第四章 汽车制动性

合集下载

汽车理论各章知识点

汽车理论各章知识点

第一章汽车的动力性1汽车动力性:指汽车在良好路面上直线行驶时由汽车受到的纵向外力决定的、所能达到的平均行驶速度。

2汽车动力性主要由三方面指标来评定:1)汽车的最高车速µamax:是指在水平良好的路面(混凝土或沥青)上汽车能达到的最高行驶车速2)汽车的加速时间t:表示汽车的加速能力。

常用原地起步加速时间与超车加速时间来表明汽车的加速能力原地起步加速时间指汽车由Ⅰ挡或Ⅱ挡起步,并以最大的加速强度(包括选择恰当的换挡时机)逐步换至最高挡后到某一预定的距离或车速所需的时间。

超车加速时间指用最高档或次高挡由某一较低车速权利加速至某一高速所需的时间3)汽车的最大爬坡度ⅰmax:是指Ⅰ挡最大爬坡度。

汽车的上坡能力实用满载(或某一载质量)时汽车在良好路面上的最大爬坡度ⅰmax表示的。

3汽车的驱动力:地面对驱动轮的反作用力Ft(方向与Fo相反)即是驱动汽车的外力,此外力称为汽车的驱动力。

4汽车驱动力公式Ft=5汽车驱动力图6汽车的行驶阻力的分类1)滚动阻力Ff2)空气阻力Fw(汽车直线行驶时受到的空气作用力在行驶方向上的分力)空气阻力分为压力阻力与摩擦阻力两部分压力阻力又分为四部分:形状阻力、干扰阻力、内循环阻力、诱导阻力3)坡度阻力Fi(汽车重力沿坡道的分力表现为汽车的坡度阻力)道路阻力:由于坡度阻力和滚动阻力均属于与道路有关的阻力,而且均与汽车重力成正比,故可以把这两种阻力合在一起称作道路阻力4)加速阻力Fj(汽车加速行驶时,需要克服其质量加速运动时的惯性力)7汽车行驶方程式Ft=Ff+Fw+Fi+Fj (N)Ff=Wf f-滚动阻力系数 W-车轮负荷Fw=C D Au a²/21.15 C D-空气阻力系数A-迎风面积m²u a-汽车行驶速度km/hFi=Gsinα G-汽车重力Fj=δm d u/d t δ-汽车旋转质量换算系数 m-汽车质量kg d u/d t 行驶加速度m/s²第二章汽车的燃油经济性1汽车的燃油经济性:在保证动力性的条件下,汽车以尽量少的油消耗量经济行驶的能力2汽车燃油经济性的评价指标:汽车的燃油经济性常用一定运行工况下汽车行驶百公里的燃油消耗量或一定燃油量能使汽车行驶的里程来衡量。

汽车理论

汽车理论

2)由比功率确定发动机功率
汽车比功率
1000Pe CD A fg ua m a u3 x m 3.6ηT 76.14mηT
a max
4、最小传动比的选择:原则:兼顾动力性和经济性 考虑方面:最高车速和汽车后备功率
uamax / u P =1,动力性和燃油经济性都比较好;
< 1,动力性差,燃油经济性好; >1,动力性好,燃油经济性差。 5、驾驶性能:指加速性、动力装置的转矩响应、噪声和振动。 最小传动比过小,汽车在重负荷下工作,加速性不好,出现噪声和振动。 最小传动比过大,燃油经济性差,发动机高速运转的噪声大。 6、最大传动比的选择:1)满足汽车的最大爬坡度:
16、汽车的功率平衡:汽车行驶的每一瞬间,发动机发出的功率始终等于机械传动损失功率 与全部运动阻力所消耗的功率。
Pe
T
ua
F F
f
w
Fi Fj
Pe
3 Giua mua du 1 Gfua CD Au a T 3600 76140 3600 3600 dt
rr0w
rr0w
rr0w 完全拖滑时w 0
8、滑动率:车轮接地处的滑动速度与车轮中心运动速度的比 值。滑动率的数值说明了车轮运动中滑动成分所占的比例。
s
uw rr0w 100% uw
FZ
9、 制动力系数 FX b : 地面制动力与作用在车轮上的垂直载 b 荷的比值。 10、峰值附着系数 p :制动力系数的最大值,一般出现在 s =15%~20% 11、滑动附着系数 s :s =100%时的制动力系数 12、侧向力系数 FY :地面作用于车轮的侧向力与车轮垂直 l
FZ

汽车理论(第五版)第四章_汽车的制动性

汽车理论(第五版)第四章_汽车的制动性
在 2 时间内
s2 u0 2
abmax 式中 k 2
du k d
du kd
当τ=0时,u=u0
1 u u0 k 2 2
ds 1 u0 k 2 由于 d 2
1 ds u0 k 2 d 2
8
第二节 制动时车轮的受力
一、地面制动力 FXb
FXb Tμ r
ua
W
由制动力矩所引起的、地 面作用在车轮上的切向力。
Tp
制动力矩Tµ

FXb
FXb
地面附着力
r
FZ
9
FXb F
第二节 制动时车轮的受力
二、制动器制动力Fμ
与附着力无关

Tμ r
在轮胎周缘克服制动器摩擦力矩所需的切向力。
21
第二节 制动时车轮的受力
FY
FY
平地转向时,离心力Fl由地面侧向力FY平衡。
22
第二节 制动时车轮的受力
当汽车在倾斜弯道转向时,离心力Fl可由重力的分力平衡。 弯道内倾,可以减小所需的地面侧向力;倾角依道路 转弯半径和设计车速而定。
23
第二节 制动时车轮的受力
环形跑道(视频)
(注意观察弯道的倾斜情况)
当 2 时
1 ue u0 k 2 2 2
当 ''时,将k
1 abmax 2 2 6
ab max
2''
代入
当τ=0 时,s=0
s u0
1 3 k 6
s2 u0 2
s2 s2 s2
s2 u0 2 u0 2

