汽车的制动性PPT课件
合集下载
汽车制动系统ppt课件完整版
数。
制动距离
指从驾驶员开始制动到车辆完全停 止所行驶的距离。它是评价汽车制
动性能的重要指标之一。
A
B
C
D
制动时方向稳定性
指车辆在制动过程中保持直线行驶或按预 定轨迹行驶的能力。它是评价汽车制动安 全性的重要指标之一。
制动力分配
指前后轴制动力分配的比例。合理的制动 力分配可以提高制动稳定性和制动效率。
产生压缩空气。
制动阀
控制压缩空气进入 制动气室的开关。
制动管路
连接各部件,传递 压缩空气。
气压制动系统优缺点分析
01
优点
02
结构简单,维护方便。
制动效能稳定,受环境影响小。
03
气压制动系统优缺点分析
• 适用于大型车辆和重载车辆。
气压制动系统优要空气压缩机和储气罐,占用空间较大 。
拆卸检查
对疑似故障部件进行拆卸检查 ,观察其磨损、变形等情况。
路试检测
在安全条件下进行路试,检测 制动系统的实际表现,进一步
确认故障。
故障排除措施和维修建议
制动失效排除
制动跑偏排除
制动拖滞排除
驻车制动失效排除
检查制动液泄漏情况并修复, 清洗或更换堵塞的管路,更换 磨损严重的制动蹄片等。
调整两侧车轮制动力至均衡, 调整轮胎气压至一致,检查并 修复悬挂系统故障等。
03
制动响应速度相对较慢。
04
在严寒地区,压缩空气可能结冰,影响制 动效果。
04
伺服制动系统与电子控制制动系 统
伺服制动系统组成及工作原理
组成
伺服制动系统主要由制动踏板、真空助力器、制动主缸、制动轮缸、制动器等组成。
工作原理
当驾驶员踩下制动踏板时,真空助力器提供助力,推动制动主缸内的活塞移动,使制动液压力升高。制动液通过 制动管路传递到各个制动轮缸,推动轮缸内的活塞移动,使制动器产生制动力矩,从而实现车辆减速停车。
制动距离
指从驾驶员开始制动到车辆完全停 止所行驶的距离。它是评价汽车制
动性能的重要指标之一。
A
B
C
D
制动时方向稳定性
指车辆在制动过程中保持直线行驶或按预 定轨迹行驶的能力。它是评价汽车制动安 全性的重要指标之一。
制动力分配
指前后轴制动力分配的比例。合理的制动 力分配可以提高制动稳定性和制动效率。
产生压缩空气。
制动阀
控制压缩空气进入 制动气室的开关。
制动管路
连接各部件,传递 压缩空气。
气压制动系统优缺点分析
01
优点
02
结构简单,维护方便。
制动效能稳定,受环境影响小。
03
气压制动系统优缺点分析
• 适用于大型车辆和重载车辆。
气压制动系统优要空气压缩机和储气罐,占用空间较大 。
拆卸检查
对疑似故障部件进行拆卸检查 ,观察其磨损、变形等情况。
路试检测
在安全条件下进行路试,检测 制动系统的实际表现,进一步
确认故障。
故障排除措施和维修建议
制动失效排除
制动跑偏排除
制动拖滞排除
驻车制动失效排除
检查制动液泄漏情况并修复, 清洗或更换堵塞的管路,更换 磨损严重的制动蹄片等。
调整两侧车轮制动力至均衡, 调整轮胎气压至一致,检查并 修复悬挂系统故障等。
03
制动响应速度相对较慢。
04
在严寒地区,压缩空气可能结冰,影响制 动效果。
04
伺服制动系统与电子控制制动系 统
伺服制动系统组成及工作原理
组成
伺服制动系统主要由制动踏板、真空助力器、制动主缸、制动轮缸、制动器等组成。
工作原理
当驾驶员踩下制动踏板时,真空助力器提供助力,推动制动主缸内的活塞移动,使制动液压力升高。制动液通过 制动管路传递到各个制动轮缸,推动轮缸内的活塞移动,使制动器产生制动力矩,从而实现车辆减速停车。
汽车制动ppt
系统分类及部分零件介绍
• 制动系统一般由两个主要部分组成: 1、制动操纵机构(制动踏板) 2、制动器
动
制动踏板是驾驶员在操纵制动过程 直接接触的部件。 其结构形式与安装角度直接影响驾 驶员进行制动操作时的舒适性,另 外也将对行车的安全性产生重大的 影响。所以合理的设计制动踏板的 结构、表面形式以及安装角度,将 使行车更加安全。
制动主缸
其作用是将液压油压入各各分泵内从而 使液压油推动卡钳,起到制动的作用。
制动油管
• 由于制动时,油液的压力一般都比较大(大于大气压)。 为了使制动效果好,液压油不必须在第一时间内将制动卡 钳压紧,这就要求液压油管的膨胀系数不能太大,并且要 尽可能的小。
制动卡盘
• 与鼓式制动器相比,盘式制动器有如下优点: • 热稳定性好。原因是一般无自增力作用,衬块摩擦 表面压力分布较鼓式中的衬片更为均匀。此外,制 动鼓在受热膨胀后,工作半径增大,使其只能与蹄 的中部接触,从而降低了制动效能,这称为机械衰 退。制动盘的轴向膨胀极小,径向膨胀根本与性能 无关,故无机械衰退问题。因此,前轮采用盘式制 动器,汽车制动时不易跑偏。 • 水稳定性好。制动块对盘的单位压力高,易于将水 挤出,因而浸水后效能降低不多;又由于离心力作 用及衬块对盘的擦拭作用,出水后只需经一、二次 制动即能恢复正常。鼓式制动器则需十余次制动方 能恢复。 • 制动力矩与汽车运动方向无关。
