., Norton, G.W M 1999. Agricultural research priority selling under multiple objectives:an example from Zimbabwe. Agriculiural Hconomics 20 (3), 277-292.Nagy, J.G., Quddus, M.A., 1998. National agricultural commodity re>search priorities for Pakistan. Agricul-tural Economics 19, 327 340.Paixley, P.G., Wood, S., 1994. Targeting research by agricultural enviroments. In: Anderson, J.R. (Ed.), Agricultural Technology: PolicyIssues for the International Community. CAB International, Wall-ingford, pp. 566-590.Pcnin, R., Winkclmann, D.L., 1976. Tmpcdimcnls to technical progress on small versus large farms.American Journal of Agricultural Economics 58, »S88-894.Pinstmp-Andersen, R, De Londoix), N.R., Hoover, E., 1976. The impact of increasing food supply on human nutrition: implications forcommodity priorities in agricultural research. American Journal of Agricultural Pxonomics 58 (2), 131-142.Renkovv, M” 1991. Modeling the aggregate effects of technological change on income distribution in Pakistanis favored and marginalproduction environments. Economics Paper No. 4. International Maize and Wheat Improvement Center, Mexico.Schultz, T.W., 199(). Tlie economics of agricultural research. In: Eicher, C.K., Staatz, J.M. (Eds.), Agricul- tural Development in the TliirdWorld, 2nd ed. Johns Hopkins University Press, Baltimore, MD, pp. 335-348.Scobic, G.M., Posada, R., 1978. The impact of technological change on income dislribution: the case of rice in Colombia. AmericanJournal of Agricultural Economics 60 (1), 85-92.World Bank, 1995. Pakistan Poverty Assessment. Report No. 14397-PAK, World Bank, Washington.以农业研宄为优先领域的针对性扶贫Derek Byerlee本文简要概述了I I I家研究体系中各方而的研究优先领域方法,指出在优先领域的宏观和微现两个展面上,强调了从供给驱动到需求驭动方法的变化。
中英文翻译的软件

中英文翻译的软件中英文翻译的软件是一种可以将中文文本翻译成英文或英文文本翻译成中文的工具。
这类软件可以提供方便快捷的翻译服务,帮助用户在跨语种交流中消除语言障碍。
下面将介绍几款常见的中英文翻译软件。
1. 谷歌翻译:谷歌翻译是目前最受欢迎的免费翻译软件之一。
它可以提供准确的中文到英文以及英文到中文的翻译,同时支持其他多种语言的翻译功能。
谷歌翻译利用了机器学习技术,可以根据大量的语料库数据进行翻译,并不断提高翻译质量。
2. 百度翻译:百度翻译是一款功能强大的翻译软件,可以提供精准的中英文互译服务。
它可以在输入框内输入需要翻译的文字,并快速翻译成英文或中文。
百度翻译还支持语音输入和录音翻译功能,让用户更方便地进行翻译。
3. 有道词典:有道词典是一款知名的在线翻译软件。
它具有快速、准确的翻译功能,可以将中文文本翻译成英文或将英文文本翻译成中文。
有道词典还拥有丰富的词库和例句,可以帮助用户更好地理解翻译结果。
4. 欧路词典:欧路词典是一款专业的英汉双向翻译软件。
它具有离线翻译功能,可以提供高质量的中英文翻译服务。
欧路词典还拥有丰富的词库和例句,可以帮助用户更全面地了解翻译结果。
5. 小牛翻译:小牛翻译是一款便捷易用的中英文翻译软件。
它支持文本翻译、扫描翻译和语音翻译三种模式,可以满足不同用户的需求。
小牛翻译还具有自动检测语言、智能换行和离线翻译等功能,提供更优质的翻译体验。
总结起来,中英文翻译的软件通过机器学习和大数据技术,能够提供快速准确的翻译服务。
用户可以根据自己的需求选择适合的翻译软件,帮助解决跨语种交流中的语言障碍。
翻译的归化和异化理论

例如: 1.Love me, love my dog. 爱屋及乌。 2.a lion in the way 拦路虎 3.lick one’s boots 拍马屁 4.Diamond cuts diamond 棋逢对手 5.A flash in a pan 昙花一现 6.Have one foot in the grave 风烛残年 7.To grow like mushrooms 雨后春笋 8.One boy is a boy,two boys half a boy,three boys nobody.一种和尚
Differences
However, this does not mean the two pairs are just one. There are some differences between them. When a translator resorts to either literal translating method or free translating method, he puts his attention mainly to the linguistic factors of the source text and tries his utmost to keep the original meaning in the target text.
Domestication refers to the target-culture-oriented translation in which unusual expressions to the target culture are exploited and turned into some familiar ones so as to make the translated text intelligible and easy for the target readers.
the-name-and-nature-of-translation-studies《翻译学的名与实》

I. 霍姆斯其人:1924-1986生平:霍姆斯出生在美国Iowa爱荷华州,后在宾夕法尼亚州的哈弗福德Haverford学院学习英语文学,1949年受富布莱特项目Fulbright Project资助来到荷兰,从此荷兰成为他的第二故乡。
他虽然一直保留美国国籍,但绝大部分时间是在荷兰度过的。
霍姆斯师从阿姆斯特丹大学荷兰文学系主任,接触了大量荷语文学作品。
他从五十年代处就开始将荷语文学介绍到英语世界,此间也没有间断自己的诗歌创作,他的翻译理论研究工作则始于60年代末期。
在他的老师改任阿姆斯特丹大学综合文学系主任后,霍姆斯被聘为该系教师,除教授文学翻译实践外,他还率先开设了翻译理论课程。
霍姆斯同时还在以培养翻译人才为目标的阿姆斯特丹翻译学院任教。
他极力促成将该学院并入阿姆斯特丹大学人文学院,但1982年二者正式合并并且成立翻译系以后,作为翻译领域最重要的学者,霍姆斯没有顺理成章地成为该系教授,原因之一是他没有博士学位,另一方面则是因为它的同性恋行为、反传统的着装及他在翻译方面的见解为该系一些教员所不容,而霍姆斯也无意为他人而改变自己的生活方式。
他于1985年辞去在阿姆斯特丹大学的教职,次年因艾滋病去世,时年62岁。
成就:霍姆斯在诗歌创作、诗歌翻译和翻译理论研究等方面都有突出成就。
首先,他是一个诗歌翻译家。
霍姆斯最大的贡献在于充当荷兰在英语世界中的文学大使,使世界认识到荷兰文学的存在。
他的第一部译作是1955年出版的《当代荷兰诗选》,在此后30多年的翻译生涯中,他介绍过荷语地区几乎所有重要诗人的作品。
早在1956年,霍姆斯获得象征荷兰文学翻译界最高荣誉的马丁内斯·那霍夫奖(Martinus Nijhoff Prize),成为第一位获此殊荣的外国人。
他还在晚年1984年获得弗兰芒地区首届荷兰语文学奖,是迄今为止唯一获得两个翻译奖项的人。
其次,霍姆斯是一个同性恋诗人。
霍姆斯的诗作既有韵律诗又有自由体诗,绝大多数都是同性恋题材。
常用贸易英语中英翻译

常用贸易英语中英翻译阅读:时间: 2006-5-29 1:04:20 编辑:珠三角1. 询盘的提出我们已向该公司提出询价(询盘)。
We addressed our inquiry to the firm.对该公司的询价信, 我们已经回复。
We answered the inquiry received from the firm.我公司已收到, 该公司关于这类商品的询盘。
We have an inquiry for the goods received from thefirm.我们已邀请客户对该商品提出询价。
We invited inquiries for the goods from the customers.敬请将贵公司的进口商品目录寄来为荷。
Will you please let us have a list of items that areimported by you.如能得到贵方特殊的询价, 则甚为感谢。
We shall be glad to have your specific inquiry.敬请惠寄报价单和样品可否? 请酌。
Would you care to send us some samples with thequotations.由于这一次订购是合同的组成部分, 请提供最好的条件。
Please put us on your best terms, as this order formspart of a contract.请告知以现金支付的优惠条款和折扣比例。
Please state your best terms and discount for cash.由于打折扣, 请告知最好的装货(船)条件。
Please put us on your very best shipping terms asregards discount.请告知该商品的价格和质量。
Please let us have information as to the price andquality of the goods.请对日本生产的合成纤维的制品, 如尼龙、维尼龙、莎纶等报最低价格。
模具工业中英文翻译