《汽车理论》教案4-汽车制动性

《汽车理论》教案4-汽车制动性

3. 汽车的制动效能及其恒定性(60’)
(1)制动减速度(10’) 1)车辆制动时整车受力分析 2)最大制动减速度的推导
abmax s g , abmax p g
3)平均制动减速度 (2)制动过程分析(15’) 1)制动踏板力、汽车制动减速度与制动时间的关系曲线 2)阶段划分 驾驶员反应时间
(7)同步附着系数φ0 的选择(15’)
4
预习 思考题
《汽车理论 A》教案
1)轿车同步附着系数φ0 的选择 2)货车同步附着系数φ0 的选择 本章节的重点,介绍完轿车的φ0 选择后采用提问式教学让学生 自己分析货车φ0 的选择 (8)对前、后制动器制动力分配的要求(15’) ECE 制动法规 (9)制动力的调节(15’) 1)限压阀 2)比例阀 3)感载比例阀、感载射线阀 (10)制动防抱死系统(ABS)(40’) 1)ABS 的理论依据 2)ABS 的优缺点 3)ABS 的基本组成 4)ABS 的液压原理 5)ABS 的控制原理 ABS 的理论依据和优点是本章节的重点,应认真分析到位。结 合视频文件和实际案例进行教学 本章共 10 学时,5 次课,各次课的预习思考题: 第 1 次课预习思考题 汽车制动性从哪些方面进行评价? 什么是地面制动力、制动器制动力?它们和附着力的关系如何? 什么是滑动率? 什么是制动力系数?它与滑动率的关系如何? 什么是侧向力系数?它与滑动率的关系如何? 影响制动力系数的因素有哪些? 第 2 次课预习思考题 制动过程分成哪几个阶段?哪几个阶段与制动距离有关? 盘式制动器和鼓式制动器的制动性能比较? 什么制动跑偏?其产生原因有哪些? 前后轴的抱死次序有哪几种?各是何含义? 什么制动侧滑?哪种情况下易发生制动侧滑?为什么? 第 3 次课预习思考题 什么情况下会发生失去转向能力? 制动时地面对前、后车轮的法向反作用力的计算公式(4-6)与(4-7)的

汽车理论:第四章 汽车制动性作业(答案)

汽车理论:第四章 汽车制动性作业(答案)

m du dt
=
FXb1
+ FXb2
=
FZ1ϕ
+ 0.5FZ1ϕ
= 1.5FZ1ϕBiblioteka 3)汽车的制动减速度由
m
du dt
= 1.5FZ1ϕ
=
1.5ϕ L
(Gb +
m du dt
hg )
可得
(1 − 1.5ϕhg )m du = 1.5ϕ Gb L dt L
du =
1.5ϕGb
= 1.5ϕgb = 1.5 × 0.7 × 9.8 × 1.1
答:
开始制动时,前、后制动器制动力 Fu1、Fu2 按 β 线上升,因前、后车轮均未抱死,故 前、后轮地面制动力 FXb1= Fu1、FXb2= Fu2 也按 β 线上升。
到 B 点时, β 线与ϕ = 0.7 的 r 线相交,地面制动力 FXb1、FXb2 符合后轮先抱死的状
况,后轮开始抱死。
从 B 点以后,再增加制动踏板力,前、后制动器制动力 Fu1、Fu2 继续按 β 线上升,因 前轮未抱死,故前轮地面制动力 FXb1= Fu1 仍按 β 线上升,但因后轮已抱死,故其地面制动 力 FXb2 不再按 β 线上升,而是随着 FXb1 的增加而沿ϕ = 0.7 的 r 线变化而有所减小。
解: 1)质心至前轴的距离
a = L − b = 2.8 −1.1 = 1.7 m
制动时汽车的受力图
2)忽略汽车的滚动阻力偶矩、空气阻力以及旋转质量减速时产生的惯性力偶矩,根据汽车 在水平路面上制动时的受力分析可得
FZ1
=
1 L
(Gb
+
m
du dt
hg
)
FZ 2

汽车理论第四章汽车的制动性

汽车理论第四章汽车的制动性

一、地面对前、后车轮的反作用力
图中忽略了汽车的滚动阻力偶矩、空气阻 力以及旋转质量减速时产生的惯性力偶矩。 下面的分析中还忽略制动时车轮边滚边滑 的过程,附着系数只取一个定值φ0。
对后轮接地点取力矩得
du Fz1L Gb m hg dt
对前轮接地点取力矩得
du Fz 2 L Ga m hg dt
1:理想的制动器制动力曲线
2:具有固定比值的制动器制动力曲线
3:地面制动力线
4:同步附着系数
5:制动过程分析
6:制动效率 7:前后制动器制动力的分配原则β
制动过程中,可能出现如下三种情况:
1:前轮先抱死拖滑,然后后轮抱死
2:后轮先抱死拖滑,然后前轮抱死
3:前、后轮同时抱死拖滑
其中,1是稳定情况;2是不稳定情况;3可 避免侧滑,同时只有在最大制动强度时才会失去 转向能力,同时附着条件利用较好。 所以,前、后制动器制动力分配的比例将影 响汽车制动时的方向稳定性和附着条件利用程度, 是设计汽车制动系统必须妥善处理的问题。
2 b 2 e
式中:
ub——0.8u0的车速(km/h);
u0 ——起始制动车速(km/h) ; ue ——0.1u0的车速(km/h) ; sb ——u0到ub车辆经过的距离(m); se ——u0到ue车辆经过的距离(m)。
二、制动距离的分析 驾驶员反应时间
1
' 1 ' 2
制动时汽车跑 偏的情形
a)制动跑偏 时轮胎在地面上留 下的印迹 b)制动跑偏 引起后轴轻微侧滑 时轮胎留在地面上 的印迹 b)
a)
制动跑偏时的受力图
一、汽车的制动跑偏 制动时汽车跑偏的原因有两个: 1)汽车左、右车轮,特别是前轴左、右车轮 (转向轮)制动器的制动力不相等。 2)制动时悬架导向杆系与转向系拉杆在运动 学上的不协调(互相干涉)。 二、制动时后轴侧滑与前轴转向能力的丧失 制动时发生侧滑,特别是后轴侧滑,将引起 汽车剧烈的回转运动,严重时可使汽车调头。