交车,新能源公交车等;
为满足大型机场和接驳使用的机场摆渡车和机场巴士 等;为“三农”服务,实现“村村通”而开发的农村客车 等。中国客车已经书写下新的历史篇章,如今的中国客车 已经成为全球客车产业的重要组成部分。 这个阶段,中国客车产业的快速发展让人惊讶不已。 据中国汽车工业协会统计,2008年我国客车(不含客车非 完整车辆)产量达到25万2837辆;同时,经过市场内部 自身的一系列调整和外部因素的影响,中国客车开始在国 际化的市场竞争中变得更加理性,曾经一味追求“量”的 优势,也开始转变到追求“质”的高度。 在国内客车市场蒸蒸日上的同时,中国客车的出口业务 也逐渐在国际舞台上站稳脚跟,特别是在2003-2007年的 快速增长阶段。据统计,2007年我国共出口大中型客车 4.25万辆,出口额9.1亿美元。中国客车出口量和出口额 每年都在实现新的突破。受全球金融危机影响,2008、 2009年客车出口业务大打折扣,但只要有市场需求,相信 中国客车还会在国际舞台上再现光芒。
汽车的制动性 (5)
FXb1
L
FXb2
hg
FXb2
L hg hg
FXb1
Gb hg
FXb2=0
FXb1=0
一定时,f 线为直线
前轮抱死后,前后地面 制动力将沿f 线变化。
FXb1
Gb L hg
FXb2
Gb hg
与 无关
18
第五节 前、后制动器制动力的比例关系
FXb2
0.1 0.2 0.3 0.4
因此,应当以所有车轮即将抱死但还没有出现任何车 轮抱死时的制动强度(制动减速度)作为汽车能产生的最 高制动强度(制动减速度)。
从图中看,同步附着系数 是β线和 I 曲线交点处对应的 附着系数。由于β不会随着路 面附着系数而变化,所以具有 固定比值制动力的汽车只能在 同步附着系数的路面上才能同 时抱死。
该点所对应的减速度称为
临界减速度,大小为 0 g 。
15
第五节 前、后制动器制动力的比例关系
同步附着系数的计算
满足固定比 值的条件
第四章 汽车的制动性
第五节 前、后制动器制动力的比例关系
本节将分析地面作用在前、后车轮上的法向反力, 分析前、后车轮制动器制动力的比例关系,通过 I 曲线、 β 线、f 线、r 线分析汽车的制动过程,介绍汽车的利用 附着系数、制动效率的计算方法,利用单轮模型分析 ABS的制动控制过程。
本节内容是本章的重点。
由 β b 0hg 得 1 a 0hg
Fμ1
Fμ1
Fμ 2
Fμ 2
满足同时抱 死的条件
0
Lβ b hg
同步附着系数 由汽车结构参 数决定。
汽车制动性的试验
第六节 汽车制动性的试验
7.制动距离、制动减速度和车辆的侧向 路经偏移量
1)制动距离的测量
➢采用制动踏板开关 和制动灯开关测量。
➢制动初速度在极限 偏差为3% 的范围内, 制动距离按下式修正。
L L'(u / u')2
2)制动减速度的测量
➢用减速度计或五轮仪 的速度信号微分。
3)侧向路径的偏移量
➢用皮尺测量汽车相对 行驶航道的偏离;采用航 向陀螺仪测量航向角。
➢保持转向盘转角不变动,关节气门,迅速踩制动踏板, 离合器可脱开或不脱开,使汽车以不同的等减速度制动。
➢记录制动减速度、汽车横摆角速度、汽车航向角的变化 量、制动时侧向路径偏离量等参数。
➢绘制最大横摆角速度、汽车航向角变动量、制动时侧向 路径偏离量等参数与制动减速度的关系曲线。
第六节 汽车制动性的试验
第六节 汽车制动性的试验
4.高温工况试验 1)加热制动器与测定制动性指标
➢令汽车加速到0.8uamax,以3m/s2减速度制动到0.4uamax。 ➢再加速,再制动,每次的时间间隔为40~60s,共制动 15~20次。 ➢加热前后及中间应进行数次制动性指标测定,以评价 制动系统的热衰退性能。
2)下长坡连续制动
➢令汽车由坡度为6%~10%、长7~10km的坡道上以车 速30km/h制动下坡,最后检查制动性指标。
第六节 汽车制动性的试验
5.汽车转弯制动试验
➢制动的初始条件:转弯半径为40m或50m,侧向加速度 为(5±0.5)m/s2,车速为51km/h或57km/h或转弯半径为 100m,侧向加速度为(4±0.4ห้องสมุดไป่ตู้m/s2,车速为72km/h。
第六节 汽车制动性的试验
汽车制动系统ppt课件
保持制动系统清洁,防止杂质进入影响制动性能。
定期更换制动蹄片,保证制动性能。 定期检查制动系统气密性,确保无漏气现象。
04
辅助制动装置
驻车制动器结构与工作原理
驻车制动器类型
分为中央制动器和车轮制动器两种类 型,中央制动器作用于传动轴或后桥 ,车轮制动器直接作用于车轮。
驻车制动器结构
由操纵机构、传动装置和制动器组成 。操纵机构包括手柄、拉杆等,传动 装置将操纵力传递到制动器,制动器 则产生制动力矩。
摩擦片后故障排除。
06
汽车制动系统新技术展望
线控制动技术介绍及优势分析
01
线控制动技术概述
通过电子信号传递制动指令,取代 传统机械或液压连接方式。