模具工业中英文翻译模具常用术语中英文对照局部视图 Partial View冷料# Cold Slag线切割 Wire E.D.M轮廊 Contour螺纹孔 Tapping Hole连接件 Fittings斜针 Angle Pin接合 Engage替换镶件Interchangeable Mold Inserts 指定吨位的注塑机 Specific Press水嘴接头 Water Fittings螺纹 Eyebolt Thread回针 Stop Pin二级顶出针Sub-Leaderd Pin镶件 Mold Insert 加硬 Harden唧嘴 Sprue设计筒图 Design Preliminary名称块表 Title Block版本标识 Revision Level材料清单 Stock List制模 Build Mold手动滑块 Hand Slide漏水测试 Leak Test流道排气 Runner Vents抛光 Draw Polish侧抽芯 Side Action加强筋 Reinforcing三角撑 Gusset柱子 Bossed出模斜度 Draft外廊 Contour落单会议 Kick-Off Meeting装卸孔 Handling Hole运输安全带 Moldstrap码模槽 Clamp Slot撑头 Support Pillar螺牙1/2-13 Eye Bolt 1/2-13Tap 导柱位 Leader Pin Location耐落胶 Teflon Paste偏移量 Offset水塞 Water Line Plug撬模脚 Ppy Slot重新加工 Reworked配件 Components补偿 Compensation平面度 Parallel倒角 Chamfer模胚 Mold Base热嘴 Hotnozzle火花机 Edm熔接线 Weildline压机 Press晒纹 Texturing梯形 Trapezoid凸缘、法兰 Flange方铁 Spacer Block顶针板 Ejector Plate顶针底板 Ejector Retainer Plate垫板 Retainer Plate后模镶针 Core Pin拉圾钉 Stop Pin有托顶针 Shoulder Ejector Pin顶针板导套 Guided Ejection Bushing针板导柱 Guided Ejection Leader Pin唧嘴 Sprue Bushing三板模延伸式唧嘴Extension Nozzle Bushing 水口板导套Runner Stripper Plate Bushing定位圈(法兰) Locating Ring管钉(定位销) Dowel Pin管状管钉 Tubular Dowel吊环 Safety Hoist Ring日期印 Dating Insert环保印 Recycling Insert气顶 Air Poppet Valve截水口镶件 Runner Shut-Off Insert早回 Early Ejector Return加速项 Accelerated Ejector客户 Client 产品名 Part Name产品编号 Part No 缩水 Shrinkage版本 Rev 模胚 Mold Base下模镶件 Core Block上模镶件 Cavity Block小镶件 Sub-Insert下模小镶件 Core Sub-Insert上模小镶件 Cavity Sub-Insert行位 Slide行位镶件 Slide Insert压条 Gib压紧块(铲机) Jaw硬片(摩擦片) Wear Plate水口铁 Runner Bar上模水口铁 Upper Runner Bar下模水口铁 Lower Runner Bar弹簧 Spring水口勾针 Sprue Puller Pin顶针 Ejector Pin撑头 Support Pillar直身锁 Side Lock斜度锁 Interlock锁模板 Safety Bar‘O’令(密封圈) O'Ring喉塞 Plug隔水片 Baffle波子螺丝(行位定位螺丝) Ball-Catch 斜顶 Lifter控制开关 Switch回针 Return Pin斜导柱 Angle Pin推板 Stripper PlateA’板 A'PlateB’板 B'Plate方铁(垫铁)Spacer Block顶针板 Ejector Plate顶针底板 Ejector Retainer Plate垫板 Retainer Plate垃圾钉 Stop Pin有托顶针 Shoulder Ejector Pin顶针板导套 Guided Ejection Bushing针板导柱 Guided Ejection Leader Pin唧嘴 Sprue Bushing三板模延伸式唧嘴Extension Nozzle Bushing 水口板导套Runner Stripper Plate Bushing定位圈(法兰) Locating Ring管钉(定位销) Dowel Pin管状管钉 Tubular Dowel吊环 Safety Hoist Ring日期印 Dating Insert环保印 Recycling Insert气顶 Air Poppet Valve截水口镶件 Runner Shut-Off Insert早回 Early Ejector Return加速顶 Accelerated Ejector扁顶 Blade 出模斜波 Draft手动滑块模具 Hand Slide-In Type Mold回针板 Backup合模 Shutoff空隙槽 Clearance Slot导柱及导套 Leader Pin Bushing水口拉钩 Spuer Puller模框镶件Pocket Insert成型热固性塑胶模具Thermoset Mold 三板模 3-Plat Mold分型面 Parting Line司筒 Ejector Sleeve垫圈 Washer熔接线(夹水纹) Weldline吸针 Sucker Pin回针板 Retainer Plate顶出板 Knock -Out Plate电动安全开关Electrical-Safety Switch 脱开 Cut Of Position预先决定 Preload缓冲器 Bumper衬垫 Cushion公差 Tolerance突然性动作 Slam销针 Dowel钩槽 Gib精磨 Finished通框 Through Window粘后模 Sticking Core粘水口 Sticking Sprue夹水纹 Weld Line变形 Warpage走水不平均 Filling Uneven走不齐 Short Shot挂成品 Part Hanging漏水 Water Leakage刮花(擦伤) Galling漏电 Ele Leakage困气 Air Trapping温度 Temperature注塑模 Injection Mold入水 Gate试板 Sampling压力 Pressure倒圆 Fillet顶棍 Ejector顶白 Stress Mark粘前模 Sticking Cav名称块表 Title Block版本标识 Revision Level材料清单 Stock List斜导柱(斜边) Angle PinA板 A'plateB板 B'plate倒扣 Under-Cut披峰 Flash缩水 Sink Mark氮化 Nitride不规则四边形Trapezoid缩水 Shrinkage连续的 Consecutive雕刻 Engrave出模角 Draft分模面 Parting Surface擦位 Shut-Off(S/0)导套 Bushing回针 Return Pin加硬 Harden唧嘴 Sprue设计筒图 Design Preliminary 丝印 Silkprint不干胶 Adhesive Sticker导向针 Guide Din公差 Tolerance线切割 Wire-Cut电火花 Edm抛光 Polishing蚀纹 Texture探热针 Thermocouple三打螺丝毫(限螺丝) Stripper Bolt 盖板 Cover Plate齿轮 Gear油唧 Hydraulic Cylinder司筒 Ejector Sleeve导柱 Leader Pin冷料# Cold Slag线切割 Wire E.D.M.轮廓 Contour螺纹孔 Tapping Hole连接件 Fittings斜针 Angle Pin接合 Engage替换镶件Interchangeable Mold Inserts 指定吨位的注塑机Specific Press水嘴接头 Water Fittings螺纹 Eyebolt Thread回针 Stop Pin二级顶出针 Sub-Leader Pin镶件 Mold Insert锁定位 Lock楔子(铲鸡) Wedge高产量模量 High V olume Running Mold 剖面图 Cross Section 模具结构 Mold Construction模芯 Parting Core局部视图 Partial View热流道 Manifold热嘴 Hot Nozzle型腔数 Cav No模号 Mold No胶料 Material尺寸 Dimension重要尺寸 Critical Dimension雕刻 EngraveAssembly line组装线Layout布置图Conveyer流水线物料板Rivet table拉钉机Rivet gun拉钉枪Screw driver起子Pneumatic screw driver气动起子worktable 工作桌OOBA开箱检查fit together组装在一起fasten锁紧(螺丝)fixture 夹具(治具)pallet栈板barcode条码barcode scanner条码扫描器fuse together熔合fuse machine热熔机repair修理operator作业员QC品管supervisor 课长ME制造工程师MT制造生技cosmetic inspect外观检查inner parts inspect内部检查thumb screw大头螺丝lbs. inch镑、英寸EMI gasket导电条front plate前板rear plate后板chassis 基座bezel panel面板power button电源按键reset button重置键Hi-pot test of SPS高源高压测试V oltage switch of SPS 电源电压接拉键sheet metal parts 冲件plastic parts塑胶件SOP制造作业程序material check list物料检查表work cell工作间trolley台车carton纸箱sub-line支线left fork叉车personnel resource department 人力资源部production department生产部门planning department企划部QC Section品管科stamping factory冲压厂painting factory烤漆厂molding factory成型厂common equipment常用设备uncoiler and straightener整平机punching machine 冲床robot机械手hydraulic machine油压机lathe车床planer |'plein?|刨床miller铣床grinder磨床linear cutting线切割electrical sparkle电火花welder电焊机staker=reviting machine铆合机position职务president董事长general manager总经理special assistant manager特助factory director厂长department director部长deputy manager | =vice manager副理section supervisor课长deputy section supervisor =vice section superisor 副课长group leader/supervisor组长line supervisor线长assistant manager助理to move, to carry, to handle搬运be put in storage入库pack packing包装to apply oil擦油to file burr 锉毛刺final inspection终检to connect material接料to reverse material 翻料wet station沾湿台Tiana天那水cleaning cloth抹布to load material上料to unload material卸料to return material/stock to退料scraped |'skr?pid|报废scrape ..v.刮;削deficient purchase来料不良manufacture procedure制程deficient manufacturing procedure制程不良oxidation |' ksi'dei?n|氧化scratch刮伤dents压痕defective upsiding down抽芽不良defective to staking铆合不良embedded lump镶块feeding is not in place送料不到位stamping-missing漏冲production capacity生产力education and training教育与训练proposal improvement提案改善spare parts=buffer备件forklift叉车trailer=long vehicle拖板车compound die合模die locker锁模器pressure plate=plate pinch压板bolt螺栓administration/general affairs dept总务部automatic screwdriver电动启子thickness gauge厚薄规gauge(or jig)治具power wire电源线buzzer蜂鸣器defective product label不良标签identifying sheet list标示单location地点present members出席人员subject主题conclusion结论decision items决议事项responsible department负责单位pre-fixed finishing date预定完成日approved by / checked by / prepared by核准/审核/ 承办PCE assembly production schedule sheet PCE组装厂生产排配表model机锺work order工令revision版次remark备注production control confirmation生产确认checked by初审approved by核准department部门stock age analysis sheet 库存货龄分析表on-hand inventory现有库存available material良品可使用obsolete material良品已呆滞to be inspected or reworked 待验或重工total合计cause description原因说明part number/ P/N 料号type形态item/group/class类别quality品质prepared by制表notes说明yearend physical inventory difference analysis sheet 年终盘点差异分析表physical inventory盘点数量physical count quantity帐面数量difference quantity差异量cause analysis原因分析raw materials原料materials物料finished product成品semi-finished product半成品packing materials包材good product/accepted goods/ accepted parts/ good parts 良品defective product/non-good parts不良品disposed goods处理品warehouse/hub仓库on way location在途仓oversea location海外仓spare parts physical inventory list备品盘点清单spare molds location模具备品仓skid/pallet栈板tox machine自铆机wire EDM线割EDM放电机coil stock卷料sheet stock片料tolerance工差score=groove压线cam block滑块pilot导正筒trim剪外边pierce剪内边drag form压锻差pocket for the punch head挂钩槽slug hole废料孔feature die公母模expansion dwg展开图radius半径shim(wedge)楔子torch-flame cut火焰切割set screw止付螺丝form block折刀stop pin定位销round pierce punch=die button圆冲子shape punch=die insert异形子stock locater block定位块under cut=scrap chopper清角active plate活动板baffle plate挡块cover plate盖板male die公模female die母模groove punch压线冲子air-cushion eject-rod气垫顶杆spring-box eject-plate弹簧箱顶板bushing block衬套insert 入块club car高尔夫球车capability能力parameter参数factor系数phosphate皮膜化成viscosity涂料粘度alkalidipping脱脂main manifold主集流脉bezel斜视规blanking穿落模dejecting顶固模demagnetization去磁;消磁high-speed transmission高速传递heat dissipation热传rack 上料degrease脱脂rinse水洗alkaline etch龄咬desmut剥黑膜D.I. rinse纯水次Chromate铬酸处理Anodize阳性处理seal封孔revision版次part number/P/N料号good products良品scraped products报放心品defective products不良品finished products成品disposed products处理品barcode条码flow chart流程表单assembly组装stamping冲压molding成型spare parts=buffer备品coordinate座标dismantle the die折模auxiliary fuction辅助功能poly-line多义线heater band 加热片thermocouple热电偶sand blasting喷沙grit 砂砾derusting machine除锈机degate打浇口dryer烘干机induction感应induction light感应光response=reaction=interaction感应ram连杆edge finder巡边器concave凸convex凹short射料不足nick缺口speck瑕??shine亮班splay 银纹gas mark焦痕delamination起鳞cold slug冷块blush 导色gouge沟槽;凿槽satin texture段面咬花witness line证示线patent专利grit沙砾granule=peuet=grain细粒grit maker抽粒机cushion缓冲magnalium镁铝合金magnesium镁金metal plate钣金lathe车mill锉plane刨grind磨drill铝boring镗blinster气泡fillet镶;嵌边through-hole form通孔形式voller pin formality滚针形式cam driver铡楔shank摸柄crank shaft曲柄轴augular offset角度偏差velocity速度production tempo生产进度现状torque扭矩spline=the multiple keys花键quenching淬火tempering回火annealing退火carbonization碳化tungsten high speed steel钨高速的moly high speed steel钼高速的organic solvent有机溶剂bracket小磁导liaison联络单volatile挥发性resistance电阻ion离子titrator滴定仪beacon警示灯coolant冷却液crusher破碎机。
高中英语新高考-英语学习新方法:英语翻译学英语(含生词、难句、语法等知识点拓展)

高中英语新高考-英语学习新方法:英语翻译学英语(含生词、难句、语法等知识点拓展)题目:自从1978年启动改革以来,中国已从计划经济转为以市场为基础的经济,经历了经济和社会的快速发展。
平均10%的GDP增长已使五亿多人脱贫。
联合国的“千年(millennium)发展目标”在中国均已达到或即将达到。
目前,中国的第十二个五年规划强调发展服务业和解决环境及社会不平衡的问题。
府已设定目标减少污染,提高能源效率,改善得到教育和医保的机会,并扩大社会保障。
中国现在7%的经济年增长目标表明政府是在重视生活质量而不是增长速度。
开始跟着三五老师进入正题(下面一句一句来):第一句:自从1978年启动改革以来,中国已从计划经济转为以市场为基础的经济,经历了经济和社会的快速发展。
分析:第一步:找主干,而主干的核心是动词,所以先找到句子里的两个动词。
转:change 【这个词是不是太简单了,但是开始入手就从它开始】经历:undergo/ go through【三五老师插一句】为什么要找动词?因为汉语里面的动词很多,而英语句子里只能有一个谓语作动词,至于主语都是差不多的,所以搞定了动词,这个句子就差不多成功了。
第二步:提炼主干,直接翻译。
中国从……转为……经济,经历了发展。
Chinahas changed from … into …economy, and gone through development.第三步:对主干多个动词的处理。
汉语主干有多个动词,那是汉语的特征,问题是英语中的单句里面只能有一个谓语动词,于是乎,我给大家总结了以下几种方式:汉语可能是这样的原型:S V1 O, V2 O……五种变化方式:(1)S v1 o, and v2 o【直接用and之类的连词,当句子是顺承关系时,只是动作的顺序发生】(2)S v1 o, v2-ing/-ed o【一个动作为主,另一个动作表示伴随,原因,结果,条件,从(2)可以衍生为:S v1 o, which v2…,用非限制性定语从句】(3)S v1 o, by/without v2-ing o【用介词短语化解v2,以上by只是举例。
流年静吧酒水单-英文翻译成品

流年静吧/饮品单Fleeting Time Static-it Bar / Menu甜品类 Sweets 饮品类Soft Drinks芒果西米捞18元/份炫动薄荷冰12元/杯Chilled Mango Sago Cream Ice Mint Tea椰汁水果捞18元/份夏日柠乐冰12元/杯Chilled Coconut Fruit Cream Ice Lemon Tea芒果粒粒爽18元/份菊花蜜茶12元/杯Mango Cream Chrysanthemum Nectar红豆缠绵18元/份蜂蜜柚子茶12元/杯Red Bean Cream Honey Grapefruit Nectar芒果红豆盏18元/份金桔柠檬茶12元/杯Chilled Mango Red Bean Cream Kumquat Lemon T ea芒果小丸子18元/份冰橘茶22元(大)12元(小)Mango Glue Puddings Ice Orange Tea (Larger Cup/ Smaller Cup) 黑米水果捞18元/份夏天茶22元(大)12元(小)Chilled Black Rice Fruit Cream Summer Tea (Larger Cup/ Smaller Cup) 黑米小丸子18元/份蓝色风暴12元/杯Black Rice Glue Puddings Blue Storm黑米红豆盏18元/份鸡尾酒 Cocktail Wines 小吃类Snacks 飞天蚱蜢22元 /杯花生10元/份Flying Grasshopper Peanuts水果宾治22元/杯香蕉皮10元/份Fruit Punch Bananas血腥玛丽22元/杯辣味豆10元/份Bloody Mary Chilli Beans异形接触22元/杯杏仁15元/份UFO Almonds薄荷宾治22元/杯开心果15元/份Mint Punch螺丝钉22元/杯Gimlet曼哈顿22元/杯Manhattan青草蜢22元/杯Grasshopper果盘类Mixed Fruits 蛋糕类Cakes小果盘28元/份提拉米苏22元/块Smaller Dish Tiramisu中果盘38元/份抹茶慕斯蛋糕22元/块Normal Dish Mocha Mousse大果盘48元/份卡布奇诺蛋糕22元/块Larger Dish Cappuccino黑森林22元/快Black Forest啤酒类Beers百威Budweiser 10元/支 50元/半打 100元/一打(送精美小吃2份)、¥10/bottle ¥50/half-dozen ¥100/dozen (including two kinds of snacks) 大兵Soldier 10元/支 50元/半打 100元/一打(送精美小吃2份)¥10/bottle ¥50/half-dozen ¥100/dozen (including two kinds of snacks) 大兵黑啤 Soldier Dark 10元/支 50元/半打 100元/一打(送精美小吃2份)¥10/bottle ¥50/half-dozen ¥100/dozen (including two kinds of snacks) 冰锐Ice Sharp 20元/支 100元/半打 200元/一打(送精美小吃2份)¥20/bottle ¥100/half-dozen ¥200/dozen (including two kinds of snacks) 喜力 Heineken 15元/支 80元/半打 150元/一打(送精美小吃2份)¥15/bottle ¥80/half-dozen ¥150/dozen (including two kinds of snacks) 青岛 Qingdao 10元/支 50元/半打 100元/一打(送精美小吃2份)¥10/bottle ¥50/half-dozen ¥100/dozen (including two kinds of snacks)洋酒类Imported Wines伏特加188元/支(送精美果盘一份,软饮4支)Vodka ¥188/bottle (including mixed fruits & four glasses of soft drinks )威士忌288元/支(送精美果盘一份,软饮4支)Whisky ¥288/bottle (including mixed fruits & four glasses of soft drinks )宝石蓝金酒288元/支(送精美果盘一份,软饮4支)Bombay Gin ¥188/bottle (including mixed fruits & four glasses of soft drinks )芝华士388元/支(送精美果盘一份,软饮4支,小吃2份)Chivas ¥188/bottle (including mixed fruits & 4 glasses of soft drinks & 2 snacks)杰克丹尼(送精美果盘一份,软饮4支,小吃2份)Jack Daniels ¥188/bottle(Including mixed fruits & 4 glasses of soft drinks & 2 snacks)红酒类Red WinesA 88元一支(送精美果盘,小吃两份)Type A 88/bottle (including mixed fruits & 2 snacks)B 188元一支(送精美果盘,小吃两份)Type B 188/bottle (including mixed fruits & 2 snacks)。
专业术语-英文翻译大集合整理