第四章 汽车的制动性

第四章 汽车的制动性
16
§2 制动时车轮的受力
17
§2 制动时车轮的受力
4、侧向力系数 侧向力系数φℓ : 侧向力极限值与垂直 载荷之比。
侧向力包括: 侧向风 离心力 侧向力
18
§2 制动时车轮的受力
19
§2 制动时车轮的受力
※较低滑动率时(S=15%),可以获得较大的制动 力系数与较高的侧向力系数。
ABS系统
3)在τ3时间段内所驶 过距离S3
u2f ue2 2jmaxS3
S3
u
2 e
2 jm ax
(u 0
1 2
k
'' 2 2
)
2
2 jm ax
(u 0
1 2
(
jm
ax
)
'' 2 2
)
2
2 jm ax
u 02 2 jm ax
1 2
u 0
'' 2
1 8
j '' 2
m ax 2
31
第三节 汽车制动效能及其恒定性
43
第四节 制动时的方向稳定性
一、汽车制动跑偏 跑偏原因有两个:
1)汽车左、右车轮,特别是前轴左、右转 向轮制动器制动力不等。——制造或调整 误差 2) 制动时悬架导向杆系与转向杆系在运动 学上的不协调或干涉。——结构设计原因
44
第四节 制动时的方向稳定性
1)由于汽车左、右车轮,特别是前轴左、 右转向轮制动器制动力不等
τ——制动时间s S——制动距离m
27
第三节 汽车制动效能及其恒定性
2)在τ2''时间段内所驶
过距离S2'' (作匀变减

汽车制动性

汽车制动性

第4章 汽车的制动性 学习目标通过本章的学习,要求掌握制动性的评价指标;掌握制动时汽车的受力情况以及地面制动力、制动器制动力与地面附着力之间的关系;掌握汽车制动距离的概念和计算方法;能对制动跑偏和制动侧滑进行正确的受力分析和运动分析;熟练分析前、后制动器制动力具有固定比值的汽车在各种路面上的制动过程;了解自动防抱死系统的原理。

为了保障汽车行驶安全和使汽车的动力性得以发挥,汽车必须具有良好的制动性。

对于行车制动而言,汽车的制动性能是指汽车行驶时,能在短距离内停车且维持行驶方向稳定,在下长坡时能维持较低车速的能力。

汽车的制动性是汽车的主要性能之一。

制动性直接关系到交通安全,重大交通事故往往与制动距离太长、紧急制动时发生侧滑等情况有关,故汽车的制动性是汽车行驶的重要保障。

改善汽车的制动性始终是汽车设计制造和使用部门的重要任务。

节 制动性的评价指标制动性主要用以下三方面指标来评价:4.1.1 制动效能。

包括制动减速度、制动距离、制动时间及制动力等。

制动效能是指在良好路面上,汽车以一定初速制动到停车的制动距离或制动时汽车的肩速度。

它是制动性能最基本的评价指标。

4.1.2 制动效能的恒定性。

包括抗热衰退和水衰退的能力。

汽车高速行驶或下长坡连续制动时制动效能保持的程度,称为抗热衰退性能。

因为制动过程实际上是把汽车行驶的动能通过制动器吸收转换为热能,所以制动器温度升高后,能否保持在冷状态时的制动效能已成为设计制动器时要考虑的一个重要问题。

此外,涉水行驶后,制动器还存在水衰退问题。

4.1.3 制动时的方向稳定性。

指制动时汽车按照驾驶员给定方向行驶的能力,即是否会发 生制动跑偏、侧滑和失去转向能力等。

制动时汽车的方向稳定性,常用制动时汽车按给定路径行驶的能力来评价。

若制动器发生跑片、侧滑或失去转向能力,则汽车将偏离原来的路径。

节 制动时车轮受力 4.2.1 制动器制动力在轮胎周缘克服制动器摩擦力矩μT (N ·m)所需的力,称为制动器制动力,用μF (N)表示,显然rT F μμ=式中 r ——车轮半径(m)。