制动效果更稳定
电子控制系统可精确控制制动力分 配,提高制动稳定性。
03
02
响应速度更快
减少机械传动环节,提高制动响应 速度。
易于实现智能化
可与车辆其他系统实现联动,为智 能驾驶提供基础。
故障排除实例分享
实例二
某车型制动跑偏故障排除
故障现象
制动时车辆明显向左侧偏斜。
故障诊断
经检查发现左前轮制动力明显弱 于右前轮,调整两侧制动力分配 后故障排除。
故障排除实例分享
实例三
01
某车型制动噪音故障排除
故障现象
02
制动时伴随尖锐的噪音,且随着车速提高噪音增大。
故障诊断
03
经检查发现制动摩擦片磨损严重且表面不平整,更换新的制动
液压制动系统优缺点分析
优点 制动平稳,冲击小。
结构简单,维修方便。
液压制动系统优缺点分析
• 制动力矩大,制动效果好。
液压制动系统优缺点分析
定期更换制动蹄片,保证制动性能。 定期检查制动系统气密性,确保无漏气现象。
04
辅助制动装置
驻车制动器结构与工作原理
驻车制动器类型
分为中央制动器和车轮制动器两种类 型,中央制动器作用于传动轴或后桥 ,车轮制动器直接作用于车轮。
驻车制动器结构
由操纵机构、传动装置和制动器组成 。操纵机构包括手柄、拉杆等,传动 装置将操纵力传递到制动器,制动器 则产生制动力矩。
摩擦片后故障排除。
06
汽车制动系统新技术展望
线控制动技术介绍及优势分析
01
线控制动技术概述
通过电子信号传递制动指令,取代 传统机械或液压连接方式。
制动效果更稳定
电子控制系统可精确控制制动力分 配,提高制动稳定性。
03
02
响应速度更快
减少机械传动环节,提高制动响应 速度。
易于实现智能化
可与车辆其他系统实现联动,为智 能驾驶提供基础。
故障排除实例分享
实例二
某车型制动跑偏故障排除
故障现象
制动时车辆明显向左侧偏斜。
故障诊断
经检查发现左前轮制动力明显弱 于右前轮,调整两侧制动力分配 后故障排除。
故障排除实例分享
实例三
01
某车型制动噪音故障排除
故障现象
02
制动时伴随尖锐的噪音,且随着车速提高噪音增大。
故障诊断
03
经检查发现制动摩擦片磨损严重且表面不平整,更换新的制动
液压制动系统优缺点分析
优点 制动平稳,冲击小。
结构简单,维修方便。
液压制动系统优缺点分析
• 制动力矩大,制动效果好。
液压制动系统优缺点分析
制动系统ppt课件
车轮制动器
将制动力矩转化为制动力,作用在车轮上。
制动管路
连接主缸和各车轮制动器,传递制动力。
制动液
传递制动力,具有不可压缩性。
液压制动系统优缺点
制动力矩大
液压传动能够产生较大的制动力矩, 满足车辆制动需求。
制动平稳
液压传动具有缓冲作用,使制动过 程更加平稳。
液压制动系统优缺点
• 结构简单:液压制动系统结构相对简单,易于维护和保养。
空气压缩机的噪音和振动较大。
03
气压制动系统优缺点
压缩空气的压力受温度和海拔影响, 性能不够稳定。
需要定期维护和保养,否则容易出现 漏气等问题。
05
辅助制动系统与电子控制技术
辅助制动系统类型及功能
液压辅助制动系统
通过液压装置提供额外的制动力,提高制动效能 和稳定性。
气压辅助制动系统
利用气压原理,在制动时提供额外的制动力矩, 适用于大型车辆。
鼓式制动器
制动鼓
与轮胎固定并随车轮旋 转的部件,具有较大的 热容量和良好的散热性。
制动蹄
固定在制动底板上,通 过摩擦片与制动鼓内侧
接触产生制动力。
制动底板
安装制动蹄、支撑销和 制动蹄回位弹簧的部件,
与车桥固定连接。
制动轮缸
将制动主缸的液压转化 为机械推力,推动制动 蹄向外张开与制动鼓产
生摩擦。
盘式制动器
液压制动系统优缺点
制动滞后
由于液压传动存在泄漏和压缩性,导致制动 响应滞后。
制动效能受温度影响
高温时制动液Байду номын сангаас易气化,导致制动效能下降。
对制动液要求高
需要使用高品质的制动液,否则会影响制动 性能和安全性。
将制动力矩转化为制动力,作用在车轮上。
制动管路
连接主缸和各车轮制动器,传递制动力。
制动液
传递制动力,具有不可压缩性。
液压制动系统优缺点
制动力矩大
液压传动能够产生较大的制动力矩, 满足车辆制动需求。
制动平稳
液压传动具有缓冲作用,使制动过 程更加平稳。
液压制动系统优缺点
• 结构简单:液压制动系统结构相对简单,易于维护和保养。
空气压缩机的噪音和振动较大。
03
气压制动系统优缺点
压缩空气的压力受温度和海拔影响, 性能不够稳定。
需要定期维护和保养,否则容易出现 漏气等问题。
05
辅助制动系统与电子控制技术
辅助制动系统类型及功能
液压辅助制动系统
通过液压装置提供额外的制动力,提高制动效能 和稳定性。
气压辅助制动系统
利用气压原理,在制动时提供额外的制动力矩, 适用于大型车辆。
鼓式制动器
制动鼓
与轮胎固定并随车轮旋 转的部件,具有较大的 热容量和良好的散热性。
制动蹄
固定在制动底板上,通 过摩擦片与制动鼓内侧
