高中数学奥林匹克竞赛介绍

合集下载

cmo数学竞赛大纲

cmo数学竞赛大纲

cmo数学竞赛大纲一些关于CMO数学竞赛大纲的信息。

CMO是中国数学奥林匹克(Chinese Mathematical Olympiad)的简称,是中国中学生数学竞赛,由中国数学会奥林匹克委员会和《中学生数理化》编辑部主办,在每年十二月的全国中学生数学冬令营举行。

这项比赛在1991年命名为中国数学奥林匹克。

CMO的考试完全模拟国际数学奥林匹克(IMO)进行,每天3道题,限四个半小时完成。

每题21分(为IMO试题的3倍,为符合中国人的认知习惯),6个题满分为126分。

CMO的考试内容主要涉及以下几个方面的数学知识:- 代数:包括整式、分式、不等式、方程与不等式组、数列、数论等。

- 几何:包括平面几何、立体几何、解析几何、向量等。

- 组合:包括排列组合、概率、图论、计数原理等。

- 其他:包括函数、极限、微积分、数学归纳法等。

CMO的考试难度较高,需要具备较强的数学思维能力、创新能力和解题技巧。

CMO的考试题目通常具有一定的技术性和艺术性,能够激发学生的数学兴趣和探索精神。

CMO的考试目的是选拔优秀的中学生参加国家集训队,预备次年7月的国际数学奥林匹克。

CMO的考试成绩也是高中生申请国内外名校的重要依据之一。

一点点必要的自我介绍我来自北京,学习过数学竞赛,也参加了高考。

数学竞赛上我的最好成绩是中国数学奥林匹克(CMO)的二等奖,在高考中则幸运地考过了清北的分数线。

不论从最终成绩上还是从智力上,我和知乎上的大佬们相比都不算出众。

我在高中数学竞赛的起步也很晚,从高一才开始系统学习。

不过我想也正因为如此,我的经历和反思对于非“天才型”的选手可能更有参考价值,所以文章的内容也尽量针对普通选手。

(#^.^#)如何决定是否选择数学竞赛?首先说一点自己对政策的看法。

我在高二时经历了自主招生可能降分额度最大的一年(取得了清北一本线的认定),在高三时则见证了政策的突变和自招的缩水。

竞赛生的政策在之前的两年里一直处于一个不确定的状态,在今年强基实施之后应该会趋于稳定。

每年各种数学竞赛时间表

每年各种数学竞赛时间表

每年各种数学竞赛时间表
每年数学竞赛的时间表可能会因地区和组织而有所不同。

以下是一些常见的数学竞赛及其大致的时间安排:
1.美国的数学竞赛(AMC):每年分多个级别进行,包括AMC 8、AMC 10和AMC 12。

这些竞赛通常在每年的2月和3月进行。

2.美国的数学奥林匹克竞赛(USAMO):每年4月举行,只有高中学生可以参加。

3.英国数学奥林匹克竞赛(BMO):每年9月举行,只有英国中学生可以参加。

4.国际数学奥林匹克竞赛(IMO):每年7月举行,全球各地的中学生都可以参加。

5.亚洲太平洋数学奥林匹克竞赛(APMO):每年9月举行,亚太地区的中学生可以参加。

6.中国大学生数学竞赛:每年11月举行,面向中国高校在校大学生。

此外,还有一些定期举办的比赛,如美国的数学协会(MAA)举办的哈密瓜奖(Harmony Award)和美国的数学基金会(MF)举办的克雷茨曼奖(Kretschmann Award)等。

请注意,这些时间表可能因各种原因而有所变化,因此最好提前查看官方网站或相关组织以获取最新信息。

高中数学竞赛介绍,尖子生请收好

高中数学竞赛介绍,尖子生请收好

高中数学竞赛介绍,尖子生请收好!首先,强调一点:不是所有学生都可以学数学竞赛,要想学习数学竞赛必须同时具备以下条件:•高考数学可以轻松应对;•对数学竞赛有兴趣,自发选择学习数学竞赛;•具备自主学习能力;•高考涉及的其他学科不存在太大问题,或个人的竞赛前景远优于高考前景。

数学竞赛需要的时间和精力都是很大的,并且如果因为学习竞赛受挫而导致对数学产生负情绪是得不偿失的,因此,我从不提倡“全民竞赛”。

当然,如果你恰好符合以上的四个条件,那么你一定要学习竞赛。

为什么?因为学习数学竞赛的好处很多。

与其他学科竞赛一样,学习数学竞赛除了能在升入高校方面获得保送或降分的优惠外,还能培养学生的自主学习能力,这对学生的整个大学学习乃至今后的学术研究或是社会工作是尤为重要的。