汽车理论课件第四章

汽车理论课件第四章
➢ 抗制动衰退的性能—经长时间、高强度的制动后,或者制动器涉 水以后,制动效能不致过分降低的能力。即定义中的“可靠”。 感性认识,了解《GB 7258-2017 机动车运行安全技术条件》
相关项目及限值要求。P118-119 注意,标准规定了“…附着系数大于等于0.7”的条件,这是
为了在统一的试验条件下重点体现车辆的性能。在本章研究中,并 不限定路面条件,路面条件对制动性的影响是一个重要研究内容。
未制动
制动时
紧急制动时,力矩FXb r使前轴向前转。前板簧刚度较低,则转 角θ较大;且上述球销距轴心较高 位移δ=hθ应较大,例如3mm。
该球销又与转向纵拉杆相连,只能在转向杆系的间隙和弹性的
容许下稍许向前运动,例如δ’=2mm 相对于无跑偏的δ=3mm , 球销向后运动了1mm 。于是车轮向右转。
真实的
汽车理论 吉林大学汽车工程学院
3
§4-2 制动力分析
真正使汽车减速的是地面制动力FXb。
地面制动力实际上同时受到两对摩擦副的限制:
➢ 制动器内部摩擦副。该摩擦副产生制动器制动力Fμ,在给定制
动系参数的条件下,Fμ取决于制动踏板力Fp。
➢ 轮胎—地面摩擦副。两者之间的纵向力不会超过附着力Fϕ (FZ ϕ)。
比较常见的一个指标是充分发出的平均减速度,符号为MFDD, 单位为m/s2。
其含义是:制动全过程的车速由u0 (km/h)变化到0,其中 0.8u0 →0.1u0就是制动效能的“充分发出”阶段,将此阶段看做匀 减速过程而得到的平均值,就得到:
MFDD (0.8u0 )2 (0.1u0 )2 25.92S
换言之,地面制动力FXb等于制动器制动力Fμ与附着力Fϕ二者
中的较小者。
当制动踏板力Fp不大时,车轮未抱死

汽车理论第6版清华大学余志生主编课件章节4.5

汽车理论第6版清华大学余志生主编课件章节4.5
汽车理论
Automobile Theory
主讲人:尹宗军
Email:zjyin2@ifly SchooltoefkM.ceocmhanical Engineering
Anhui Institute of Information Technology
第四章 汽车的制动性
第五节 前、后制动器制动力的比例关系
r 线组
0.5 FXb2
0.1 0.2 0.3
0.4
0.3
0.2
0.1
I曲线
0.4
0.5
f 线组
(0, Gb) hg
r 线组作图
Ga
FXb1
( , 0)
hg
第五节 前、后制动器制动力的比例关系
第五节 前、后制动器制动力的比例关系
3. f 线组和r组线的分析
1)f 线组 当FXb2<0时是地面驱动力,无意义。

FZ1



Gb L

FXb hg L

将FXb FXb1 FXb2代入
FXb1



Gb L

FXb1
L
FXb2
hg

FXb2

L hg hg
FXb1

Gb hg
FXb2=0
FXb1

Gb L hg
FXb1=0
FXb2


Gb hg
一定时,f 线为直线
f 线与横坐标的交点
后轮制动管路失 效,前轮抱死时的 地面制动力。
后轮制动严重滞 后,前轮抱死后, 后轮才将开始制动。
第五节 前、后制动器制动力的比例关系

车轮制动受力分析 - 车轮制动受力分析

车轮制动受力分析 - 车轮制动受力分析

第四章 汽车制动性第二节 制动时车轮受力分析制动时的汽车行驶方程式为)(i w f j F F F F F b ++-=(4-1)式中:b F 为汽车地面制动力。

由制动性的定义可知,滚动阻力0f ≈F ;制动时车速较低且迅速降低,即0w ≈F ;坡道阻力0i =F 。

所以,汽车行驶方程式可近似表达为jF F b =(4-2)一、地面制动力、制动器制动力和附着力假设滚动阻力偶矩、车轮惯性力和惯性力偶矩均可忽略图,则车轮在平直良好路面上制动时的受力情况如图4-1所示。

图4-1 制动时车轮受力条件制动器制动力μF 等于为了克服制动器摩擦力矩而在轮胎轮缘作用的力。

其大小为rT F /μμ=(4-3)式中:μT 是车轮制动器摩擦副的摩擦力矩。

制动器制动力μF 是由制动器结构参数所决定的。

它与制动器的型式、结构尺寸、摩擦副的而摩擦系数和车轮半径以及踏板力有关。

从力矩平衡可得地面制动力b F 为rT F /μb =(4-4)地面制动力b F 是使汽车减速的外力。

它不但与制动器制动力μF 有关,受地面附着力ϕF 的制约。

图4-2 地面制动力、车轮制动力及附着力的关系图4-2给出了地面制动力、车轮制动力及附着力三者之间的关系。

当踩下制动踏板时,首先消除制动系间隙后,制动器制动力开始增加。

开始时踏板力较小,制动器制动力μF 也较小,地面制动力b F 足以克服制动器制动力μF ,而使得车轮滚动。

此时,μb F F =,且随踏ϕFμxb =板力增加成线性增加。

但是地面制动力是地面摩擦阻力的约束反力,其值不能大于地面附着力ϕF 或最大地面制动力bmax F ,即⎩⎨⎧==≤zz F F F F F ϕϕϕmax b b (4-5)当制动踏板力上升到一定值时,地面制动力b F 达到最大地面制动力ϕF F =max b ,车轮开始抱死不转而出现拖滑现象。

随着制动踏板力以及制动管路压力的继续升高,制动器制动力μF 继续增加,直至踏板最大行程,但是地面制动力b F 不再增加。

汽车制动性能(最新)

汽车制动性能(最新)