接触产生制动力。
制动底板
安装制动蹄、支撑销和 制动蹄回位弹簧的部件,
与车桥固定连接。
制动轮缸
将制动主缸的液压转化 为机械推力,推动制动 蹄向外张开与制动鼓产
生摩擦。
盘式制动器
液压制动系统优缺点
制动滞后
由于液压传动存在泄漏和压缩性,导致制动 响应滞后。
制动效能受温度影响
高温时制动液Байду номын сангаас易气化,导致制动效能下降。
对制动液要求高
需要使用高品质的制动液,否则会影响制动 性能和安全性。
6制动系统PPT课件
29
2、快速制动
• 当主控制器手柄移到“快速制动”位时,列车 将实施减速度与紧急制动相同的快速制动 。快速制动具有如下特点:
– 电制动不起作用,仅空气制动; – 受冲击率极限的限制; – 主控制器手柄回“0”位,可缓解; – 具有防滑保护和载荷修正功能。
2021/3/9
30
紧急制动
• 列车装备一个“失电制动,得电缓解”紧急空气制 动系统,贯穿整个列车的DC110V连续电源线控制 紧急制动的缓解。线路一旦断开,所有车立即实施 紧急制动。
2021/3/9
23
2021/3/9
再生制动原理图 24
电阻制动 • 如果制动列车所在的接触网供电区段内无其它列
车吸收该制动能量,网压迅速上升,当网压达到 最大设定值1800V时,DCU/M打开制动电阻,将 电机上的制动能量转变成电阻的热能消耗掉,此 即电阻制动(亦称能耗制动),电阻制动能单独 满足常用制动的要求。 • 再生制动与电阻制动之间的转换由DCU/M控制, 能保证它们连续交替使用,转换平滑,变化率不 能为人所感受到。当列车高速运行时时,动车采 用再生制动,将列车动能转换成电能;当再生的 电能无法再回收时,再生制动能够平滑地过渡到 电阻制动。
82:02通1/3往/9 空气弹簧
36
一、供气部分
• 一个三节单元车有一套供气系统,并装于A车上, 由空气压缩机A01、空气干燥器A07和风缸组成。 其中空气压缩机A01为往复式、双级、三缸、直 接驱动,由380V、3相、50HZ交流鼠笼式异步电 动机驱动;空气干燥器A07采用双筒式无热再生 的干燥装置;每辆车上设有四个风缸,其中一个 100L 的 主 风 缸 A09 , 一 个 100L 的 空 气 弹 簧 风 缸 L04,一个100L的制动贮风缸B04和一个60L的客 室风动门的风缸T04。
车辆制动性能
S
S
V
t 3 .6
1
s
K(
254 ( )
V
2 1
- V 2)
2
地面制动力等于地面附着力车轮抱死不转而出现ห้องสมุดไป่ตู้滑现象制动器制动力由于制动器摩擦力矩的增长而直线增长而地面制动力到达极限后不再变制动减速度制动减速度j与地面制动力及车辆总质量有关重力加速度汽车而车旋转质量换算系数驾驶员反应时间07s1s制动器作用时间02s07s制动释放时间02s1s制动时间t道路阻力系数道路摩擦力系数制动距离制动距离分为反应时间内车辆行驶距离与刹车净距离25413
Tμ车轮制动器的摩擦力矩 Tj 汽车旋转质量的惯性力矩 Tf 车轮的滚动阻力矩 地面制动力、制动器制动力及附着力之间的关系 F 车轴对车轮的推力 G 车轮的垂直载荷 FZ 地面对车轮的法向反作用力
停车,这个外力称为汽车的 制动力。
制动减速度js 与地面制动力及车辆总
质量有关
js =
g F X G
现代汽车制动系统主要由以下四部分组成:
1.开始制动前的初始速度
车辆的制动性 能应该是多方 面的综合考量
2.车辆重量 3.轮胎情况
4.路面状态
5.制动系统
1.制动力 2.制动减速度
车辆的制动性 能评价指标
3.制动时间 4.制动距离
制动力
制动踏板力FP 汽车在制动过程中人为地使 FP<FP'车轮滚动时的地面制动力等于制动器制动力 时,且随踏板力的增长成正比增长。 Tμ 轮胎周缘克服车轮制动器摩擦力矩所需的力称为 汽车受到一个与其行驶方向 地面制动力 F = (r为车辆半径) FP=F 制动器制动力 FX P'地面制动力等于地面附着力,车轮抱死不转 μ r 而出现拖滑现象 地面制动力极限值受地面附着力的限 制动器制动力取决于制动器结构型式与尺寸大小, 相反的外力,汽车在受一外 FP>F 制动器摩擦副系数和车轮半径 制。 P'制动器制动力由于制动器摩擦力矩的增长而 力作用下迅速地降低车速至 直线增长,而地面制动力到达极限后不再变 化。
汽车制动性能(最新)
(4)侧向附着系数φ , 在Fy 侧向力的作用下, φ =Fy /Fz 侧向力Fy与地面垂直反 力之比。
侧 侧
φb—S关系:
(1)OB段:φb直线上升, S从0—15—20%,出现 峰值φp。 (2)S再增大,φ纵下降, φ侧也下降。
(3)S再增大,S=100% 时,φ=φS 纵向φ较小,制动距离长。 侧向φ=0,能承受的侧向 力Fy=0。 所以:极易侧滑。
4——2制动时车轮受力 一、地面制动力( T—— 车轴的推 力;W——车轮垂直载荷) Tu FXb ( N ) r 因为:FXb受到轮胎与地面附着力, Fφ=Fzφ的限制。 T 所以: FXb u FZ