因此,若你有足够的实力,精力和时间,那么竞赛将是你们的不二之选。

此外,数学竞赛学到一定深度后就会发现,数学竞赛不再是由知识结构和解题方法组成,而是对思维能力的培养和运用,而思维能力的价值是远超过数学本身的,这将会对学生以后对问题的思考与对事物的判断等产生不可估量的影响。

当然,这是后话。

说归说,高中数学竞赛指的究竟是什么?我想说的是,绝不仅仅是高联(全国高中数学联赛)这么简单。

下面,我就带着大家理一理高中阶段可能会遇到的竞赛。

1. 全国高中数学联赛全国高中数学联赛旨在选拔在数学方面有突出特长的同学,让他们进入全国知名高等学府,而且选拔成绩比较优异的同学进入更高级别的竞赛,直至国际数学奥林匹克(IMO)。

并且通过竞赛的方式,培养中学生对于数学的兴趣,让学生们爱好数学,学习数学,激发学生们的钻研精神,独立思考精神以及合作精神。

2.中国数学奥林匹克(CMO)CMO考试完全模拟IMO进行,每天3道题,限四个半小时完成。

每题21分(为IMO试题的3倍,为符合中国人的认知习惯),6个题满分为126分。

颁奖与IMO类似,设立一、二、三等奖,分数最高的约前60名选手将组成参加当年国际数学奥林匹克(International Mathematical Olympiad,简称IMO)的中国国家集训队。

奥数到底是什么

奥数到底是什么

1.什么是奥数?“奥数”是奥林匹克数学竞赛的简称。

1934年和1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克的名称,1959年在布加勒斯特举办第一届国际数学奥林匹克竞赛。

国际数学奥林匹克作为一项国际性赛事,由国际数学教育专家命题,出题范围超出了所有国家的义务教育水平,难度大大超过大学入学考试。

2.什么是华数?“华罗庚金杯”少年数学邀请赛是以华罗庚名字命名的数学竞赛的简称。

始于1986年是纪念我国著名数学家华罗庚始创的,有中国优选法统筹法和经济数学研究会中国少年报,全国性大型少年数学竞赛活动至2010年以有16届。

3.奥数和华数的区别?“奥数”、“华数”没有本质上的区别,只是说法有点不同,因为北京有所RH学校(原北京市华罗庚学校),他们自己编了一套奥林匹克数学教材,简称为“华数”。

“华数”只是北京特有一种说法,外地只有“奥数”或“数奥”的说法。

奥数与华数的区别在于:在教材编写上,知识结构顺序编排的差异和和部分习题选用难度的差异。

家长中一直流传着华数比奥数要难的说法,其原因在于RH的《华罗庚学校数学思维训练导引》一书难度较高,比一般的奥数书难度高多了,其本质还是奥数。

4.奥数”究竟学些什么?大多数的家长和老师都不一定很清楚,可能就觉得只有那些思路比较新、怪,难度比较大的所谓“难题”、“偏题”才是“奥数”。

其实不然。

奥数仍然是属于数学这一门学科,这是毫无疑问的。

奥数中当然也有和我们平时所学的课堂上的数学相联系的部分,是课堂内容的深化和提高;但是奥数中更多的是和课堂上的数学看起来不沾边的内容,那么这部分内容究竟是什么,又来自于哪里呢?数学的范围是极其广泛的,世界上最权威的分类法大概把数学分成了几十个大类,一百多个小类。

我们从小学高年级的一元一次方程开始算起,一直到高中毕业,在七、八年的时间里,所涉及的数学类别也就是平面几何、三角函数、线性方程(组)、解析几何、立体几何、集合论、不等式、数列等等。