(4)侧向附着系数φ , 在Fy 侧向力的作用下, φ =Fy /Fz 侧向力Fy与地面垂直反 力之比。
侧 侧
φb—S关系:
(1)OB段:φb直线上升, S从0—15—20%,出现 峰值φp。 (2)S再增大,φ纵下降, φ侧也下降。
(3)S再增大,S=100% 时,φ=φS 纵向φ较小,制动距离长。 侧向φ=0,能承受的侧向 力Fy=0。 所以:极易侧滑。
4——2制动时车轮受力 一、地面制动力( T—— 车轴的推 力;W——车轮垂直载荷) Tu FXb ( N ) r 因为:FXb受到轮胎与地面附着力, Fφ=Fzφ的限制。 T 所以: FXb u FZ
r
制动力图:
W Ua
Tp FXb
Tu
r
Fz
当 则FXb不再上升, F F 即:
最理想的制动系统 应能防止车轮抱死,工 作在S=15—20%以内。 ABS即:Antilock Braking System
ABS系统 (S=15—20%) (1)利用φp获得较大的 F 和最小的制动距离。 ( 2 )同时φ侧较大,也可 承受较大的侧向力Fy,不 致侧滑。
Xbmax
滑水现象:减小了胎面 与地面的φ, Ua=100km/n时, 水膜=10mm时。 φs≈0,滑水现象,雨天 路滑,易翻车。
G (b hg ) L
G (a hg ) L
Fu1 FZ 1 FZ 1 b hg 所以: Fu 2 FZ 2 FZ 2 a hg
Fu1 Fu 2 G Fu1 b hg Fu 2 a hg
(1)
第四章汽车的 制动性能
4-1 制动性能评价指标 制动性能:指汽车 行驶时,能在短距离内 停车,并维持行驶方向 稳定,下长坡时能维持 一定车速的能力。

汽车理论—制动性

汽车理论—制动性

§4-1 制动性的评价指标
制动协调时间: 是指在急踩制动时, 制动协调时间 : 是指在急踩制动时 , 从踏板开始动 作至车辆减速度(或制动力)达到表 中规定的车辆充分 作至车辆减速度(或制动力)达到表2中规定的车辆充分 发出的平均减速度( 所规定的制动力) 发出的平均减速度(或表4所规定的制动力)75%所需的 所规定的制动力 所需的 时间。 时间。 制动协调时间: 制动协调时间: ①液压制动的汽车不应大于 0.35 s ②气压制动的汽车不应大于 0.60 s 汽车列车、 ③ 汽车列车 、 铰接客车和铰接式无轨电车不应大于 0.80 s 。
试验通 道宽度 m
20 50 30 50 30 ≥5.9 ≥5.2 ≥5.4 ≥5.0
≥3.8 ≥6.2 ≥5.6 ≥5.8 ≥5.4
2.5 2.5 2.5 2.5 3.0
§4-1 制动性的评价指标
3. 进行制动性能检验时的制动踏板力或制动气压应
符合以下要求: 符合以下要求:
①满载制动时 气压制动系:气压表的指示气压≤额定工作气压 额定工作气压; 气压制动系:气压表的指示气压 额定工作气压; 液压制动系(踏板力) 乘用车≤500N; 液压制动系(踏板力): 乘用车 ; 其它机动车≤700N 其它机动车 ②空载制动时 气压制动系:气压表的指示气压≤600kPa; 气压制动系:气压表的指示气压 ; 液压制动系(踏板力) 乘用车≤400N; 液压制动系(踏板力):乘用车 ; 其它机动车≤450N 其它机动车 三轮汽车、 ③ 三轮汽车 、 正三轮摩托车和拖拉机运输机组检验 踏板力不大于600N。 时,踏板力不大于 。
交通安全 制动距离 制动稳定性
§4-1 制动性的评价指标
制动效能 制动性的 评价指标
制动减速度 制动距离

汽车制动性能(最新)

汽车制动性能(最新)

例如“红旗”轿车。
改进制动系结构,减少制动 器起作用时间,是缩短制动 距离的有效措施。
3、持续制动时间 (d——e) 4、放松制动时间 (e ——f) 0.2——1秒
(二)制动距离(S——m) 经验公式: 轿车: S=0.0034Ua0+0.00451U² a0 液压制动客、货车 S=0.06ua0+0.0085ua0²m
X
X
所以:Gφb=G•amax/g
amax=φbg, m/s² 或φb=amax/g
即:当所有车轮都抱死时,
产生的amax与φb成正比。
前后轮都抱死时(前后轮同 时抱死)amax=φsg, ABS装置:amax= φpg, 汽车制动时不希望车轮都抱 死。
所以:amax<φsg
因为:φb=amax/g,
2、减少有机成分含量,增 加金属添加剂成分。 3、使摩擦片具有一定的气 孔,便于散热。 4、用前,先进行表面处理, 使其产生表面热稳定层,缓 和衰退。
(二)制动器的结构型式 1、双向自动增力蹄(BJ130) 双增力蹄(BJ212) ,具有较大的 制动效能因数,但稳定性差。 制动效能因数Kef=F/P。 F——制动器摩擦力 P——制动泵推力
FXb FXb1 FXb2 Fj
(Gb FXb hg ) L (Ga FXb hg ) L
FZ 2 L Fj hg Ga
Ga F j hg FZ 2 L L
即: Ga FXb hg FZ 2 L L
G dv Fj , FXb Fj g dt 所以: G dv Gb hg hg d v g dt G FZ 1 (b ) L L g dt
第四章汽车的 制动性能
4-1 制动性能评价指标 制动性能:指汽车 行驶时,能在短距离内 停车,并维持行驶方向 稳定,下长坡时能维持 一定车速的能力。