MRB: Material Review Board DMR Defective Material Report 材料缺陷報告 RMA: Return Materiaห้องสมุดไป่ตู้ Administration 材料回收處理 Life Test 壽命測試
T/C: Temperature Cycle 溫度循環 H/T: High Temperature Test 高溫測試 L/T: Low Temperature Test 低溫測試 ISO: International Standard Organization 國際標準化組織 SPC: Statistic process control 統計過程控制 5S: 整理.整頓.清理.清掃.素養 VMI: Visual Mechanical Inspection 外觀機構檢驗 MIL-STD: Military Standard 美軍標準
C/T: Cycle Time 循環時間,瓶頸 WD: Working Days 工作天 MTD: Month To Days 月初到今日(例如總表整理) YTD: Year To Days年初到今日 SO: Sales Order 銷售清單 MO: Manufacture Order 製造清單 BTO: Build To Order 訂單生產 P/N: Part Number 料號 MC: Material Control 材料控制 MRP: Material Requisition Plan 材料需求計劃 INV: Inventory 存貨清單 Inv Turn Over Days=INVS/NSB X WD 庫存周轉天數 PSI: Production Shipping Inventory 預備待出貨 JIT: Just In Time 即時 Safety Inventory 安全存量 CKD: Completed Kits Delivery 全件組裝出貨 SKD: Semi Kits Delivery 半件(小件)組裝出貨 W/H: Warehouse 倉庫 Rec: Receiving Center 接收中心 Raw MTL 原物料
霍姆斯和他的译学构想

1995年,图瑞在《描写翻译研究及其他》一书中,将霍姆斯的译学构想描绘成图形
描写性翻译学又包括三个方面:
第一,产品导向研究product-oriented ,是对翻译成品进行研究,其出发点是译作文本, 包括对同一原作的不同译本进行比较研究,译本比较可以是历时的diachronic(即不同 时期的译本比较),也可以是共时的synchronic(即相同时期的译本比较)。霍姆斯认 为,产品导向研究的结果最终有可能成为一部大型的翻译通史。
02
翻译贡献
霍姆斯是上世纪七八十年代低地国家翻译理论界最有影响的人物,他在这方面著述 不多,但在世界翻译理论史上却有深远影响。 在翻译理论方面霍姆斯没有长篇巨制,其观点散见于一系列论文中,大都曾在国际 性学术会议上交流过。the name and nature of translation studies《翻译学的名与 实》,是霍姆斯最重要的翻译理论文章。在1972年哥本哈根召开的第三届国际应用 语言学会议上首次发表。这篇文章对翻译学的学科命名、性质、研究范围以及学科 内的划分提出了详细的构想,是翻译研究领域具有里程碑意义的作品,是翻译学学 科建设的奠基之作,被西方译学界认为是“翻译学学科的创建宣言”。霍姆斯也因 此被公认为翻译学的奠基人及最早对该学科作全景式描述的人。
霍姆斯的翻译理论
1.建立翻译学学科的条件,学科发展现状 翻译学之所以是一门独立的学科,是因为它有自己的研究对象和目标。 霍姆斯认为翻译作为一门独立的学科已经具备了建立的条件和必要性。 在过去几个世纪中,翻译研究处于随意、无序的状态,以第二次世界大 战为转折点,许多原先从事相近学科研究的人由语言学、语言哲学和文 学转向翻译领域,还有一些人来自表面上并不相近的学科如信息理论、 逻辑学和数学等领域,这些研究者把原学科的模型及方法带入翻译研究。 霍姆斯认为,从表面上看翻译研究的局面是一片混乱,但实际上关于翻 译研究的独立学科正在成型。
计算机第五代5g移动通讯通信技术介绍简介概述外文文献翻译成品:5G的五个颠覆性技术方向中英文双语对照