高中五大联赛介绍

高中五大联赛介绍

⾼中五⼤联赛介绍⾼中五⼤联赛介绍问题⼀:⾼中五⼤联赛包括哪⼏项?1. 数学:全国⾼中数学联赛(省级赛区)中国数学奥林匹克2. 物理:全国中学⽣物理竞赛(省级赛区)全国中学⽣物理竞赛决赛3. 化学:全国⾼中学⽣化学竞赛(省级赛区)全国⾼中学⽣化学竞赛4. ⽣物:全国中学⽣⽣物学联赛(省级赛区)全国中学⽣⽣物学竞赛5. 信息学:全国青少年信息学奥林匹克联赛(省级赛区)全国青少年信息学奥林匹克竞赛主管单位:中国科学技术协会主办单位分别为:中国数学会、中国物理学会、中国化学会、中国植物学会和中国动物学会、中国计算机学会问题⼆:联赛考察内容是什么?1. 数学:⼀试:⾼考考纲内,中⾼档题⽬,7填空每个8分,3⼤题,14、15、15共占100分,考80分钟。

休息10分钟。

⼆试:两个半⼩时。

09年前平⾯⼏何、代数或数论、组合,09年开始考四项,共200分。

获奖标准:需要⾄少完成哪些题⽬,60分以下不计分,170分左右能拿⼀等奖。

2. 物理:预赛:考笔试3⼩时,满分200分。

复赛:笔试实验=160分 40分,各考3⼩时。

决赛:笔试实验=140分 60分,各考3⼩时。

3. 化学:介于⾼中和⼤学,知识要偏很多,⼤部分都是课外知识。

初赛:笔试3⼩时。

决赛:理论竞赛4⼩时,实验竞赛4-5⼩时。

4. ⽣物学:理论考分与实验考分⽐按75%:25%分配。

每年8⽉在承办地举办全国⽣物竞赛。

全国竞赛包括理论和实验两部分,理论与实验分数⽐例各占50%,分数相同的情况下以实验分⾼者为先。

5. 信息学:NOIP初赛以通⽤和实⽤的计算机知识为考试内容,重在考察基础与实⽤的知识,以笔试为主。

复赛为程序设计。

参加初赛者须达到⼀定分数线后才有资格参加复赛。

各省市、⾃治区都应参加联赛,参加联赛是参加NOI的必要条件。

问题三:⾼中联赛的评奖设置简述(现在每年获奖⼈数稍有提升)1.数学:联赛:省级⼀等奖40,⼆等奖78⼈,三等奖120⼈。

⼀般年份⼀等奖是170多分;有的年份题⽬特别难,⽐如07年是120多分;我们参加的那⼀年,即06年好像有200多分⼀般题⽬⼀年简单⼀年难所以分数不⼀定不过只要拿下平⾯⼏何⼀等奖就差不多了。

什么是奥数

什么是奥数

什么是奥数“奥数”是奥林匹克数学竞赛的简称。

1934年和1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克的名称,1959年在布加勒斯特举办第一届国际数学奥林匹克竞赛。

国际数学奥林匹克作为一项国际性赛事,由国际数学教育专家命题,出题范围超出了所有国家的义务教育水平,难度大大超过大学入学考试。

有关专家认为,只有5%的智力超常儿童适合学奥林匹克数学,而能一路过关斩将冲到国际数学奥林匹克顶峰的人更是凤毛麟角。

近年来,我国各种以远远高于课堂数学教学内容为主的各种课外数学提高班、培训班纷纷冠以“奥数”的名号,使得“奥数”培训逐渐脱离奥赛选手选拔的轨道,凸显出泛大众化的特征。

虽然不少知名数学家和数学教育工作者发出了谨防“奥数”走偏的呼声,但“奥数”成绩与中学升学之间的微妙关系使得“奥数”内涵的扩大化趋势难以阻挡。

凡是各学校、团体主办的各种杯赛针对性极强的课外数学培训统统披上了“奥数”的外衣,脱离课本、强调技巧成了“奥数”的代名词。

1、“奥数”究竟学些什么?奥数”究竟是什么?它和我们平时学的数学课有什么区别和联系?我想大多数的家长和老师都不一定很清楚,可能就觉得只有那些思路比较新、怪,难度比较大的所谓“难题”、“偏题”才是“奥数”。

其实不然。

奥数仍然是属于数学这一门学科,我想这是毫无疑问的。

奥数中当然也有和我们平时所学的课堂上的数学相联系的部分,是课堂内容的深化和提高;但是奥数中更多的是和课堂上的数学看起来不沾边的内容,那么这部分内容究竟是什么,又来自于哪里呢?数学的范围是极其广泛的,世界上最权威的分类法大概把数学分成了几十个大类,一百多个小类。

我们从小学高年级的一元一次方程开始算起,一直到高中毕业,在七、八年的时间里,所涉及的数学类别也就是平面几何、三角函数、线性方程(组)、解析几何、立体几何、集合论、不等式、数列等等。