4_第四章 汽车制动性能的评价

4_第四章 汽车制动性能的评价
后车轮地面制动力和制动器制动力一样均按β线增长,到点B时,β 线与φ=0.7的r线相交,地面制动力、满足后车轮先抱死的条件,此 时的制动减速度为0.6g。 5.利用附着系数与附着效率 (1)前轴的利用附着系数φf (2)后轴的利用附着系数φr
第三节 汽车制动性能分析
图4-21
前、后轴附着效率曲线
第四节 与汽车制动性能相关的新技术应用
第四节 与汽车制动性能相关的新技术应用
13.分析制动辅助系统(EBA)的工作过程。
第四节 与汽车制动性能相关的新技术应用
(4)增压制动过程 若压力降低后车速太快,则ECU便会切断通往 电磁阀的电流,又使制动主缸与制动轮缸接通,使制动主缸的高 压制动液流入制动轮缸,增加了制动系统的压力。
2. ABS ECU的控制策略
图4-23 逻辑门限值控制的ABS控制原理 —汽车实际车速 —汽车参考速度 —车轮速度
第四节 与汽车制动性能相关的新技术应用
3.最佳滑移率 1)使后轮保留足够的侧向附着力,以保持汽车行驶的稳定性。 2)使前轮具有足够的侧向控制力,以保持汽车的转向能力。
3)与车轮抱死的制动不同,通过合理地利用轮胎与道路的附着能 力缩短制动距离。
图4-24 各种路面的附着率和滑移率曲线 1—干燥路面 2—湿路面 3—雪地 4—冰路
(2)悬架导向杆系和转向系统拉杆的运动不协调 例如,过去用于 试验的EQ240汽车,在制动时总是向右跑偏,在车速为30km/h制 动时最严重的跑偏距离为1.7m。
图4-13
EQ240汽车在正常情况下和制动跑偏时的前部简图 a)未制动时 b)制动时前轴转动(转角为θ)
2.侧滑
第三节 汽车制动性能分析
1.制动跑偏 (1)汽车左、右车轮制动器制动力不相等 由于左、右转向轮制动 力不相等引起汽车跑偏的受力分析如图4-12所示。

汽车理论第四章

汽车理论第四章
第四章 汽车的制动性
本章内容
摘要 第一节 制动性的评价指标 第二节 制动时车轮的受力 第三节 汽车的制动效能及其恒定性 第四节 制动时汽车的方向稳定性 第五节 前、后车轮制动器制动力的比例关系 第六节 汽车制动防抱装置 第七节 驻车制动性 第八节 汽车制动性试验
实例 总结 思考题
摘要
➢ 汽车的制动性是汽车的主要使用性能之一,直接关系到交 通安全。重大交通事故往往与制动距离太长、制动时发生 严重侧滑或方向失控、下长坡制动稳定性差等情况有关。 因此改善汽车的制动性始终是汽车设计制造和使用部门的 重要任务。
三、具有固定比值的前、后车轮制动器制动力与同步附着系 数
不少两轴汽车的前、后车轮制动器制动力之比为固定常数。
常用前轮制动器制动力与汽车总制动器制动力之比来表明
制动力分配的比例,称为制动器制动力分配系数,用β表
示 ,即
β F1
F
式中 F1 ——前轮制动器别动力;
F——汽车总制动器制动力,F F1 F2 ,F2 为后制 动器制动力
第三节 汽车的制动效能及其恒定性
汽车的制动效能是指汽车迅速降低车速直至停车的能力。评定制动效 能的指标是制动距离S(m)、制动减速度j(m/s2)和地面制动力Fxb(N) 。 一、制动效能的评价指标 ➢ 制动距离
制动距离与汽车的行驶安全有直接的关系。它指的是汽车在附着性 能 停车良为好的止水汽车平所路驶面过上以的车距离速。u0滑制行动时距,离从与驾汽驶车员制踩动着前制的动车踏速板、开制始动到踏 板力、路面附着条件以及制动系统的型式有关。
➢ ABS一般由轮速传感器、电子控制 器与压力调节器三部分组成,如右 图
第七节 驻车制动性
➢ 汽车的驻车制动性是衡量汽车长期停放在坡道上的能力。 驻车制动一般靠手操纵的驱动机构使后轴制动器或中央制 动器产生制动力矩并传到后轮,路面对后轮产生地面制动 力,以实现整车制动(即驻车制动)。

汽车理论第四章

汽车理论第四章

18、雨天行车制动时,车轮很容易抱死拖滑,这是由于路面附着系数过大。 ( 19、汽车制动时,轴荷重新分配的结果是后轴载荷增加,前轴载荷下降。 ( 曲线。 ( 曲线。 ( ) ) )

20、f 线组是前轮没有抱死,在各种附着系数值路面上后轮抱死时的前、后地面制动力关系 21、r 线组是后轮没有抱死,在各种附着系数值路面上前轮抱死时的前、后地面制动力关系
) 。 C.双领蹄制动器 ) 。 C.双领蹄制动器 ) 。 B.前、后轮同时抱死拖滑 D.后轮先抱死拖滑,然后前轮 ) 。 D.双向自动 D.双向自动
13、前、 后制动器制动力为固定比值的汽车, 在同步附着系数路面上制动时将出现 ( A.前轮抱死,后轮不抱死 C.前轮先抱死,然后后轮抱死 B.前、后轮同时抱死
10、在下列制动器中,制动效能的稳定性最好的是( A.盘式制动器 增力蹄制动器 11、在下列制动器中,制动效能的稳定性最差的是( A.盘式制动器 增力蹄制动器 12、相对来讲,制动时附着条件利用较好的情况是( A.前轮抱死拖滑,后轮不抱死 C.前轮先抱死拖滑,然后后轮抱死拖滑 抱死拖滑 B.领从蹄制动器 B.领从蹄制动器
五、问答与分析论述题
1、 汽车制动跑偏是由哪些原因造成的? 2、 作图分析论述制动力系数与滑动率之间的关系。 3、 作图分析论述“后轮侧滑比前轮侧滑更危险”的道理。 4、 设某汽车的同步附着系数为 0.5,试分析该车在附着系数为 0.3 的路面上制动时的制动 过程。 (作图分析) 5、 设某汽车的同步附着系数为 0.5,试分析该车在附着系数为 0.7 的路面上制动时的制动 过程。 (作图分析)
11、f 线组是后轮没有抱死,在各种附着系数值路面上前轮抱死时的前、后地面制动力关系 12、r 线组是前轮没有抱死,在各种附着系数值路面上后轮抱死时的前、后地面制动力关系 ( 13、 线位于 I 曲线下方,制动时总是后轮先抱死。 ( 14、 线位于 I 曲线上方,制动时总是前轮先抱死。