Five Disruptive Technology Directions for 5G ABSTRACT: New research directions will lead to fundamental changes in the design of future 5th generation (5G) cellular networks. This paper describes five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter Wave, Massive-MIMO, smarter devices, and native support to machine-2-machine. The key ideas for each technology are described, along with their potential impact on 5G and the research challenges that remain.I.INTRODUCTION:5G is coming. What technologies will define it? Will 5G be just an evolution of 4G, or will emerging technologies cause a disruption requiring a wholesale rethinking of entrenched cellular principles? This paper focuses on potential disruptive technologies and their implications for 5G. We classify the impact of new technologies, leveraging the Henderson-Clark model [1], as follows:1.Minor changes at both the node and the architectural level, e.g., the introduction of codebooks and signaling support for a higher number of antennas. We refer to these as evolutions in the design.2.Disruptive changes in the design of a class of network nodes, e.g., the introduction of a new waveform. We refer to these as component changes.3.Disruptive changes in the system architecture, e.g., the introduction of new types of nodes or new functions in existing ones. We refer to these as architectural changes.4.Disruptive changes that have an impact at both the node and the architecture levels. We refer to these as radical changes.We focus on disruptive (component, architectural or radical) technologies, driven by our belief that the extremely higher aggregate data rates and the much lower latencies required by 5G cannot be achieved with a mere evolution of the status quo. We believe that the following five potentially disruptive technologies could lead to both architectural and component design changes, as classified in Figure 1.1.Device-centric architectures.The base-station-centric architecture of cellular systems may change in 5G. It may be time to reconsider the concepts of uplink and downlink, as well as control and data channels, to better route information flows with different priorities and purposes towards different sets of nodes within the network. We present device-centric architectures in Section II.limeter Wave (mmWave).While spectrum has become scarce at microwave frequencies, it is plentiful in the mmWave realm. Such a spectrum ‘el Dorado’ has led to a mmWave ‘gold rush’ in which researchers with diverse backgrounds are studying different aspects ofmmWave transmission. Although far from fully understood, mmWave technologies have already been standardized for short-range services (IEEE 802.11ad) and deployed for niche applications such as small-cell backhaul. In Section III, we discuss the potential of mmWave for a broader application in 5G.3.Massive-MIMO.Massive-MIMO1 proposes utilizing a very high number of antennas to multiplex messages for several devices on each time-frequency resource, focusing the radiated energy towards the intended directions while minimizing intra-and inter-cell interference. Massive-MIMO may require major architectural changes, in particular in the design of macro base stations, and it may also lead to new types of deployments. We discuss massive-MIMO in Section IV.4.Smarter devices.2G-3G-4G cellular networks were built under the design premise of having complete control at the infrastructure side. We argue that 5G systems should drop this design assumption and exploit intelligence at the device side within different layers of the protocol stack, e.g., by allowing Device-to-Device (D2D) connectivity or by exploiting smart caching at the mobile side. While this design philosophy mainly requires a change at the node level (component change), it has also implications at the architectural level. We argue for smarter devices in Section V.5.Native support for Machine-to-Machine (M2M) communicationA native2 inclusion of M2M communication in 5G involves satisfying three fundamentally different requirements associated to different classes of low-data-rate services: support of a massive number of low-rate devices, sustainment of a minimal data rate in virtually all circumstances, and very-low-latency data transfer. Addressing these requirements in 5G requires new methods and ideas at both the component and architectural level, and such is the focus of Section VI.II.DEVICE-CENTRIC ARCHITECTURESCellular designs have historically relied on the axiomatic role of ‘cells’ as fundamental units within the radio access network. Under such a design postulate, a device obtains service by establishing a downlink and an uplink connection, carrying both control and data traffic, with the base station commanding the cell where the device is located. Over the last few years, different trends have been pointing to a disruption of this cell-centric structure:1.The base-station density is increasing rapidly, driven by the rise of heterogeneous networks. While heterogeneous networks were already standardized in 4G, the architecture was not natively designed to support them. Network densification could require some major changes in 5G. The deployment of base stations with vastly different transmit powers and coverage areas, for instance, calls for a decoupling of downlink and uplink in a way that allows for the corresponding information to flow through different sets of nodes [5].2.The need for additional spectrum will inevitably lead to the coexistence of frequency bands with radically different propagation characteristics within the same system. In this context, [6] proposes the concept of a ‘phantom cell’ where the data and control planes are separated: the control information is sent by high-power nodes at microwave frequencies whereas the payload data is conveyed by low-power nodes at mm-Wave frequencies. (cf. Section III.)3.A new concept termed centralized baseband related to the concept of cloud radioaccess networks is emerging (cf. [7]), where virtualization leads to a decoupling between a node and the hardware allocated to handle the processing associated with this node. Hardware resources in a pool, for instance, could be dynamically allocated to different nodes depending on metrics defined by the network operator.Emerging service classes, described in Section VI, could require a complete redefinition of the architecture. Current works are looking at architectural designs ranging from centralization or partial centralization (e.g., via aggregators) to full distribution (e.g., via compressed sensing and/or multihop).Cooperative communications paradigms such as CoMP or relaying, which despite falling short of their initial hype are nonetheless beneficial [8], could require a redefinition of the functions of the different nodes. In the context of relaying, for instance, recent developments in wireless network coding [9] suggest transmission principles that would allow recovering some of the losses associated with half-duplex relays. Moreover, recent research points to the plausibility of full- duplex nodes for short-range communication in a not-so-distant future.The use of smarter devices (cf. Section V) could impact the radio access network. In particular, both D2D and smart caching call for an architectural redefinition where the center of gravity moves from the network core to the periphery (devices, local wireless proxies, relays). Based on these trends, our vision is that the cell-centric architecture should evolve into a device-centric one: a given device (human or machine) should be able to communicate by exchanging multiple information flows through several possible sets of heterogeneous nodes. In other words, the set of network nodes providing connectivity to a given device and the functions of these nodes in a particular communication session should be tailored to that specific device and session. Under this vision, the concepts of uplink/downlink and control/data channel should be rethought (cf. Figure 2).While the need for a disruptive change in architectural design appears clear, major research efforts are still needed to transform the resulting vision into a coherent and realistic proposition. Since the history of innovations (cf. [1]) indicates that architectural changes are often the drivers of major technological discontinuities, we believe that the trends above might have a major influence on the development of 5G.LIMETER WA VE COMMUNICATIONMicrowave cellular systems have precious little spectrum: around 600 MHz are currently in use, divided among operators [10]. There are two ways to gain access to more microwave spectrum:1.To repurpose or refarm spectrum. This has occurred worldwide with the repurposing of terrestrial TV spectrum for applications such as rural broadband access. Unfortunately, repurposing has not freed up that much spectrum, only about 80 MHz, and at a high cost associated with moving the incumbents.2.To share spectrum utilizing, for instance, cognitive radio techniques. The high hopes initially placed on cognitive radio have been dampened by the fact that an incumbent not fully willing to cooperate is a major obstacle to spectrum efficiency for secondary users.3.Altogether, it appears that a doubling of the current cellular bandwidth is the best-case scenario at microwave frequencies. Alternatively, there is an enormous amount of spectrum at mmWave frequencies ranging from 3 to 300 GHz. Many bands therein seem promising, including most immediately the local multipoint distribution service at 28-30 GHz, the license-free band at 60 GHz, and the E-band at 71-76 GHz, 81-86 GHz and 92-95 GHz. Foreseeably, several tens of GHz could become available for 5G, offering well over an order-of-magnitude increase over what is available atpresent. Needless to say, work needs to be done on spectrum policy to render these bands available for mobile cellular.3.Propagation is not an insurmountable challenge. Recent measurements indicate similar general characteristics as at microwave frequencies, including distance-dependent pathloss and the possibility of non-line-of-sight communication. A main difference between microwave and mmWave frequencies is the sensitivity to blockages: the results in [11], for instance, indicate a pathloss exponent of 2 for line-of-sight propagation but 4 (plus an additional power loss) for non-line-of-sight. MmWave cellular research will need to incorporate sensitivity to blockages and more complex channel models into the analysis, and also study the effects of enablers such as higher density infrastructure and relays. Another enabler is the separation between control and data planes, already mentioned in Section II.Antenna arrays are a key feature in mmWave systems. Large arrays can be used to keep the antenna aperture constant, eliminating the frequency dependence of pathloss relative to omnidirectional antennas (when utilized at one side of the link) and providing a net array gain to counter the larger thermal noise bandwidth (when utilized at both sides of the link). Adaptive arrays with narrow beams also reduce the impact of interference, meaning that mmWave systems could more often operate in noise-limited rather than interference-limited conditions. Since meaningful communication might only happen under sufficient array gain, new random access protocols are needed that work when transmitters can only emit in certain directions and receivers can only receive from certain directions. Adaptive array processing algorithms are required that can adapt quickly when beams are blocked by people or when some device antennas become obscured by the user’s own body.MmWave systems also have distinct hardware constraints. A major one comes from the high power consumption of mixed signal components, chiefly the analog-to-digital (ADC) and digital-to-analog converters (DAC). Thus, the conventional microwave architecture where every antenna is connected to a high-rate ADC/DAC is unlikely to be applicable to mmWave without a huge leap forward in semiconductor technology. One alternative is a hybrid architecture where beamforming is performed in analog at RF and multiple sets of beamformers are connected to a small number of ADCs or DACS; in this alternative, signal processing algorithms are needed to steer the analog beamforming weights. Another alternative is to connect each RF chain to a 1-bit ADC/DAC, with very low power requirements; in this case, the beamforming would be performed digitally but on very noisy data. There are abundant research challenges in optimizing different transceiver strategies, analyzing their capacity, incorporating multiuser capabilities, and leveraging channel features such as sparsity.A data rate comparison between technologies is provided in Fig. 3, for certain simulation settings, in terms of mean and 5% outage rates. MmWave operation is seento provide very high rates compared to two different microwave systems. The gains exceed the 10x spectrum increase because of the enhanced signal power and reduced interference thanks to directional beamforming at both transmitter and receiver.IV.MASSIVE MIMOMassive MIMO (also referred to as ‘Large-Scale MIMO’ or ‘Large-Scale Antenna Systems’) is a form of multiuser MIMO in which the number of antennas at the base station is much larger than the number of devices per signaling resource [14]. Having many more base station antennas than devices renders the channels to the different devices quasi-orthogonal and very simple spatial multiplexing/de-multiplexing procedures quasi-optimal. The favorable action of the law of large numbers smoothens out frequency dependencies in the channel and, altogether, huge gains in spectral efficiency can be attained (cf. Fig. 4).In the context of the Henderson-Clark framework, we argue that massive-MIMO has a disruptive potential for 5G:At a node level, it is a scalable technology. This is in contrast with 4G, which, in many respects, is not scalable: further sectorization therein is not feasible because of (i) the limited space for bulky azimuthally-directive antennas, and (ii) the inevitable angle spread of the propagation; in turn, single-user MIMO is constrained by the limited number of antennas that can fit in certain mobile devices. In contrast, there is almost no limit on the number of base station antennas in massive- MIMO provided that time-division duplexing is employed to enable channel estimation through uplink pilots.It enables new deployments and architectures. While one can envision direct replacement of macro base stations with arrays of low-gain resonant antennas, other deployments are possible, e.g., conformal arrays on the facades of skyscrapers or arrays on the faces of water tanks in rural locations. Moreover, the same massive-MIMO principles that govern the use of collocated arrays of antennas applyalso to distributed deployments in which a college campus or an entire city could be covered with a multitude of distributed antennas that collectively serve many users (in this framework, the centralized baseband concept presented in Section II is an important architectural enabler).While very promising, massive-MIMO still presents a number of research challenges. Channel estimation is critical and currently it represents the main source of limitations. User motion imposes a finite coherence interval during which channel knowledge must be acquired and utilized, and consequently there is a finite number of orthogonal pilot sequences that can be assigned to the devices. Reuse of pilot sequences causes pilot contamination and coherent interference, which grows with the number of antennas as fast as the desired signals. The mitigation of pilot contamination is an active research topic. Also, there is still much to be learned about massive-MIMO propagation, although experiments thus far support the hypothesis of channel quasi-orthogonality. From an implementation perspective, massive-MIMO can potentially be realized with modular low-cost low-power hardware with each antenna functioning semi-autonomously, but a considerable development effort is still required to demonstrate the cost-effectiveness of this solution. Note that, at the microwave frequencies considered in this section, the cost and the energy consumption of ADCs/DACs are sensibly lower than at mmWave frequencies (cf. Section III).From the discussion above, we conclude that the adoption of massive-MIMO for 5G could represent a major leap with respect to today’s state-of-the-art in system and component design. To justify these major changes, massive-MIMO proponents should further work on solving the challenges emphasized above and on showing realistic performance improvements by means of theoretical studies, simulation campaigns, and testbed experiments.V.SMARTER DEVICESEarlier generations of cellular systems were built on the design premise of having complete control at the infrastructure side. In this section, we discuss some of the possibilities that can be unleashed by allowing the devices to play a more active role and, thereafter, how 5G’s design should account for an increase in device smartness. We focus on three different examples of technologies that could be incorporated into smarter devices, namely D2D, local caching, and advanced interference rejection.V.1 D2DIn voice-centric systems it was implicitly accepted that two parties willing to establish a call would not be in close proximity. In the age of data, this premise might no longer hold, and it could be common to have situations where several co-located devices would like to wirelessly share content (e.g., digital pictures) or interact (e.g., video gaming or social networking). Handling these communication scenarios via simply connecting through the network involves gross inefficiencies at various levels:1.Multiple wireless hops are utilized to achieve what requires, fundamentally, a single hop. This entails a multifold waste of signaling resources, and also a higher latency. Transmit powers of a fraction of a Watt (in the uplink) and several Watts (in the downlink) are consumed to achieve what requires, fundamentally, a few milliWatts. This, in turn, entails unnecessary levels of battery drain and of interference to all other devices occupying the same signaling resources elsewhere.2.Given that the pathlosses to possibly distant base stations are much stronger than the direct-link ones, the corresponding spectral efficiencies are also lower. While it is clear that D2D has the potential of handling local communication more efficiently, local high-data-rate exchanges could also be handled by other radio access technologies such as Bluetooth or Wi-Fi direct. Use cases requiring a mixture of local and nonlocal content or a mixture of low-latency and high- data-rate constraints (e.g., interaction between users via augmented reality), could represent more compelling reasons for the use of D2D. In particular, we envision D2D as an important enabler for applications requiring low-latency 3 , especially in future network deployments utilizing baseband centralization and radio virtualization (cf. Section I).From a research perspective, D2D communication presents relevant challenges:1.Quantification of the real opportunities for D2D. How often does local communication occur? What is the main use case for D2D: fast local exchanges, low-latency applications or energy saving?2.Integration of a D2D mode with the uplink/downlink duplexing structure.3.Design of D2D-enabled devices, from both a hardware and a protocol perspective, by providing the needed flexibility at both the PHY and MAC layers.4.Assessing the true net gains associated with having a D2D mode, accounting for possible extra overheads for control and channel estimation.5.Finally, note that, while D2D is already being studied in 3GPP as a 4G add-on2, the main focus of current studies is proximity detection for public safety [15]. What wediscussed here is having a D2D dimension natively supported in 5G.V.2 Local CachingThe current paradigm of cloud computing is the result of a progressive shift in the balance between data storage and data transfer: information is stored and processed wherever it is most convenient and inexpensive because the marginal cost of transferring it has become negligible, at least on wireline networks [2]. For wireless devices though, this cost is not always negligible. The understanding that mobile users are subject to sporadic ‘abundance’ of connectivity amidst stretches of ‘deprivation’ is hardly new, and the natural idea of opportunistically leveraging the former to alleviate the latter has been entertained since the 1990s [3]. However, this idea of caching massive amounts of data at the edge of the wireline network, right before the wireless hop, only applies to delay-tolerant traffic and thus it made little sense in voice-centric systems. Caching might finally make sense now, in data-centric systems [4]. Thinking ahead, it is easy to envision mobile devices with truly vast amounts of memory. Under this assumption, and given that a substantial share of the data that circulates wirelessly corresponds to the most popular audio/video/social content that is in vogue at a given time, it is clearly inefficient to transmit such content via unicast and yet it is frustratingly impossible to resort to multicast because the demand is asynchronous. We hence see local caching as an important alternative, both at the radio access network edge (e.g., at small cells) and at the mobile devices, also thanks to enablers such as mmWave and D2D.V.3 Advanced Interference RejectionIn addition to D2D capabilities and massive volumes of memory, future mobile devices may also have varying form factors. In some instances, the devices mightaccommodate several antennas with the consequent opportunity for active interference rejection therein, along with beamforming and spatial multiplexing. A joint design of transmitter and receiver processing, and proper control and pilot signals, are critical to allow advanced interference rejection. As an example, in Fig. 5 we show the gains obtained by incorporating the effects of nonlinear, intra and inter-cluster interference awareness into devices with 1, 2 and 4 antennas.While this section has been mainly focused on analyzing the implications of smarter devices at a component level, in Section II we discussed the impact at the radio access network architecture level. We regard smarter devices as having all the characteristic of a disruptive technology (cf. Section I) for 5G, and therefore we encourage researchers to further explore this direction.VI.NATIVE SUPPORT FOR M2M COMMUNICATIONWireless communication is becoming a commodity, just like electricity or water [13]. This commoditization, in turn, is giving rise to a large class of emerging services with new types of requirements. We point to a few representative such requirements, each exemplified by a typical service:1.A massive number of connected devices. Whereas current systems typically operate with, at most, a few hundred devices per base station, some M2M services might require over 104 connected devices. Examples include metering, sensors, smart grid components, and other enablers of services targeting wide area coverage.2.Very high link reliability. Systems geared at critical control, safety, or production, have been dominated by wireline connectivity largely because wireless links did not offer the same degree of confidence. As these systems transition from wireline to wireless, it becomes necessary for the wireless link to be reliably operational virtually all the time.3.Low latency and real-time operation. This can be an even more stringent requirement than the ones above, as it demands that data be transferred reliably within a given time interval. A typical example is Vehicle-to-X connectivity, whereby traffic safety can be improved through the timely delivery of critical messages (e.g., alert and control).Fig. 5 provides a perspective on the M2M requirements by plotting the data rate vs. the device population size. This cartoon illustrates where systems currently stand and how the research efforts are expanding them. The area R1 reflects the operating range of today’s systems, outlining the fact that the device data rate decreases as its population increases. In turn, R2 is the region that reflects current research aimed at improving the spectral efficiency. Finally, R5 indicates the region where operation is not feasible due to fundamental physical and information-theoretical limits.Regions R3 and R4 correspond to the emerging services discussed in this section:R3 refers to massive M2M communication where each connected machine or sensor transmits small data blocks sporadically. Current systems are not designed to simultaneously serve the aggregated traffic accrued from a large number of such devices. For instance, a current system could easily serve 5 devices at 2 Mbps each, but not 10000 devices each requiring 1 Kbps. R4 demarks the operation of systems that require high reliability and/or low latency, but with a relatively low average rate per device. The complete description of this region requires additional dimensions related to reliability and latency.There are services that pose simultaneously more than one of the above requirements, but the common point is that the data size of each individual transmission is small, going down to several bytes. This profoundly changes the communication paradigm for the following reasons:Existing coding methods that rely on long codewords are not applicable to very short data blocks. Short data blocks also exacerbate the inefficiencies associated with control and channel estimation overheads. Currently, the control plane is robust but suboptimal as it represents only a modest fraction of the payload data; the most sophisticated signal processing is reserved for payload data transmission. An optimized design should aim at a much tighter coupling between the data and control planes.As mentioned in Section II, the architecture needs a major redesign, looking at new types of nodes. At a system level, the frame-based approaches that are at the heart of 4G need rethinking in order to meet the requirements for latency and flexible allocation of resources to a massive number of devices. From the discussion above, and from the related architectural consideration in Section II, and referring one last time to the Henderson-Clark model, we conclude that a native support of M2M in 5G requires radical changes at both the node and the architecture level. Major research work remains to be done to come up with concrete and interworking solutionsenabling ‘M2M-inside’ 5G systems.VII.CONCLUSIONThis paper has discussed five disruptive research directions that could lead to fundamental changes in the design of cellular networks. We have focused on technologies that could lead to both architectural and component design changes: device-centric architectures, mmWave, massive-MIMO, smarter devices, and native support to M2M. It is likely that a suite of these solutions will form the basis of 5G. REFERENCES[1] A. Afuah, Innovation Management: Strategies, Implementation and Profits, Oxford University Press, 2003.[2] J. Zander and P. Mähönen, “Riding the data tsunami in the cloud: myths and challenges in future wireless access,” IEEE Comm. Magazine, V ol. 51, No. 3, pp. 145-151, Mar. 2013.[3] D. Goodman, J. Borras, N. Mandayam, R. D. Yates, “Infostations: A new system model for data and messaging services,” in Proc. IEEE Veh. Techn. Conf. (VTC), vol. 2, pp. 969–973, Rome, Italy, May 1997.[4] N. Golrezaei, A. F. Molisch, A. G. Dimakis and G. Caire, “Femtocaching and device-to-device collaboration: A new architecture for wireless video distribution,” IEEE Comm. Magazine, V ol. 51, No. 1, pp.142-149, Apr. 2013.[5] J. Andrews, “The seven ways HetNets are a paradigm shift,” IEEE Comm. Magazine, V ol. 51, No. 3, pp.136-144, Mar. 2013.[6] Y. Kishiyama, A. Benjebbour, T. Nakamura and H. Ishii, “Future steps of LTE-A: evolution towards integration of local area and wide area systems,” IEEE Wireless Communications, V ol. 20, No. 1, pp.12-18, Feb. 2013.[7] “C-RAN: The road towards green RAN,” China Mobile Res. Inst., Beijing, China, White Paper, ver. 2.5, Oct. 2011.[8] A. Lozano, R. W. Heath Jr., J. G. Andrews, “Fundamental limits of cooperation,” IEEE Trans. Inform. Theory, V ol. 59, No. 9, pp. 5213-5226, Sep. 2013.[9] C. D. T. Thai, P. Popovski, M. Kaneko, and E. de Carvalho, “Multi-flow scheduling for coordinated direct and relayed users in cellular systems,” IEEE Trans. Comm., V ol. 61, No. 2, pp. 669-678, Feb. 2013.[10] Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband systems,” IEEE Comm. Magazine, V ol. 49, No. 6, pp. 101 –107, Jun. 2011.[11] T. Rappaport and et al, “Millimeter wave mobile communications for 5G cellular: It will work!” IEEE Access, vol. 1, pp. 335–349, 2013.[12] R. W. Heath Jr., “What is the Role of MIMO in Future Cellular Networks: Massive? Coordinated? mmWave?” ICC Workshop Plenary: Beyond LTE-A, Budapest, Hungary. Slides available at: /~rheath/presentations/2013/Future_of_MIMO_Plenary_He ath.pdf[13] Mark Weiser, “The Computer for the 21st Century,” Scientific American, Sept. 1991.。
化工专业英语第二篇翻译