r
制动力图:
W Ua
Tp FXb
Tu
r
Fz
当 则FXb不再上升, F F 即:
最理想的制动系统 应能防止车轮抱死,工 作在S=15—20%以内。 ABS即:Antilock Braking System
ABS系统 (S=15—20%) (1)利用φp获得较大的 F 和最小的制动距离。 ( 2 )同时φ侧较大,也可 承受较大的侧向力Fy,不 致侧滑。
Xbmax
滑水现象:减小了胎面 与地面的φ, Ua=100km/n时, 水膜=10mm时。 φs≈0,滑水现象,雨天 路滑,易翻车。
G (b hg ) L
G (a hg ) L
Fu1 FZ 1 FZ 1 b hg 所以: Fu 2 FZ 2 FZ 2 a hg
Fu1 Fu 2 G Fu1 b hg Fu 2 a hg
(1)
第四章汽车的 制动性能
4-1 制动性能评价指标 制动性能:指汽车 行驶时,能在短距离内 停车,并维持行驶方向 稳定,下长坡时能维持 一定车速的能力。
汽车理论—制动性
车辆类型 乘用车 客车 其它汽车(三轮汽车除外) 其它汽车(三轮汽车除外) 制动 制动距离 初速度 m km/h 50 ≤38 30 30 ≤18 ≤20 MFDD m/s2 ≥2.9 ≥2.5 ≥2.2 允许操纵力不大于, 允许操纵力不大于,N 手操纵 400 600 600 脚操纵 500 700 700
§4-1 制动性的评价指标
制动距离和制动稳定性的要求( 表1 制动距离和制动稳定性的要求(GB7258-2004) ) 机动车类型
三轮汽车 乘用车 总质量不大于 3500kg 的低速货车 其它总质量不大于 3500kg 的汽车 其它汽车、 其它汽车、汽车列车 两轮摩托车 边三轮摩托车 正三轮摩托车 轻便摩托车 轮式拖拉机运输机组 手扶变型运输机 制动 初速度 km/h 满载检验制 动距离要求, 动距离要求 m 空载检验制 动距离要求, 动距离要求 m 试验通道宽 度, m
第四章 汽车的制动性
§4-1 制动性的评价指标 §4-2 制动时车轮的受力 §4-3 汽车的制动效能及其恒定性 §4-4 制动时汽车的方向稳定性 §4-5 前、后制动器制动力的比例关系 §4-6 汽车制动性的试验
第四章 汽车的制动性
汽车行驶时能在短距离内停车且 维持行驶方向稳定性和在下长坡时 能维持一定车速的能力, 称为汽车 能维持一定车速的能力 , 的制动性。 的制动性。
试验通 道宽度 m
20 50 30 50 30 ≥5.9 ≥5.2 ≥5.4 ≥5.0
≥3.8 ≥6.2 ≥5.6 ≥5.8 ≥5.4
2.5 2.5 2.5 2.5 3.0
§4-1 制动性的评价指标
3. 进行制动性能检验时的制动踏板力或制动气压应
符合以下要求: 符合以下要求:
①满载制动时 气压制动系:气压表的指示气压≤额定工作气压 额定工作气压; 气压制动系:气压表的指示气压 额定工作气压; 液压制动系(踏板力) 乘用车≤500N; 液压制动系(踏板力): 乘用车 ; 其它机动车≤700N 其它机动车 ②空载制动时 气压制动系:气压表的指示气压≤600kPa; 气压制动系:气压表的指示气压 ; 液压制动系(踏板力) 乘用车≤400N; 液压制动系(踏板力):乘用车 ; 其它机动车≤450N 其它机动车 三轮汽车、 ③ 三轮汽车 、 正三轮摩托车和拖拉机运输机组检验 踏板力不大于600N。 时,踏板力不大于 。
§4-1 制动性的评价指标
制动距离和制动稳定性的要求( 表1 制动距离和制动稳定性的要求(GB7258-2004) ) 机动车类型
三轮汽车 乘用车 总质量不大于 3500kg 的低速货车 其它总质量不大于 3500kg 的汽车 其它汽车、 其它汽车、汽车列车 两轮摩托车 边三轮摩托车 正三轮摩托车 轻便摩托车 轮式拖拉机运输机组 手扶变型运输机 制动 初速度 km/h 满载检验制 动距离要求, 动距离要求 m 空载检验制 动距离要求, 动距离要求 m 试验通道宽 度, m
第四章 汽车的制动性
§4-1 制动性的评价指标 §4-2 制动时车轮的受力 §4-3 汽车的制动效能及其恒定性 §4-4 制动时汽车的方向稳定性 §4-5 前、后制动器制动力的比例关系 §4-6 汽车制动性的试验
第四章 汽车的制动性
汽车行驶时能在短距离内停车且 维持行驶方向稳定性和在下长坡时 能维持一定车速的能力, 称为汽车 能维持一定车速的能力 , 的制动性。 的制动性。
试验通 道宽度 m
20 50 30 50 30 ≥5.9 ≥5.2 ≥5.4 ≥5.0
≥3.8 ≥6.2 ≥5.6 ≥5.8 ≥5.4
2.5 2.5 2.5 2.5 3.0
§4-1 制动性的评价指标
3. 进行制动性能检验时的制动踏板力或制动气压应
符合以下要求: 符合以下要求:
①满载制动时 气压制动系:气压表的指示气压≤额定工作气压 额定工作气压; 气压制动系:气压表的指示气压 额定工作气压; 液压制动系(踏板力) 乘用车≤500N; 液压制动系(踏板力): 乘用车 ; 其它机动车≤700N 其它机动车 ②空载制动时 气压制动系:气压表的指示气压≤600kPa; 气压制动系:气压表的指示气压 ; 液压制动系(踏板力) 乘用车≤400N; 液压制动系(踏板力):乘用车 ; 其它机动车≤450N 其它机动车 三轮汽车、 ③ 三轮汽车 、 正三轮摩托车和拖拉机运输机组检验 踏板力不大于600N。 时,踏板力不大于 。
汽车制动性能(最新)
例如“红旗”轿车。
改进制动系结构,减少制动 器起作用时间,是缩短制动 距离的有效措施。
3、持续制动时间 (d——e) 4、放松制动时间 (e ——f) 0.2——1秒
(二)制动距离(S——m) 经验公式: 轿车: S=0.0034Ua0+0.00451U² a0 液压制动客、货车 S=0.06ua0+0.0085ua0²m
X
X
所以:Gφb=G•amax/g
amax=φbg, m/s² 或φb=amax/g
即:当所有车轮都抱死时,
产生的amax与φb成正比。
前后轮都抱死时(前后轮同 时抱死)amax=φsg, ABS装置:amax= φpg, 汽车制动时不希望车轮都抱 死。
所以:amax<φsg
因为:φb=amax/g,
2、减少有机成分含量,增 加金属添加剂成分。 3、使摩擦片具有一定的气 孔,便于散热。 4、用前,先进行表面处理, 使其产生表面热稳定层,缓 和衰退。
(二)制动器的结构型式 1、双向自动增力蹄(BJ130) 双增力蹄(BJ212) ,具有较大的 制动效能因数,但稳定性差。 制动效能因数Kef=F/P。 F——制动器摩擦力 P——制动泵推力
FXb FXb1 FXb2 Fj
(Gb FXb hg ) L (Ga FXb hg ) L
FZ 2 L Fj hg Ga
Ga F j hg FZ 2 L L
即: Ga FXb hg FZ 2 L L
G dv Fj , FXb Fj g dt 所以: G dv Gb hg hg d v g dt G FZ 1 (b ) L L g dt
第四章汽车的 制动性能
4-1 制动性能评价指标 制动性能:指汽车 行驶时,能在短距离内 停车,并维持行驶方向 稳定,下长坡时能维持 一定车速的能力。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自排水能力;路面的微观结构应是粗糙 且有一定的棱角,以穿透水膜,让路面 与胎面直接接触。 增大轮胎与地面的接触面积可提高附着 能力:低气压、宽断面和子午线轮胎附 着系数大。 滑水现象减小了轮胎与地面的附着能力, 影响制动、转向能力。 潮湿路面且有尘土、油污与冰雪、霜类。
17
高速行驶经过积水层出现滑水现象。
痕,看不出花纹。 uwr r0 ww0
10
不 同 滑 动 率 轮 胎 印 迹 变 化 规 律
11
随着制动强度的增加,车轮的滑动成分越来越大。它
通常用滑动率S表示。
S u w r r 0 w 100 %
p
uw u w r r 0 为纯滚动
S 0
s
w 0 , S 100 % 为纯滑动
对于装有 ABS 的汽车,则
s g xmax p g
在预见性的非紧急制动 车轮不抱死。
x s g p g
20
2 制动距离分析
驾驶员反应时间:
Evaluation Criteria of Braking Performance
4
制动效能的恒定性
抗热衰退性能:汽车在高速行驶或下长坡道时
制动性能的保持程度。
抗水衰退性能:是指汽车涉水后对制动性能的
保持能力
汽车制动时的方向稳定性的评价:常用 制动时汽车按给定路径行驶的能力。
制动时发生跑偏、侧滑或失去转向能力 时,则汽车将偏离给定的行驶路径。这 时,汽车的制动方向稳定性能不佳。
T r
2 制动器制动力
F
T r
Braking Force
W
ua
T
Fp
F xb
F
Fz
7
W
ua
T
Fp
F xb
F
Fz
图4-1 制动时车轮受力条件
8
3 地面制动力、制动器制动力与附着力的关系
F
Fb Ff
F
C
FxbmaxF
踏板力,N
Fxb F Fz
Fxbmax Fz
踏板力,N
Fxb F
地面制动力首先取决与制动器制动力,但同时 受到地面附着条件的限制,它们同时大才好。
到制动踏板至汽车停住所行驶的距离。制动距离 与踏板力(或者制动系管路压力)以及地面的附 着情况有关,也与制动器的热工况有关。
制动减速度是地面制动力的反映,而与地面
制动力与制动器制动力有关。
19
不同制动工况时的地面制动力
车轮抱死时,地面制动 力为
Fxb b mg m x m ( b g ) xmax s g
b
b
l
0 S 100 % 为边滚边滑
制动力系数 峰值附着力系数 滑动附着系数 侧向力系数
b p
s l