汽车制动行驶方向稳定性 - 汽车制动行驶方向稳定性

汽车制动行驶方向稳定性 - 汽车制动行驶方向稳定性
从受力情况分析,也可确定前轮或后轮抱死对制动方向稳定性的影响。
Fc
Fc
ur
u f ur
uf
O
O
a) 前轴侧滑
b) 后轴侧滑
图4-13 汽车侧滑趋势的分析
4-4
图 4-13 a)是当前轮抱死、后轮自由滚动时,在干扰作用下,发生前轮偏离角 (航向 角)。若保持转向盘固定不动,因前轮侧偏转向产生的离心惯性力 FC 与偏离角 的方向相 反, FC 起到减小或阻止前轴侧滑的作用,即汽车处于稳定状态。
若时间间隔大于 0.5s,则后轴发生严重的侧滑。如果只有一个后轮抱死,后轴也不会发生
4-3
侧滑。 •起始车速和附着系数对制动方向稳定性也有很大影响,例如,若 ua =48.2 km / h ,即使
后轮抱死比前轮早 0.5s,汽车纵轴也仅转动 25º,而当 ua =72.3 时 km / h ,则汽车发生剧烈 侧滑。
式中: Fj —汽车惯性力,即 考虑附着率,得
Fμ1 Fμ 2 = Fj
Fj
=
W g
(
-&x&)
=
Wz
b1FZ1 b 2FZ 2 = Fj 在各种情况下,能够达到的减速率可从表 4-4 中加以分析。
工况
前轮
各种制动工况 后轮
表 4-4 减速率
(4-14)
(4-15)
特征
1
b1 <p1 (点 1)
图 4-14 轴间制动力定比分配的汽车减速度
如果驾驶员增加踏板力,前轮抱死,前轴制动力与踏板力无关,而仅与滑移附着系数
4-10
和轴荷有关,即 Fμ1 = s Fz1 。后轴制动力可以增加到它的最大值 Fμ2 = p Fz2 (表 4-4 中的工 况 4b)。如果踏板力继续增加,后轮也将抱死(表 4-4 中的工况 5)这时减速率 z = s 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

k22
由于
ds
d
u0
1k2
2
dsu0
1k2d
2
当 ''时, k将 abm 2'' ax代入
当τ=0 时,s=0
s
u0
1 k 3
6
s2 u02 1 6abmax 2 2
s2 s2 s2
s2u02 u02 1 6abmax2 2
42
第三节 汽车的制动效能及其恒定性
2.持续制动阶段汽车驶过的距离s3
当汽车在倾斜弯道转向时,离心力Fl可由重力的分力平衡。 ➢弯道内倾,可以减小所需的地面侧向力;倾角依道路
转弯半径和设计车速而定。
23
第二节 制动时车轮的受力
环形跑道(视频)
(注意观察弯道的倾斜情况)
24
第二节 制动时车轮的受力
4.影响制动力系数的因素
(1)路面
表4-2 各种路面的平均附着系数
路面
➢八达岭高速公路是北京通往大西北的一条重要交通干道。2019 年该公路建成开通,至2019年5月底,已经发生一般性交通事故458 起,造成236人受伤、94人死亡。特别是在高速路进京方向51~ 56km路段内就造成50人受伤、36人死亡。这段5km长的道路和道路 右侧葬送了众多生命的深渊,被驾驶员称为“死亡谷”。
滑动率s的计算
uw rw
rr0w uδ uδ uwrr0w
s uδ 100% uw
纯滚动时 uδ= 0,s = 0; 纯滑动时 ωw=0,
u w =uδ,s =100%;
边滚边滑时 0 < s <100%。
uwrr0w 100%
uw
16
第二节 制动时车轮的受力
2.制动力系数 b 与滑动率s
制动力系数:地 面制动力与作用在 车轮上的垂直载荷 的比值。
➢持续制动阶段汽车以a b m a x 作 匀减速运动,其初速度为 u e ,末
速度为零。
s3 ue2 / 2abmax

ue
u0
1 2
k 2 2
代入
k a bm ax
2
s32aub02maxu022 abm 8a2 x2
43
第三节 汽车的制动效能及其恒定性
3.总制动距离
ss2 s3
2 22 u02aub0 2m axab2 ma4 2 2 x
滑动率:车轮接地处的滑动速度与车轮中心运动速度的 比值。
➢滑动率的数值说明了车轮运动中滑动成分所占的比例。
14
第二节 制动时车轮的受力
滑动率s的计算
uw rw
rr0w uδ uδ uwrr0w
s uδ 100%
uw
r
uwrr0w 100%
uw
w
uw