The Anatomy of a Chemical Manufacturing Process 化工生产过程构成The basic components of a typical chemical process(n过程;步骤;方法;工艺,vt 加工;处理) are shown in Fig.1, in which each block represents a stage in the overall process for producing a product from the raw materials. Fig.1 represents a generalized(无显著特点的,一般的) process; not all the stages(步骤;阶段) will be needed for any particular(特定的) process and the complexity of each stage will depend on the nature of the process. Chemical engineering design is concerned with the selection and arrangement(排列;安排)of the stages, and the selection, specification and design of the equipment required to perform(演出;执行;完成任务) the stage functions.典型的化学工艺的基本构成示于图1., 在此图中,每一个方框表示从原料到加工成产品的全过程中的一个步骤。
图1所示只是一般的情况,对于一个特定的工艺来说并非所有的步骤都是必需的,而且每一个步骤的复杂程度取决于生产过程的性质。
化工设计所关注的是各步骤的选择与安排,以及完成各步骤的任务所需设备的选择、说明和设计。
冲压模具专业词汇中英文翻译

冲压模具词汇Counter bored hole沉孔Chamfer倒斜角Fillet倒圆角padding block垫块stepping bar垫条upper die base上模座lower die base下模座upper supporting blank上承板upper padding plate blank上垫板spare dies模具备品spring弹簧bolt螺栓document folder活页夹file folder资料夹to put file in order整理资料spare tools location手工备品仓first count初盘人first check初盘复棹人second count复盘人second check复盘复核人equipment设备waste materials废料work in progress product在制品casing = containerization装箱quantity of physical inventory second count复盘点数量Quantity of customs count会计师盘,点数量the first page第一联filed by accounting department for reference会计部存查end-user/using unit(department)使用单位Summary of year-end physical inventory bills年终盘点截止单据汇总表bill name单据名称Thissheetandphysicalinventorylistwillbesenttoaccountingdepartmenttogether(T hoseofNHKwillbesenttofinancialdepartment)本表请与盘点清册一起送会计部-(NHK厂区送财会部)Application status records of year-end physical inventory List and physical inventory card年终盘点卡与清册使用-状况明细表blank and waste sheet NO.空白与作废单号plate电镀mold成型material for engineering mold testing工程试模材料not included in physical inventory不列入盘点sample样品description品名steel/rolled steel钢材material statistics sheet物料统计明细表meeting minutes会议记录meeting type会别distribution department分发单位location地点chairman主席present members出席人员subject主题conclusion结论decision items决议事项responsible department负责单位pre-fixed finishing date预定完成日approved by / checked by / prepared by核准/审核/承办PCE assembly production schedule sheetPCE组装厂生产排配表model机钟work order工令revision版次remark备注production control confirmation生产确认checked by初审approved by核准department部门Stock age analysis sheet库存货龄分析表on-hand inventory现有库存available material良品可使用obsolete material良品已呆滞to be inspected or reworked待验或重工total合计cause description原因说明part number/ P/N料号type形态item/group/class类别quality品质prepared by制表notes说明year-end physical inventory difference analysis sheet年终盘点差异分析表physical inventory盘点数量physical count quantity帐面数量difference quantity差异量cause analysis原因分析raw materials原料materials物料finished product成品semi-finished product半成品packing materials包材good product/accepted goods/ accepted parts/good parts良品defective product/non-good parts不良品disposed goods处理品warehouse/hub仓库on way location在途仓oversea location海外xxspare parts physical inventory list备品盘点清单spare molds location模具备品仓skid/pallet栈板tox machine自铆机wire EDM线割EDM放电机coil stock卷料sheet stock片料tolerance工差score=groove压线cam block滑块pilot导正筒trim剪外边pierce剪内边drag form压锻差pocket for the punch head挂钩槽slug hole废料xxfeature die公母模expansion dwg展开图radius半径shim(wedge)楔子torch-flame cut火焰切割set screw止付螺丝form block折刀stop pin定位销round pierce punch=die button圆冲子shape punch=die insert异形子stock locater block定位块under cut=scrap chopper清角active plate活动板baffle plate挡块cover plate盖板male die公模female die母模groove punch压线冲子air-cushion eject-rod气垫顶杆spring-box eject-plate弹簧箱顶板bushing block衬套insert入块club carxx车capability能力parameter参数factor系数phosphate皮膜化成viscosity涂料粘度alkalidipping脱脂(degrease)main manifold主集流脉bezel斜视规blanking穿落模dejecting顶固模high-speed transmission高速传递heat dissipation热传rack上料degrease脱脂rinse水洗alkaline etch龄咬desmut剥黑膜D.I. rinse纯水次Chromate铬酸处理Anodize阳性处理sealxxrevision版次part number/P/N料号good products良品scraped products报放心品defective products不良品finished products成品disposed products处理品barcode条形码flow chart流程窗体assembly组装stamping冲压spare parts=buffer备品coordinate坐标dismantle the die折模auxiliary function辅助功能poly-line多义线heater band加热片thermocouple热电偶sand blasting喷沙grit砂砾deducting machine除锈机degate打浇口dryer烘干机induction感应induction light感应光response=reaction=interaction感应ram连杆edge finder巡边器concave凹convex凸short射料不足nick缺口speck瑕疪shine亮班splay银纹gas mark焦痕delamination起鳞cold slug冷块blush导色gouge沟槽;凿槽satin texture段面咬花witness line证示线patent专利grit沙砾granule=peuet=grain细粒grit maker抽粒机cushion缓冲magnalium镁铝合金magnesium镁金metal plate钣金lathe车mill锉plane刨grind磨drill钻boring镗blinster气泡fillet镶;嵌边through-hole form通孔形式voller pin formality滚针形式cam driver铡楔shank摸柄crank shaft曲柄轴angle offset角度偏差velocity速度production tempo生产进度现状torque扭矩spline=the multiple keys花键quenching淬火tempering回火annealing退火carbonization碳化alloy合金tungsten high speed steel钨高速的moly high speed steel钼高速的organic solvent有机溶剂bracket小磁导liaison联络单volatile挥发性resistance电阻ion离子titrator滴定仪beacon警示灯coolant冷却液crusher破碎机plain die简易模pierce die冲孔模forming die成型模progressive die连续模gang dies复合模shearing die剪边模riveting die铆合模pierce冲孔forming成型(抽凸,冲凸) draw hole抽孔bending折弯trim切边emboss凸点dome凸圆semi-shearing半剪stamp mark冲记号deburr or coin压毛边punch riveting冲压铆合side stretch侧冲压平reel stretch卷圆压平groove压线blanking下料stamp letter冲字(料号) shearing剪断tick-mark nearside正面压印tick-mark farside反面压印extension dwg展开图procedure dwg工程图die structure dwg模具结构图material材质material thickness料片厚度factor系数upward向上downward向下press specification冲床规格die height range适用模高die height闭模高度burr毛边gap间隙weight重量total wt.总重量punch wt.上模重量inner guiding post内导柱inner hexagon screw内六角螺钉dowel pin固定销coil spring弹簧lifter pin顶料销eq-height sleeves=spool等高套筒pin销lifter guide pin浮升导料销guide pin导正销wire spring圆线弹簧outer guiding post外导柱stop screw止付螺丝located pin定位销outer bush外导套top platexx托板(顶板)top blockxx垫脚punch set上模座punch padxx垫板punch holderxx夹板stripper pad脱料背板up stripper上脱料板male die公模(凸模) feature die公母模female die母模(凹模) upper platexx模板lower plate下模板die pad下垫板die holder下夹板die set下模座bottom block下垫脚bottom plate下托板(底板)stripping plate内外打(脱料板)outer stripper外脱料板inner stripper内脱料板lower stripper下脱料板punch冲头insert入块(嵌入件)deburring punch压毛边冲子groove punch压线冲子stamped punch字模冲子round punch圆冲子special shape punch异形冲子bending block折刀roller滚轴baffle plate挡块located block定位块supporting block for location定位支承块air cushion plate气垫板air-cushion eject-rod气垫顶杆trimming punch切边冲子stiffening rib punch = stinger加强筋冲子ribbon punch压筋冲子reel-stretch punch卷圆压平冲子guide plate定位板plain die简易模pierce die冲孔模forming die成型模progressive die连续模gang dies复合模shearing die剪边模riveting die铆合模pierce冲孔forming成型(抽凸,冲凸) draw hole抽孔bending折弯trim切边emboss凸点dome凸圆semi-shearing半剪stamp mark冲记号deburr or coin压毛边punch riveting冲压铆合side stretch侧冲压平reel stretch卷圆压平groove压线blanking下料stamp letter冲字(料号) shearing剪断tick-mark nearside正面压印tick-mark farside反面压印extension dwg展开图procedure dwg工程图die structure dwg模具结构图material材质material thickness料片厚度factor系数upward向上downward向下press specification冲床规格die height range适用模高die height闭模高度burr毛边gap间隙weight重量total wt.总重量punch wt.上模重量air vent vale通气阀anchor pin锚梢angular pin角梢baffle调节阻板angular pin倾斜梢baffle plate折流档板ball button球塞套ball plunger定位球塞ball slider球塞滑块binder plate压板blank holder防皱压板blanking die落料冲头bolster上下模板bottom board浇注底板bolster垫板bottom plate下固定板bracket托架bumper block缓冲块buster堵口casting ladle浇注包casting lug铸耳cavity模穴(模仁)cavity retainer plate模穴托板center pin中心梢clamping block锁定块coil spring螺旋弹cold punched nut冷冲螺母cooling spiral螺旋冷却栓core心型core pin心型梢cotter开口梢cross十字接头cushion pin缓冲梢diaphragm gate盘形浇口die approach模头料道die bed型底die block块形模体die body铸模座die bush合模衬套die button冲模母模全球模具网die clamper夹模器die fastener模具固定用零件die holder母模固定板die lip模唇die plate冲模板die set冲压模座direct gate直接浇口dog chuckxx夹头dowel定位梢dowel hole导套xxdowel pin合模梢dozzle辅助浇口dowel pin定位梢draft拔模锥度draw beadxx调整杆drive bearing传动轴承ejection pad顶出衬垫ejector脱模器ejector guide pin顶出导梢ejector leader busher顶出导梢衬套ejector pad顶出垫ejector pin顶出梢ejector plate顶出板ejector rod顶出杆ejector sleeve顶出衬套ejector valve顶出阀eye bolt环首螺栓filling core椿入蕊film gate薄膜形浇口finger pin指形梢finish machined plate角形模板finish machined round plate圆形模板fixed bolster plate固定侧模板flanged pin带凸缘?flash gate毛边形浇口flask上箱floating punch浮动冲头gate浇口gate land浇口面gib凹形拉紧goose neck鹅颈管guide bushing引导衬套guide pin导梢guide post引导柱guide plate导板guide rail导轨head punch顶冲头headless punch直柄冲头heavily tapered solid整体模蕊盒hose nippler管接头impact damper缓冲器injection ram压射柱塞inlay busher嵌入衬套inner plunger内柱塞inner punch内冲头insert嵌件insert pin嵌件梢king pin转向梢king pin bush主梢衬套knockout bar脱模杵land合模平坦面land area合模面leader busher导梢衬套lifting pin起模顶?locating center punch定位中心冲头locating pilot pin定位导梢locating ring定位环lock block压块locking block定位块locking plate定位板loose bush活动衬套making die打印冲子manifold block歧管档块汽车英语first gear一档second gear二档reverse倒车档two-stroke engine二冲程发动机diesel柴油机limousine豪华轿车drophead活动车篷汽车(xx作: convertible)racing car赛车saloon轿车(xx作:wecker, beat-up car, jalopy老爷车notchback客货两用车four-wheel drive四轮驱动front-wheel drive前轮驱动trailer拖车truck卡车light-van小型货车front wheel前轮rear wheel后轮tread轮距chassis底盘bodywork, body车身rear window后窗玻璃windscreen挡风玻璃(xx作:windshield)windscreen wiper风档刮水器,风档雨雪刷(美作: windshield wiper)fender, wing, mudguard挡泥板radiator grille水箱wing mirror后视镜boot行李箱(xx作:trunk)roof rack, luggage rack行李架license plate, number plate车号牌wing前翼子板hubcap轮毂罩bumper保险杠front blinker前信号灯taillight, tail lamp尾灯backup light, reversing light倒车灯stoplight, stop lamp刹车灯rear blinker转弯指示灯trunk, boot行李箱bumper保险杠tailpipe排气管back seat, rear seat后座driver's seat, driving seat驾驶席passenger seat旅客席steering wheel, wheel方向盘rear-view mirror, driving mirror后视镜horn, hooter喇叭choke熄火装置gear stick, gear change变速杆(美作: gearshift)gearbox变速箱starter, self-starter起动器,起动钮brake pedal刹车踏板clutch pedal离合器踏板hand brake手制动器foot brake脚制动器dashboard仪表板milometer里程表speedometer, clock速度表transmission传动piston活塞radiator散热器fan belt风扇皮带shaft传动轴inner tube内胎drain tap排气阀门silencer消音器(xx作:muffler)tank油箱overflow溢流孔valve阀门exhaust pipe排气管spare wheel备胎,备用轮胎carburettor汽化器(xx: carburetor)electrical system, wiring电气系统lights灯光headlight大灯,头灯dipped headlight近光灯rear lights尾灯sidelights, parking lights位置灯,边灯direction indicator方向标,转向标indicator, blinker方向指示灯sparking plug火花塞(美作:spark plug)(spare) battery (备用)蓄电池to accelerate加速to brake制动,刹车to engage the clutch接上离合器to declutch分开离合器to stall发动机停转to change gear变速to decelerate减速top speed最高速度speed limit速度限制to park停车to switch off the motor熄火模具工程常用词汇模具钢材alloy tool steel合金工具钢aluminium alloy铝合金钢bearing alloy轴承合金blister steel浸碳钢bonderized steel sheet邦德防蚀钢板carbon tool steel碳素工具钢clad sheet被覆板clod work die steel冷锻模用钢emery金钢砂ferrostatic pressure钢铁水静压力forging die steel锻造模用钢galvanized steel sheet镀锌铁板hard alloy steel超硬合金钢high speed tool steel高速度工具钢hot work die steel热锻模用钢low alloy tool steel特殊工具钢low manganese casting steel低锰铸钢marging steel马式体高强度热处理钢martrix alloyxx特里斯合金meehanite cast iron米汉纳铸钢meehanite metalxx铁merchant iron市售钢材molybdenum high speed steel钼系高速钢molybdenum steel钼钢nickel chromium steel镍铬钢prehardened steel顶硬钢silicon steel sheet硅钢板stainless steel不锈钢tin plated steel sheet镀锡铁板tough pitch copper韧铜troostite吐粒散铁tungsten steel钨钢vinyl tapped steel sheet塑料覆面钢板四、模具零件:三板模:3-plate mold二板模:2-plate mold边钉/导边:leader pin/guide pin边司/导套:bushing/guide bushing 中托司:shoulder guide bushing xxL:guide pin顶针板:ejector retainner plate 托板:support plate螺丝:screw管钉:dowel pin开模槽:ply bar scot内模管位:core/cavity inter-lock 顶针:ejector pin司筒:ejector sleeve司筒针:ejector pin推板:stripper plate缩呵:movable core,return core core puller 扣机(xxxx):nylon latch lock斜顶:lifter模胚(架):mold base上内模:cavity insert下内模:core insert行位(滑块):slideinsert压座/斜鸡:wedge耐磨板/油板:wedge wear plate 压条:plate撑头:support pillar唧嘴:sprue bushing挡板:stop plate定位圈:locating ring锁扣:latch扣鸡:parting lock set 推杆:栓打螺丝:S.H.S.B顶板:eracuretun活动臂:lever arm分流锥:spure sperader水口xx:bush垃圾钉:stop pin隔片:buffle弹弓柱:spring rod弹弓:die spring中托司:ejector guide bushxx:ejector guide pin镶针:pin销子:dowel pin波子弹弓:ball catch喉塞:pipe plug锁模块:lock plate斜顶:angle from pin斜顶杆:angle ejector rod xxxx:parting locks活动臂:lever arm复位键、提前回杆:early return bar气阀:valves斜导边:angle pin术语:terms承压平面平衡:parting surface support balance模排气:parting line venting回针碰料位:return pin and cavity interference模总高超出啤机规格:mold base shut hight顶针碰运水:water line interferes withejector pin料位出上/下模:part from cavith (core) side模胚原身出料位:cavity direct cut on A-plate,core direct cut on B-plate.不准用镶件:Do not use (core/cavity) insert 用铍铜做镶件:use beryllium copper insert初步(正式)模图设计:preliinary (final) mold design 反呵:reverse core弹弓压缩量:稳定性好:good stability,stable强度不够:insufficient rigidity均匀冷却:even cooling扣模:sticking热膨胀:thero expansion公差:tolorance铜公(电极):copper electrode模具工程常用词汇die模具die shoe模瓦figure file, chart file图档cutting die, blanking die冲模progressive die, follow (-on)die连续模punched hole冲孔panel board镶块to cutedges=side cut=side scrap切边to bending折弯to pull, to stretch拉伸Line streching, line pulling线拉伸engraving, to engrave刻印upsiding down edges翻边to stake铆合design modification设计变化die block模块folded block折弯块sliding block滑块location pin定位销lifting pin顶料销die plate, front board模板padding block垫块stepping bar垫条upper die base上模lower die base下模座upper supporting blank上承板upper padding plate blank上垫板spare dies模具备品spring弹簧bolt螺栓plate电镀mold成型material for engineering mold testing工程试模材料not included in physical inventory不列入盘点PCE assembly production schedule sheet PCE组装厂生产排配表model机xxwork order工令revision版次production control confirmation生产确认checked by初审approved by核准stock age analysis sheet库存货龄分析表on-hand inventory现有库存available material良品可使用obsolete material良品已呆滞to be inspected or reworked待验或重工cause description原因说明part number/ P/N料号item/group/class类别prepared by制year-end physical inventory difference analysis sheet年终盘点差异分析表physical inventory盘点数量physical count quantity帐面数量difference quantity差异good product/accepted goods/ accepted parts/good parts良品defective product/non-good parts不良品disposed goods处理品on way location在途仓oversea location海外仓spare parts physical inventory list备品盘点清单spare molds location模具备品仓skid/pallet栈板tox machine自铆机wire EDM线割EDM放电机coil stock卷料sheet stock片料tolerance工差score=groove压线cam block滑块pilot导正筒trim剪外边pierce剪内边drag form压锻差pocket for the punch head挂钩槽slug hole废料xxfeature die公母模expansion dwg展开图radius半径shim(wedge)楔子torch-flame cut火焰切割set screw止付螺丝form block折刀stop pin定位销round pierce punch=die button圆冲子shape punch=die insert异形子stock locater block定位块under cut=scrap chopper清角active plate活动板baffle plate挡块cover plate盖板male die公模female die母模groove punch压线冲子air-cushion eject-rod气垫顶杆spring-box eject-plate弹簧箱顶板bushing block衬套insert入块capability能力parameter参数factor系数phosphate皮膜化成viscosity涂料粘度alkalidipping脱脂main manifold主集流脉bezel斜视规blanking穿落模dejecting顶固模high-speed transmission高速传递heat dissipation热传rack上料degrease脱脂rinse水洗alkalineetch龄咬desmut剥黑膜D.I.rinse纯水次Chromate铬酸处理Anodize阳性处理seal封孔revision版次partnumber/P/N料号goodproducts良品scrapedproducts报放心品defectiveproducts不良品finishedproducts成品disposedproducts处理品barcode 条码flowchart流程表单assembly组装stamping冲压molding成型spareparts=buffer备品coordinate座标dismantle the die折模auxiliary fuction辅助功能poly-line多义线heater band加热片thermocouple热电偶sandblasting喷沙grit砂砾derustingmachine除锈机degate打浇口dryer烘干机induction感应inductionlight感应光response=reaction=interaction感应ram连杆edgefinder巡边器concave凸convex凹short射料不足nick缺口speck瑕疵shine亮班splay 银纹gasmark焦痕delamination起鳞coldslug冷块blush导色gouge沟槽;凿槽satintexture段面咬花witness line证示线patent专利grit沙砾granule=peuet=grain细粒grit maker抽粒机cushion缓冲magnalium镁铝合金magnesium镁金metalplate钣金lathe车mill锉plane刨grind磨drill铝boring镗blinster气泡fillet镶;嵌边through-hole form通孔形式voller pin formality滚针形式cam driver铡楔shank摸柄crank shaft曲柄augularoffset角度偏差velocity速度productiontempo生产进度现状torque扭矩spline=themultiplekeys花键quenching淬火tempering回火annealing退火carbonization碳化alloy合金tungstenhighspeedsteel钨高速的molyhighspeedsteel钼高速的organicsolvent有机溶剂bracket小磁导liaison联络单volatile挥发性resistance电阻ion离子titrator滴定仪beacon警示灯coolant冷却液crusher破碎机模具工程类plain die简易模pierce die冲孔模forming die成型模progressive die连续模gang dies复合模shearing die剪边模riveting die铆合模pierce冲孔forming成型(抽凸,冲凸) draw hole抽孔bending折弯trim切边emboss凸点dome凸圆semi-shearing半剪stamp mark冲记号deburr or coin压毛边punch riveting冲压铆合side stretch侧冲压平reelstretch卷圆压平groove压线blanking下料stampletter冲字(料号)shearing剪断tick-marknearside正面压印tick-markfarside反面压印冲压名称类extension dwg展开图procedure dwg工程图die structure dwg模具结构图material材质material thickness料片厚度press specification冲床规格die height range适用模高die height闭模高度burr毛边gap间隙punch wt.上模重量。
the-name-and-nature-of-translation-studies《翻译学的名与实》