20
100
滑动率S
图4-3 bs、l-S关系曲
12
p
b
s
b
l
20 滑动率S 100
图4-3 bs、l-S关系曲线
13
滑动率s:车轮运动中从滚动至滑动过程滑
动成分所占的比例
现象分析
p
b
纯滚动 uw rr0 w
A水膜区
B过渡区
W
C接触区
Fp
ua
Fh
Au
2 a
uh 6.34 pi
Home模型
A区 B区 C区
Hydroplanning
18
4.3 汽车制动效能及其恒定性
汽车制动效能,是指汽车迅速降低车速直至 停车的能力。汽车制动效能的评价指标是制动距
离S(单位m)和制动减速度 (x单位m/s2)。
1. 制动距离 制动距离S,是指汽车以给定的初速u0,从踩
5
轿车制动规范
项目
中 国 GB7258 EEC 71/732 瑞 典 F18 美 国 联 邦 105
试 验 路 面 φ ≥ 0.7
附着良好 φ=0.8
Skid No81
载重
空载(满载) 1 人或满载 任何载荷 轻载、满载
制动初速 方向稳定性
距离或减速度
踏板力
50k m /h
80k m /h
ቤተ መጻሕፍቲ ባይዱ
偏 出 ≤ 2.5m 不 抱 死 跑 偏
9
仔细观察汽车 的制动过程可发现,轮胎留 在地面上的印痕从车轮滚动到滑动是一个渐变 的过程。
第一阶段:单纯滚动,印痕的形状基本与
轮胎胎面花纹相一致。 uw rr0w
第二阶段:边滚边滑-可辨别轮胎花纹的 印痕,但花纹逐渐模糊,轮胎胎面相对地面发 生一定的相对滑动,随着滑动成分的增加,花
纹越来越模糊。 u wrr0 w u wrr 0 w 第三阶段:拖滑-车轮抱死拖滑,粗黑印
≤ 19 (20)m
≤ 50.7m,
≥ 6.2(5.9)m/s2 ≥ 5.8m /s2
≤ 500N
≤ 490N
80k m /h 不抱死跑偏 ≥ 5.8m/s2 ≤ 490N
80k m /h
不 抱 死 ,偏 出 ≤ 3.7m ≤ 65.8m (216ft)
≤ 66.7~667N
6
1 地面制动力
F xb
φS
0.75 0 .4 5 ~ 0 .6 0 0.7 0.55 0.65 0 .4 ~ 0 .5 0.15 0.07
15
道路的类型、路况 汽车运动速度 轮胎结构、花纹、材料
b
柏油(干)
b
松砾石
光滑冰面
s
Adhisive Coefficient
16
ua s
轮胎的磨损会影响其附着能力。 路面的宏观结构应有一定的不平度而有
s0
纯滑动
=
w
0
s 100%
l
S
FS mg
s
s
边滚边滑 0 s 100% 15~20
100
s
uw
rr0 w
uw
100%,b
Fb mg
, p
Fb max mg
14
各种路面平均附着系数
路面
柏油或砼(干)
柏油(湿) 砼(湿) 砾石 土路(干) 土路(湿) 雪(压实) 冰
φp
0 .8 ~ 0 .9 0 .5 ~ 0 .7 0.8 0.6 0.68 0.55 0.2 0.1
汽车制动性是汽车的重要使用性能 之一。它属于 汽 车主动安全的范畴。
行车制动俗称脚制动或脚刹车。 驻车制动俗称手刹车或手制动。
3
三个评价指标
制动效能(含制动距离和制动减速度); 制动效能的恒定性(抗衰退性能); 制动时汽车方向稳定性(包括抗跑偏、抗侧滑
和保持转向能力的性能)。
制动效能的定义
在良好的路面上,汽车以规定的初始车速以规 定的踏板力制动到停车的制动距离或制动时汽 车的减速度。它是制动性能的最基本指标。
1
4.1 汽车制动性的评价指标
4.2 车轮制动时的受力学分析
4.3 汽车制动效能及其恒定性
4.4 制动时汽车行驶方向稳定性
4.5 前后制动器制动力分配比例
Automotive Braking Performance
2
定义:汽车在行驶时能在短距离停 车且维持行驶方向稳定性和在下长坡时 能维持一定车速的能力。另外,也包括在 一定坡道上 能 够长时间停放的能力。
17
高速行驶经过积水层出现滑水现象。
痕,看不出花纹。 uwr r0 ww0
10
不 同 滑 动 率 轮 胎 印 迹 变 化 规 律
11
随着制动强度的增加,车轮的滑动成分越来越大。它
通常用滑动率S表示。
S u w r r 0 w 100 %
p
uw u w r r 0 为纯滚动
S 0
s
w 0 , S 100 % 为纯滑动
对于装有 ABS 的汽车,则
s g xmax p g
在预见性的非紧急制动 车轮不抱死。
x s g p g
20
2 制动距离分析
驾驶员反应时间:
Evaluation Criteria of Braking Performance
4
制动效能的恒定性
抗热衰退性能:汽车在高速行驶或下长坡道时
制动性能的保持程度。
抗水衰退性能:是指汽车涉水后对制动性能的
保持能力
汽车制动时的方向稳定性的评价:常用 制动时汽车按给定路径行驶的能力。
制动时发生跑偏、侧滑或失去转向能力 时,则汽车将偏离给定的行驶路径。这 时,汽车的制动方向稳定性能不佳。