rr0
O(速度瞬心)
15
第二节 制动时车轮的受力
表4-3 装用不同助力制动系时CA770轿车的制动距离
性能指标 制动系形式
真空助力制动系 压缩空气—液压制动系
制动时间 制动距离 最大制动减速
/s
/m
度/(m·s-2)
2.12
12.25
7.25
1.45
8.25
7.65
s31 .6 2 2 2 ua025.9 u 2 a 2a 0bm ax
45
因2很小,故略去 abm2a4x22 s31.62 22 ua02.59ua2a 0 2bmax
44
第三节 汽车的制动效能及其恒定性
4.影响制动距离s的因素 1)制动器起作用的时间
➢当 ua0=110 km/h时,1s时间汽车行驶的距离 s=30m; ➢如果消除制动器间隙的时间减少0.2s,制动距离可缩短6m。
➢制动距离有时也用在良好路面条件下,汽车以 100km/h 的初速度制动到停车的最短距离来表示。
几种车型100km/h→ 0的制动距离
车型
制动距离/m
捷达
48.8
别克GL8
45.8
桑塔纳2000
45.0
帕萨特
43.9
奥迪A6 1.8T
42.3
宝来1.8T
40.0
宝马745i
37.1
6
第一节 制动性的评价指标 本节内容结束 下一节
峰值附着系数 滑动附着系数
沥青或混凝土路面 沥青(湿) 混凝土(湿)
0.8~0.9 0.5~0.7
0.7
0.75 0.45~0.6
0.7
砾石
0.6
0.55
土路(干) 土路(湿)
0.68
0.65
0.55
0.4~0.5
雪(压紧)
0.2
0.15

0.1
0.07
25
第二节 制动时车轮的受力
4.影响制动力系数的因素 (1)路面
➢制动效能—制动距离与制动减速度; ➢制动效能恒定性; ➢制动时的方向稳定性。
返回目录 2
第一节 制动性的评价指标
1.制动效能
制动效能即制动距离和制动减速度。
思考
制动距离主要与哪些因素有关?
制动距离
路面条件 载荷条件 制动初速度
3
第一节 制动性的评价指标
2.制动效能的恒定性
制动效能的恒定性即抗热衰退性能。
1
t2
atdt
t2 t1 t1
t1—制动压力达到75%最大压力 p a m a x 的时刻;
t2—到停车时总时间的2/3的时刻。
38
第三节 汽车的制动效能及其恒定性
ECE R13和GB7258采用的是充分发出的平均减速度(m/s2)
MFDD ub2 ue2
25.92se sb
➢u b —0.8u0 的车速(km/h);
三、制动效能的恒定性
➢制动效能的恒定性即抗热衰退性能。 ➢制动器温度上升后,制动器产生的摩擦力矩常会有 显著下降,这种现象称为制动器的热衰退。 ➢山区行驶的货车和高速行驶的轿车,对抗热衰退性 能有更高的要求。
s31 .6 2 2 2 ua025.9 u 2 a 2a 0bm ax
47
第三节 汽车的制动效能及其恒定性
Tp
制动力矩Tµ

r
F Xb
FXb
地面附着力
FXb F
FZ制动力Fμ
与附着力无关

Tμ r
在轮胎周缘克服制动器摩擦力矩所需的切向力。
Fµ取决于制动器的类型、结构尺寸、制动器摩擦
副的摩擦因数及车轮半径,并与踏板力成正比。
10
第二节 制动时车轮的受力
11
第二节 制动时车轮的受力
7
第四章 汽车的制动性
第二节 制动时车轮的受力
➢本节主要介绍地面制动力、制动器制动力及其与附 着力的关系;介绍滑动率的概念;分析制动力系数、侧 向力系数与滑动率的关系。
返回目录 8
第二节 制动时车轮的受力
一、地面制动力F X b
F Xb
Tμ r
由制动力矩所引起的、地
面作用在车轮上的切向力。
ua
W
第四章 汽车的制动性
➢汽车行驶时能在短距离内停车且维持行驶方向稳定性 和在下长坡时能维持一定车速的能力,称为汽车的制动性。
➢制动性是汽车主动安全性的重要评价指标。
返回目录 1
第四章 汽车的制动性
第一节 思考 制动性的评价指标
根据对汽车制动性的定义,如何确定制动性的评价指标? 制动性的评价指标包括:
制动时总的地面制动力
FXb bG
G g
du dt
汽车能达到的制动减速度
abmax bg
abmax g?
当前、后轮同时抱死时
abmax sg
当汽车装有ABS时
abmax pg
当汽车没有装ABS, 又不允许车轮抱死时
abmax?
37
第三节 汽车的制动效能及其恒定性
中国行业标准采用平均减速度的概念
a
3.制动时汽车的方向稳定性
制动时汽车按给定路径行驶的能力。 即在制动中不发生跑偏、侧滑或失去转向能力的性能。
➢本章研究的重点是:如何使汽车在保证方向稳定性 的前提下,获得最好的制动效能。
4
第一节 制动性的评价指标
表4-1 乘用车制动规范对行车制动器制动性的部分要求
项目 试验路面
中国 ZBT24007
20
第二节 制动时车轮的受力
思考
什么情况下汽车会受到侧向外力的作用?
车身受到侧向风作用 路面侧倾
汽车转向行驶
➢为什么弯道要有一定的侧倾角? ➢向内倾还是向外倾? ➢倾角的大小依什么而定?
21
第二节 制动时车轮的受力
FY
FY
➢平地转向时,离心力Fl由地面侧向力FY平衡。
22
第二节 制动时车轮的受力
第三节 汽车的制动效能及其恒定性
2)起始车速ua0
s0.00u3a04 0.004ua250 1
s31 .6 2 2 2 ua025.9 u 2 a 2a 0bm ax
46
第三节 汽车的制动效能及其恒定性
3)最大制动减速度 a b m a x ➢ a b m a x 主要与路面附着系数有关。
三、 FXb、Fμ与 F 的关系
F
FXbmaxF
pa
12
第二节 制动时车轮的受力
四、硬路面上的附着系数
车轮接近纯滚动
uw rr0w
车轮边滚边滑
uw rr0w
车轮抱死拖滑
uwrr0w w 0
13
第二节 制动时车轮的受力
1.滑动率
➢从制动过程的三个阶段看,随着制动强度的增加,车 轮几何中心的运动速度因滚动而产生的部分越来越少,因 滑动而产生的部分越来越多。
相关文档
最新文档