I. 霍姆斯其人:1924-1986生平:霍姆斯出生在美国Iowa爱荷华州,后在宾夕法尼亚州的哈弗福德Haverford学院学习英语文学,1949年受富布莱特项目Fulbright Project资助来到荷兰,从此荷兰成为他的第二故乡。
他虽然一直保留美国国籍,但绝大部分时间是在荷兰度过的。
霍姆斯师从阿姆斯特丹大学荷兰文学系主任,接触了大量荷语文学作品。
他从五十年代处就开始将荷语文学介绍到英语世界,此间也没有间断自己的诗歌创作,他的翻译理论研究工作则始于60年代末期。
在他的老师改任阿姆斯特丹大学综合文学系主任后,霍姆斯被聘为该系教师,除教授文学翻译实践外,他还率先开设了翻译理论课程。
霍姆斯同时还在以培养翻译人才为目标的阿姆斯特丹翻译学院任教。
他极力促成将该学院并入阿姆斯特丹大学人文学院,但1982年二者正式合并并且成立翻译系以后,作为翻译领域最重要的学者,霍姆斯没有顺理成章地成为该系教授,原因之一是他没有博士学位,另一方面则是因为它的同性恋行为、反传统的着装及他在翻译方面的见解为该系一些教员所不容,而霍姆斯也无意为他人而改变自己的生活方式。
他于1985年辞去在阿姆斯特丹大学的教职,次年因艾滋病去世,时年62岁。
成就:霍姆斯在诗歌创作、诗歌翻译和翻译理论研究等方面都有突出成就。
首先,他是一个诗歌翻译家。
霍姆斯最大的贡献在于充当荷兰在英语世界中的文学大使,使世界认识到荷兰文学的存在。
他的第一部译作是1955年出版的《当代荷兰诗选》,在此后30多年的翻译生涯中,他介绍过荷语地区几乎所有重要诗人的作品。
早在1956年,霍姆斯获得象征荷兰文学翻译界最高荣誉的马丁内斯·那霍夫奖(Martinus Nijhoff Prize),成为第一位获此殊荣的外国人。
他还在晚年1984年获得弗兰芒地区首届荷兰语文学奖,是迄今为止唯一获得两个翻译奖项的人。
其次,霍姆斯是一个同性恋诗人。
霍姆斯的诗作既有韵律诗又有自由体诗,绝大多数都是同性恋题材。
功能对等翻译理论在英语翻译的应用