T r
2 制动器制动力
F
T r
Braking Force
W
ua
T
Fp
F xb
F
Fz
7
W
ua
T
Fp
F xb
F
Fz
图4-1 制动时车轮受力条件
8
3 地面制动力、制动器制动力与附着力的关系
F
Fb Ff
F
C
FxbmaxF
踏板力,N
Fxb F Fz
Fxbmax Fz
踏板力,N
Fxb F
地面制动力首先取决与制动器制动力,但同时 受到地面附着条件的限制,它们同时大才好。
到制动踏板至汽车停住所行驶的距离。制动距离 与踏板力(或者制动系管路压力)以及地面的附 着情况有关,也与制动器的热工况有关。
制动减速度是地面制动力的反映,而与地面
制动力与制动器制动力有关。
19
不同制动工况时的地面制动力
车轮抱死时,地面制动 力为
Fxb b mg m x m ( b g ) xmax s g
b
b
l
0 S 100 % 为边滚边滑
制动力系数 峰值附着力系数 滑动附着系数 侧向力系数
b p
s l
20
100
滑动率S
图4-3 bs、l-S关系曲
12
p
b
s
b
l
20 滑动率S 100
图4-3 bs、l-S关系曲线
13
滑动率s:车轮运动中从滚动至滑动过程滑
动成分所占的比例
现象分析
p
b
纯滚动 uw rr0 w
A水膜区
B过渡区
W
C接触区
Fp
ua
Fh
Au
2 a
uh 6.34 pi
Home模型
A区 B区 C区
Hydroplanning
18
4.3 汽车制动效能及其恒定性
汽车制动效能,是指汽车迅速降低车速直至 停车的能力。汽车制动效能的评价指标是制动距
离S(单位m)和制动减速度 (x单位m/s2)。
1. 制动距离 制动距离S,是指汽车以给定的初速u0,从踩
5
轿车制动规范
项目
中 国 GB7258 EEC 71/732 瑞 典 F18 美 国 联 邦 105
试 验 路 面 φ ≥ 0.7
附着良好 φ=0.8
Skid No81
载重
空载(满载) 1 人或满载 任何载荷 轻载、满载
制动初速 方向稳定性
距离或减速度
踏板力
50k m /h
80k m /h
ቤተ መጻሕፍቲ ባይዱ
偏 出 ≤ 2.5m 不 抱 死 跑 偏
9
仔细观察汽车 的制动过程可发现,轮胎留 在地面上的印痕从车轮滚动到滑动是一个渐变 的过程。
第一阶段:单纯滚动,印痕的形状基本与
轮胎胎面花纹相一致。 uw rr0w
第二阶段:边滚边滑-可辨别轮胎花纹的 印痕,但花纹逐渐模糊,轮胎胎面相对地面发 生一定的相对滑动,随着滑动成分的增加,花
纹越来越模糊。 u wrr0 w u wrr 0 w 第三阶段:拖滑-车轮抱死拖滑,粗黑印
≤ 19 (20)m
≤ 50.7m,
≥ 6.2(5.9)m/s2 ≥ 5.8m /s2
≤ 500N
≤ 490N
80k m /h 不抱死跑偏 ≥ 5.8m/s2 ≤ 490N
80k m /h
不 抱 死 ,偏 出 ≤ 3.7m ≤ 65.8m (216ft)
≤ 66.7~667N
6
1 地面制动力
F xb
φS
0.75 0 .4 5 ~ 0 .6 0 0.7 0.55 0.65 0 .4 ~ 0 .5 0.15 0.07
15
道路的类型、路况 汽车运动速度 轮胎结构、花纹、材料
b
柏油(干)
b
松砾石
光滑冰面
s
Adhisive Coefficient
16
ua s
轮胎的磨损会影响其附着能力。 路面的宏观结构应有一定的不平度而有
s0
纯滑动
=
w
0
s 100%
l
S
FS mg
s
s
边滚边滑 0 s 100% 15~20
100
s
uw
rr0 w
uw
100%,b
Fb mg
, p
Fb max mg
14
各种路面平均附着系数
路面
柏油或砼(干)
柏油(湿) 砼(湿) 砾石 土路(干) 土路(湿) 雪(压实) 冰
φp
0 .8 ~ 0 .9 0 .5 ~ 0 .7 0.8 0.6 0.68 0.55 0.2 0.1
汽车制动性是汽车的重要使用性能 之一。它属于 汽 车主动安全的范畴。
行车制动俗称脚制动或脚刹车。 驻车制动俗称手刹车或手制动。
3
三个评价指标
制动效能(含制动距离和制动减速度); 制动效能的恒定性(抗衰退性能); 制动时汽车方向稳定性(包括抗跑偏、抗侧滑
和保持转向能力的性能)。
制动效能的定义
在良好的路面上,汽车以规定的初始车速以规 定的踏板力制动到停车的制动距离或制动时汽 车的减速度。它是制动性能的最基本指标。
1
4.1 汽车制动性的评价指标
4.2 车轮制动时的受力学分析
4.3 汽车制动效能及其恒定性
4.4 制动时汽车行驶方向稳定性
4.5 前后制动器制动力分配比例
Automotive Braking Performance
2
定义:汽车在行驶时能在短距离停 车且维持行驶方向稳定性和在下长坡时 能维持一定车速的能力。另外,也包括在 一定坡道上 能 够长时间停放的能力。