功能对等翻译理论在英语翻译的应用作者:金芳来源:《校园英语·下旬》2019年第02期【摘要】功能对等翻译理论以还原句子本意作为应用特征,多年来常被英语译者使用。
功能对等理论的专业性较强,本文以该理论为主,对该理论在英语翻译中的应用进行研究。
首先,文章简述功能对等翻译理论的特点。
其次,文章深入分析应用功能对等翻译理论的优势。
最后,文章对具体的应用方法与步骤展开论述。
望文中内容,可为各个翻译理论相关研究者,提供一些英语翻译方面的参考资料。
【关键词】功能对等理论;英语翻译;翻译技巧【作者简介】金芳(1981.12-),女,汉族,浙江越秀外国语学院,讲师,本科,研究方向:英语语言学。
引言英语翻译是对外发展过程中必然存在的工作种类,英语翻译的质量也将影响对外发展的整体质量。
不同语言体系之间具有不同的语言特征,每个国家之间都存在跨文化语言内容。
在英语翻译的过程中,译者必须重视跨文化内容,以及不同语言体系之间的转换差异。
翻译的根本目的为还原语句本意,因此,即使多种语言体系之间存在转换难度,译者仍然要尽力还原语言的本来含义。
一、功能对等翻译理论的特点1.以还原原文语义为目标。
还原原文语义既是英语翻译的根本目的,也是功能对等翻译理论的重点。
英语文化与汉语文化存在许多不同,逐字逐句进行还原,读者也将无法理解译文内容。
因此,功能对等理论重视“对等”这一特征,还原原文语义,令读者能够有效接收原文信息即可。
2.以传达句子含义为目的。
一个短语或短句所传达的意思,可能与词语组合本身的意思具有一定差异。
译者直接还原短语含义时,熟悉汉语语境的读者,可能无法理解英文谚语的实际含义。
因此,功能对等理论也强调理解对等,要求译者传达句子所要表达的含义。
3.可将深层结构转换。
英语语言同样具有两层含义,即浅层含义和深层含义。
多数情况下,浅层含义具有干扰的作用,负责隐藏句子真正的含义。
而功能对等理论,强调挖掘具体的深层含义,直接令深层结构处于上方,直接被读者阅读和理解。
工厂常用英语翻译

工廠常用英語翻譯(機械、模具。
)一、组织机构及职位总经理办公室Generalmanagersoffice模具部Toolingdepartment项目部Projectdepartment品质部Qualitydepartment计划部Plandepartment制造部ManufacturedepartmentKeypad产品部KeypaddepartmentIMD产品部IMDdepartment五金部Metalstampingdepartment设计科Designsection冲压车间Stampingworkshop电镀车间Platingworkshop物控科Productionmaterialcontrolsection计划科Plansection仓务科Warehousesection商务科Businesssection品质规划科qualityplansectionIQC科IQCsectionIPQC科IPQCsectionOQC科OQCsection检测中心measurementcenter项目规划科Projectplansection项目XX科ProjectsectionXX试模科Moldtestsection成本科Costsection设备科Facilitysection采购科Purchasesection综合办Generalaffairsoffice编程科Programming section模具工程科Tooling engineer ingsection模具装配车间Moldassemblyworkshop文控中心Documentcontrolcenter注塑车间Injectionworkshop喷涂车间Spraypaintingworkshop装配车间Assemblyworkshop总经理Generalmanager经理managerXX部门经理ManagerofXXdepartment原料库Rawmaterialwarehouse半成品库Semi-finishedproductwarehouse成品库Finishedproductwarehouse科长sectionchief主任chief部门主管departmenthead主管,线长supervisor组长Foreman,forelady秘书secretary文员clerk操作员operator助理assistant职员staff二、产品超声波焊接ultrasonicwelding 塑胶件Plasticparts塑材Rawparts喷涂件Paintedparts装配件Assemblyparts零件Component原料Rawmaterial油漆Paint稀释剂Thinner油墨Ink物料编号partnumber三、模具注塑模具injectionmold冲压模具Stampingtool模架moldbase定模座板FixedclampplateA板AplateB板Bplate支承板supportplate方铁spacerplate回位销Returnpin导柱Guidepin动模座板Movingclampplate 顶针ejectorpin单腔模具singlecavitymold多腔模具multi-cavitymold 浇口gate合模力clampingforce锁模力lockingforce开裂crack循环时间cycletime老化aging螺杆screw镶件Insert主流道sprue浇口gate直浇口directgate工廠常用英語翻譯(機械、模具。
纸业专业英语词汇翻译(F2)

纸业专业英语词汇翻译(F2)fiber classification 筛分(纤维)fiber classifier 纤维筛分仪fiber composition 纤维配比fiber content 纤维含量fiber cut 纤维切断fiber cutting 纤维切断fiber damage 纤维损伤fiber debris 纤维碎片fiber diameter 纤维直径fiber dimensious 纤维规格fiber drum 纤维制圆筒fiber entanglement 纤维交缠fiber fines 细小纤维fiber flow drum 废纸脱墨离解器fiber fraction 纤维组分fiber furnish 纤维配比fiber in tension 受拉纤维fiber knot 纤维结fiber length 纤维长度fiber length distribution 纤维长度分配fiber loss 纤维流失fiber mat 纤维层fiber membrane 纤维薄壁fiber orientation 纤维取向fiber pattern 纤维排列fiber pick 纤维起毛fiber press 纤维压榨机fiber recovery 纤维回收fiber saturated level 纤维饱和度fiber satruated point 纤维饱和点fiber strength 纤维强度fiber structure 纤维结构fiber stuff 纤维浆料fiber suspension 纤维悬浮液fiber texture 纤维结构fiber saturating point 纤维饱和点fiber tracheid 纤维管胞fiber tow 纤维屑fiber wall 纤维壁fiber wax 纤维蜡fiberboard 纤维板fibcrcone press 双锥辊挤浆机fiberglass 玻璃纤维Fiberlog 光电式纤维测定仪fiberization 纤维化(作用)fiberize 纤维化fiber-to-fiber bond 纤维间结合键Fibestos 醋酸纤维(商业名称)fibrage theory 帚化学说fibrator 盘磨机;纤维离解机fibre 纤维Fibrid 沉析纤维,类纤维(美国Do Pont de Nemours制合成纤维,商业名称)fibriform vessel member(element) 纤维状导管分子fibril 细纤维,纤丝fibrilla(e) 细纤维,纤丝fibrillating 细纤维化,纤丝化fibrillating 细纤维化,纤丝化fibrillating capacity 细纤维化本领,纤丝化本领fibrillation 细纤维化,纤丝化fibroid 纤维状Fibron 合成施胶剂(美国National Starch产品,商业名称)fibrous 纤维的fibrous cell 纤维状细胞fibrous composition 纤维配比fibrous filler 纤维填料fibrous fracture 纤维压溃fibrous fragments 碎纤维fibrous matter 纤维物质fibrous (raw) materials 纤维原料fibrous structure 纤维状结构fibrous tracheid 纤维状管胞fibro-vascular bundle 脉管状纤维束field effect 场效应field evaluation 现场评价,现场鉴定fifth hand 损纸清扫工figured porous wood 花纹孔材filament 纤丝filament yarn 单缕纱filamentary fibril 丝状原纤维filamentous bacteria 丝状细菌file folder 卷宗夹,文件夹fill 装;填;装满;填满;装料filled 加满的;填满的;加填的filled bristol 加填厚纸filled felt 污脏毛毯filled roll 纸柏辊filler 填料;填充物;装锅器filler clay 粘土(填料)filler mixture 填料调和器filler retention 填料留着率filler retention aid 填料助留剂filler slurry 填料乳液filler shurry tank 填料乳液槽fillet 嵌木filling 装料,装锅;加填;嵌木填充物fillister 凹槽,槽口film 薄膜film evaporator 液膜式蒸发器film former 薄膜成形装置film forming resin 薄膜树脂film wrapper 胶卷防护纸,感光防护纸Filmant (纸柏辊用)Filmat填料(商业名称)filter 过滤;过滤机filter aid 助滤剂filter basin 过滤池filter bed 滤层filter cake 滤饼filter circuit 滤波电路filter cloth 滤布filter felt 过滤毛毯filter mass 滤块filter paper test 滤纸试验filter press 压滤机filter-type thickener 滤过式浓缩机filterability 滤过性能filtered water 滤过水filtering 过滤filtering mat 滤层filtering stock 洗涤浆料filtering surface 过滤面积filtrate 滤液filtratio 过滤final age (木材)伐期龄final bleaching 终漂final cook 终煮final cutting 最后切断final dusting 二次除尘final reliel 大放气final stage of cooking 蒸煮后期final wash 后期洗涤final yield 最终得率Finch wet strength device Finch 湿强度测定仪fine cut burr 细纹刻石刀fine grained 细纹理fine grit 细粒度fine mesh screen 细筛,精选机fine mesh wire 细目网fine screen 细筛,精选机fine screenings 精选纸浆fine shavings 高级纸纸边fine structure 微细结构fine texture 微观组织fineness 细度;纯度fineness of grinding 磨木细度fines 细小纤维fines removal 筛除细小纤维fingers 梳状挡板;梳状剔除器finish 装饰finish of sheet 纸页(加工)整饰finished product 成品finished roll 成品纸卷finished weight 净重;纸卷重量finishing 整饰;完成finishing beater 成浆机finishing broke 完成损纸finishing end 完成部finishing line 完成工段finishing room 完成车间,完成工段finishing waste 完成工段损落finned pipe 翅管Finoplas 高密度聚乙烯合成纸(英国British Petroleum 产品,商业名称)fir (Abies) 冷杉属;冷杉;白冷杉fir bark (冷)杉皮fire brick 耐火砖fire detecter 火灾探测器,火灾指示器fire killed lumber 防火(木)材fire prevention 防火措施fire protection 防火措施fire resistance 耐火性能fire retardant 防燃剂fire safety rules 防火规范firegrate 炉蓖fireman 烧火工,加煤工fireproof 防火的fireproof crepe 防火皱纸firm red hrart 初期红心腐材firmly bound sulfur 紧结合硫first dryer 第一个烘缸first (main) press 第一(主)压榨first press felt 第一压榨毛毯first sortihg 初选first stage 第一段first strff 半料浆first wash 一段洗涤first water 一次蒸馏水first wet felt 第一湿毛毯fish eyes 透明圆点(纸病)Fisher's formula 开链式Fisher-T ollen's formula 半缩醛环式fishtail jet 鱼尾式喷射fissile 皮状,页状fission 分裂fissure 裂缝,裂口fittings 配件;管件fixation solution 固定剂fixed circular saw 固定圆锯fixed cast 固定铸造fixed crane 固定吊车,固定起重机fixed pulley 固定滑轮fixing agent 固定剂;定影剂flag (表明卷筒纸断头用)标签flag inserter 插签器flagged (卷筒纸的)断头标志flakes 薄片flaking (木片)超薄片切削flakt dryer 热风气垫干燥室flame plating 喷镀,焰镀flame proof 防火(的),耐火(的)flame proofing 防火的,耐火的flame resistance test 耐火试验flame retardant 防燃剂flamejet drying 火焰喷射干燥flammability 易燃性能flange 凸缘,突缘flaps (纸盒)褶叶flash dryer 闪击干燥器;气流干燥装备flash drying 闪击干燥,闪急干燥;气流干燥flash evaporation 急骤蒸发,闪急蒸发flash film evaporator 急骤(薄膜)蒸发器flash mixer 快速混合器;闪击混合器flash point 闪点flash roasting furnace 急骤煅烧炉flash tank 闪急槽flash vapor 闪急蒸汽flashing 闪击flashing chamber 闪击室flat back 平底法,单面压花法flat bed press 平版印刷flat bott0m blow tank 平底喷放锅flat bottom burr 平底刻石器flat box 吸水箱flat crush resistance 平压性能flat crush test 平压试验flat crush tester 平压测定仪flat finish 平压装饰flat grain 切向纵裂木纹flat roll 平滑辊flat screen 平筛,平板筛浆机flat screw 平头螺丝flat sheet 平板纸flat strainer 平筛,平板筛浆机flat tailing screen 平板尾筛flat valve 平阀flat vibrating screen 平板振动筛flat washer 平垫圈flat wrapper 平板包装纸flaw 裂口;缺陷(纸病)flawless finish 高级装饰flax (Linum) 亚麻属flax combings 亚麻屑flax shive 亚麻纤维束flax tow 亚麻皮,亚麻屑fled rheostat 电阻器fleece 羊毛Fletcher bleacher fletcher 间歇式高浓漂白塔Flemat dry former Flemat 干法成形装置flexibility 挠性,延性,柔韧性flexible cover 挠性封面纸,软封面纸flexible fiber 柔软纤维flexible packaging 柔软包装flexible straight slice 挠性立式堰板flexifiner 锥形磨浆机flexi-nip calender 自控中高压光辊flexing 挠曲flexography 苯胺凸版印刷flexural property 屈曲性能flexural resistance 挠曲阻力flexural rigidity 挠曲强度flexural strength 挠曲强度flight and drah conveyer 链条耙式运输机flight conveyer 刮板运输机flint 磨石;燧石flint glazed card 蜡光卡纸flint glazing 燧石磨光flint glazing machine 磨光机flip-flop counter 触发计数器float valve 浮阀float-wash fractionator 浮洗式纤维回收机floatation 漂浮;浮力;浮选floatation agent 助浮剂floatation cell (废纸脱墨)浮选槽floatation deinking 浮选脱墨floatation (deinking) cell (废纸脱墨)浮选槽floatation machine 浮选机floatation pyrite 浮选硫铁矿floatation test (施胶度)飘浮测定法floated wood 浮选木材floater 悬浮式干燥室floating bed scrubber 浮层洗涤塔floating disc refiner 浮动式盘磨机floating dryer (皱纹纸)起皱后的烘缸floating roll 浮泳式压榨辊floating test for steeping (纸浆碱浸)飘浮试验floc 絮凝物flocculant 凝聚剂,絮凝剂flocculant aid 凝聚助剂,絮凝助剂flocculate 絮凝,絮聚flocculating agent 絮凝剂,絮聚剂flocculation 絮凝(作用),絮聚(作用)flokcculator 凝聚器flock coating 植绒涂布flocking 植绒flocks 短纤维flong 字型纸板flooded gum (Eucalytus rudis EndI.) 野桉flooding pipe 溢流管flooring felt 铺地用毯flour 粉状纤维,细小纤维flour tester 细小纤维测定仪flourescence 荧光flourescent brightener 荧光增白剂flourescent brightener dye 荧光染料Flo-Vat unit Flo-Vat 成形器flow 流送,流动flow agent 助流剂flow apperach 流浆系统;浆料流送系统flow box 流浆箱,网前箱flow chart 流程图flow control 流送控制,进料控制flow dontroller 流量控制器flow diagram 流程图flow distributer 整流器,匀浆器flow evehner 整流器,匀浆器,匀浆辊flow measurement 流量测定flow meter 流量计flow modifier 流动性能调节剂flow nozzle 流送喷嘴flow of stock 浆料流送flow-on coating 机上流送布flow onto wire 浆料上网flow properties 浆流性质;流送性质flow rate 流速flow recorder 流量记录仪flow roll 整流辊,多孔辊flow sheet 流程图flowing through screen 内流式筛浆机flue 烟道flue gas 烟道气fluff 起毛fluffer 纤维分离机;疏解机fluffiness 起毛现象flufing tendency 起毛趋势fluid 流体;流质fluid flow 流体流动(量)fluid mechanics 流体力学fluid shear 流体切变fluidics 射流(技术)fluidity 流度,流动性fluidization 流态化(作用)fluidize 流态化fluidize(d) bed recovery 废液流化床回收fluidize bed 流态化层,流化床fluidizer 流化床fluidizing velocity 流态化速度fluoglass (聚四氟乙烯浸渍)玻璃纤维织布流槽,斜槽fluor tester 荧光测定仪fluorchemical size 有机氟胶料fluorescence 荧光(性)fluorescent bleachin agent 荧光增白剂fluorescent brightener 荧光增白剂fluorescent dye 荧光增白剂fluorescent white 荧光增白剂fluorhydric acid 氢氟酸fluorine compound 碳氟化合物"fluosolid" furnace 沸腾(培烧)炉"fluosolid" lime calciner 沸腾式石灰渣焙烧炉"fluosolid" roaster 沸腾(培烧)炉"fluosolid" roasing 流态化焙烧,沸腾层培烧flush 冲洗flushing valve 冲洗阀flute 瓦楞;沟纹;沟槽flute compression 瓦楞压型fluted 瓦楞的;沟纹的fluted roll 沟纹辊fluting 瓦楞;瓦楞成形fluting medium 瓦楞原纸。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设计和制造的两维非可分达曼光栅国家重点实验室微制造,光学电子,中光学技术研究所科学院,成都610209,中国摘要本文提出了一种改进方案与取样光栅决议以产生平滑的边界与模式,使设计的二维(2 - D型)非可分Damann光栅退火算法的能力提高.数值模拟,校正了横向光刻制造过程中的错误同时使金属制造业中光栅符合模拟测试实验结果.关键词:Damann光栅,模拟退火算法1·引言由于达曼光栅的结构和制造比较简单,使得达曼光栅在在光分离或合并光学中起到了非常重要的作用。
许多优化技术,已开发设计达曼光栅指定的功率分配模式和高衍射效率。
模拟退火算法是一种有用的方法用来设计2 - D点阵列发电机。
本文提出了常规退火过程的一些改进方案,以避免横向制造错误的产生,在光刻的过程中作为一个例证,一个产生3 * 3的重量分配不均点阵列的达曼光栅已经设计和制造出来。
实验测量结果符合制造误差的模拟数值。
继此文件的内容将在第四节给出相应的讲解。
在第2节,经过优化后的模拟退火算法经常被用来描述和设计二维光栅结构。
在这一节制作并探讨了在一个广泛应用的波长的数值模拟光栅,并将在这里给出相应的数据。
并给出了在制造过程中应用邻近效应来消除制造误差的校正方法。
在第3节,下一节给出了制造达曼光栅的一些实验结果。
并在最后一节做了一些相应的讨论。
2·1达曼光栅的设计2.1优化后的模拟退火算法模拟退火算法常用来设计其近全方位优化能力全息发电机和处理设施的2 - D二进制光栅结构。
第一,在一个周期光纤光栅的结构划分为K * L的许多矩形单元格,并规定了每个单元格与束调制相位值,0或者φ,透光值的矩阵Hkl 就是 lor exp(i φ).。
因此,九个低级衍射衍射效率表达式就可以通过傅立叶变换和一些简单的数学计算得到。
其中α是一个用于调整预期设计的功率分配方式和衍射效率之间的权重相似性的常数。
ηo是预期的总效率。
该算法可以描述如下:首先,(Hkl)的初始值的设定是可以随机选择的,(err)也可以由计算得出。
然后每更改一个(Hkl)便重新计算一个(err')。
如果(err)下降,现在的操作就是对的。
否则,变化则满足与温度参数T的概率函数相关,那么会有这样的关系P=exp(-(err'-err)/T)。
反复重复这个过程直到所有Hkl下降温度,然后再进入下一个循环。
这里关于模拟的2-D达曼光栅退火算法有两个不同于以往的方法。
①虽然以前的一些文件,均以φ作为参数来变化的算法,但不建议在这里使用。
从我们多年的经验来看,所设计的优化功能φ通常使用二进制相结构,如图1所示,这样做增加了周边地区的蚀刻,而且几乎每一步的光刻的进展不可避免地伴随着更大的加工误差。
在我们的计划中,位相φ的延迟决定开始前退火的进展。
然而,这样一个结果的实现,将有助于取得更满意的效果:non-π相光栅的效率往往产生微量的增加约5%。
但是,这些能量分配模式与价值相π具有线性相位误差刻蚀深度误差或造成波长的使用的不正确。
②在适当的值的K和L必须要得到可接受的能源,高衍射效率的分配模式。
K和L如果比较小则意味着分辨率低,说明光栅结构,通常带有锯齿和粗糙的边界,这也有助于增加横向制造误差二元相结构。
另一方面,大尺寸的数据会带来更多的时间用于退火过程消耗。
受制于采样分辨率和时间的复杂性的冲突,退火进展分为两个阶段:(a)运行抽样矩阵和小规模的退火计划(b)扩大抽样矩阵取得了最后阶段的规模扩大,然后继续执行退火操作,直到取得可以接受的结果。
图 1两个蚀刻地区的达曼光栅的功能与类型:a)粗的边界围成的有如许多孤岛和湖泊,b)平滑边界围成的则像一个庞大的大陆。
实线是蚀刻的边界地区光栅设计,虚线记为制造制造过程中产生的制造误差。
2.2设计的结果根据光谱成像分析系统,二维达曼光栅的设计要求应符合下列光学参数配置。
光栅周期:20μm*20μm波长范围:500 j700nm阵列数组大小:3*3电源阵列中的重点景点分布模式其中P m,n是的衍射效率衍射(m,n)阶,总有效率η是在3 * 3点阵列位置。
在这里重要的是要注意,理想的能量分配模式矩阵不能被看作是对两个向量的共同的结果,因此,通过这两个方法1 - D光栅结构在这里是没有作用的,必须采用通过优化技术的[2 - D]不可分离光栅结构。
按照上述的算法,光栅相结构得到的图像则如图2所示。
在这里,相位差φ是π对于一个波长范围广泛的使用。
可以看出,相结构的边界是平滑后扩大取样从50 * 50到 320 * 320矩阵的大小。
导致光栅的周期许多看起来像蝙蝠在飞行,同时我们可以看出它有横向制造误差,图3给出了为波长范围从500nm到700nm的3 * 3点阵列的衍射级的衍射效率,以及光栅的成色性能。
图。
2该结果为一个时期设计改进的模拟退火算法对达曼光栅的二元相分布的影响。
(a)图表示的是K= 1 = 50,(b)图表示的是K = 1 = 320(c)图表示的是为3 * 3周期的光栅。
黑色的和白色区域的相位差为π。
(波长μm)图3在3*3点阵列的衍射级次的效率的计算中,达曼光栅能够照明的光的波长范围介乎0.5μm到0.75μm之间。
2.3生产过程中的错误与数值分析根据现有的情况了解,设计人员普遍认为,达曼光栅的功率分布模式对横向制造误差是非常敏感的,通常会造成边缘地区的刻蚀的转变,特别是零阶。
为了更明显得证明这种结果,我们将模拟数值的功率分布模式的横向制造误差范围限制在±0.2μm和±0.1μm之间。
并在图4中给出。
图4模拟功率模式及其分布的变化是由达曼光栅不同的横向加工误差所引起的。
(a)0.2μm(b)0.1μm(c)-0.2μm(d)-0.1μm2.4 多波长衍射光栅诚然,当应用的波长的范围比较广泛时,达曼光栅的功率分配模式的变化通常是很大的。
然而,它有可能找到某种结构使这种变化下降到很低的范围内。
一个简单的方法是:在设计的二元衍射光学元件过程中采用两个波长的技术。
该方法的原理是:在光学材料上选择合适的刻蚀深度(h),使两相位调制值的总和等于2π。
那么h和φ值的大小为:另外给生成与符合条件的的衍射效率所需的功率分配模式增加限制值是保证光栅结构存在的一种解决方案。
一般来说,Φ的值不可以小于或者接近于2π以保证必要的相位调制。
因此,两个波长的最大空间取决于具体需要的功率分配模式以及所使用的光学材料折射率的特点。
作为一个数值比较,令熔硅材料的λ1=0.52μm,λ2=0.65μm ,n1=1.4612,n2=1.4565 。
从方程(6),我们可以得到景深h=0.29μm以及φ=3.507,随着模拟退火算法在2.1节所给出,我们可以得出相位光栅和设计的功率分配模式结果,其结果如图5所示,如果是单一波长其结果则如设计图3所示,我们可以看到在较宽波长范围内的功率分配模式的效率呈现从小于零的位置向下下降变化。
图5 一个(non-π)两个波长的达曼光栅的设计的结果。
(a)他们的的相位分布在同一个时期,(b)计算的功率的分配方式不等,波长介于0.5μm与0.7μm之间。
3·达曼光栅的制备达曼光栅的制造序列包括以下程序:1-直接用激光刻录并制造二元掩膜,2-光刻过的照片不能与太阳光接触,3-显像,4-利用反应离子蚀刻转让光栅模式硅板,问题的关键在于,这些演变正是与二进制救济模式相一致的材料,尽管光刻设备的精度十分有限,,通过光学邻近效应的校正技术的校正,其横向制造误差将有可能大幅减少。
根据以上结论所设计得结果将在2.2节给出。
我们所制作的达曼光栅与硅板光栅的景深为0.693μm,其波长为0.633μm。
测得的二元结构景深的横向制造误差约为0.2μm。
图6 在显微镜观察下看到的照片(a)制造的模具和达曼光栅,(b)利用硅板制作光栅结构。
4·实验图7 达曼光栅衍射效率的设置及其测量,光学达曼光栅的实验是用氦氖激光器等配件装配组成的,如图7所示,用预期的3 * 3点阵列衍射观察到的模式与CCD 相机焦平面进行对比,其结果如图8所示。
衍射效率的测量精确的功率计的结果是70%和功率分配的计算与中央3 * 3的矩阵的计算结果为该数值非常符合当初的模拟结果,并给出模拟图像如图4所示.图8 通过CCD相机拍摄的显示点阵列图的照片。
5·结论一般来说,对于一个设计师来说它并不是一个非常的困难的任务,用变异优化技术,产生并获得达曼光栅的结构,恰恰是与特定的功率分配模式和高效率的点阵列息息相关的。
但是,制造误差,特别是横向的制造误差,在制造过程中通常会引起在功率分配的数组方式的转变方面提供了非常理想的地点。
所以在设计制造的过程中减少这种效应是非常有用的。
本文提出了改进的模拟退火算法用以使计算的速度能够更快,可以更进一步得改善光栅的结构,最终设计完成2 - D不可分离达曼光栅。
采用这种方法的目的在于获得光栅结构以提高制造公差。
其他一些因素,如选择合适的相位差,也有可能有助于改善公差。
这项工作目前正在进行中,其结果将以后的有关期刊上得到刊载。
参考文献1.《高效率的在线多手段多相位全息图》,H. Dammann,K. Gortler, 发表于1971年,3(5),312-3152.俊久保田,武田光夫,《阵列照明灯使用光栅耦合器》,发表于1989年,14(12),651-6523.《光衍射间连接的综合因素》,M. R. Taghizadeh, J. Turunen,发表于1992年,12,221-2424.《达曼阵列照明的数值研究》,周常河,刘立人,发表于1995年,34(26),5961-59695.《达曼光栅新一代光栅阵列的设计》,U. Krackhardt,N. Streibl,发表于1989年,74(12),31-366.《激光光束整形达曼光栅》,J. Jahns, M. M. Downs, M. E. Prise, N. Streibl, S. J. Walker,发表于1989年,28(12),1267-12757.《迭代高点阵列的发电效率全息图编码》,Michael R. Feldman, Clark C. Guest, 发表于1989年,14(10),479-481。