作为数学教育,当然应该以这些内容为主,因为它们是数学的核心方法和领域,但是这些内容就是连初等数学的范畴也没有完全覆盖。

2008年数学奥林匹克竞赛

2008年数学奥林匹克竞赛

2008年数学奥林匹克竞赛
2008年数学奥林匹克竞赛,即第49届国际数学奥林匹克竞赛(IMO 2008),于2008年7月10日至22日在西班牙马德里举行。

来自103个国家及地区的549名学生参加了这次比赛。

在这次比赛中,中国队以217分获得团体总分第一名,其中两名队员牟晓生和韦东奕获得了满分(共3个满分)。

韦东奕更是在比赛中用纯代数的方法,只用2个小时就解出了一道难度最大的平面几何题。

此外,俄罗斯队和美国队分别取得团体第二和第三的成绩。

韩国、伊朗和泰国也取得了较好的成绩。

国际数学奥林匹克竞赛每年选在不同的国家和地区举行,是为全球高中学生举办的世界最高水平的数学赛事。

自1986年以来,中国队已累计14次获得国际奥林匹克数学竞赛团体总分第一名。

高中数学奥林匹克竞赛

高中数学奥林匹克竞赛

奥林匹克数学竞赛,简称奥数。

1934年和1935年,苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克的名称,1959年在布加勒斯特举办第一届国际数学奥林匹克。

国际数学奥林匹克作为一项国际性赛事,由国际数学教育专家命题。

我国的高中数学竞赛分三级:每年10月中旬的全国联赛;次年一月的CMO(冬令营);次年三月开始的国家集训队的训练与选拔。

“全国高中数学联赛”(创办于1981年),承办方式与初中联赛相同,每年10月举行,分为一试和二试,在这项竞赛中取得优异成绩的全国约90名学生有资格参加由中国数学会主办的“中国数学奥林匹克(CMO)暨全国中学生数学冬令营”(每年元月)。

全国数学联赛分为一试、加试(即俗称的“二试”)。

各个省份自己组织的“初赛”、“初试”、“复赛”等等,都不是正式的全国联赛名称及程序。

一试全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。

二试平面几何基本要求:掌握初中竞赛大纲所确定的所有内容。

补充要求:面积和周长方法。

几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

几个重要的极值:到三角形三顶点距离之和最小的点——费马点。

到三角形三顶点距离的平方和最小的点——重心。

三角形内到三边距离之积最大的点——重心。

几何不等式。

简单的等周问题。

了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。

在周长一定的简单闭曲线的集合中,圆的面积最大。

在面积一定的n边形的集合中,正n边形的周长最小。

在面积一定的简单闭曲线的集合中,圆的周长最小。

几何中的运动:反射、平移、旋转。

1高中数学新课标奥林匹克竞赛辅导讲义(集合部分)解析

1高中数学新课标奥林匹克竞赛辅导讲义(集合部分)解析

第一章 集合集合是高中数学中最原始、最基础的概念,也是高中数学的起始单元,是整个高中数学的基础.它的基础性体现在:集合思想、集合语言和集合的符号在高中数学的很多章节如函数、数列、方程与不等式、立体几何与解析几何中都被广泛地使用.在高考试题和数学竞赛中,很多问题可以用集合的语言加以叙述.集合不仅是中学数学的基础,也是支撑现代数学大厦的基石之一,本章主要介绍集合思想在数学竞赛中出现的问题.第一节 集合的概念与运算【基础知识】一.集合的有关概念1.集合:具有某些共同属性的对象的全体,称为集合.组成集合的对象叫做这个集合的元素.2.集合中元素的三个特征:确定性、互异性、无序性.3.集合的分类:无限集、有限集、空集φ.4. 集合间的关系:二.集合的运算1.交集、并集、补集和差集差集:记A 、B 是两个集合,则所有属于A 且不属于B 的元素构成的集合记作B A \.即A x B A ∈={\且}B x ∉.2.集合的运算性质(1)A A A = ,A A A = (幂等律);(2)A B B A =, A B B A =(交换律);(3))()(C B A C B A =, )()(C B A C B A =(结合律);(4))()()(C A B A C B A =,)()()(C A B A C B A =(分配律);(5)A A B A =)( ,A B A A =)( (吸收律);(6)A A C C U U =)((对合律);(7))()()(B C A C B A C U U U =, )()()(B C A C B A C U U U =(摩根律)(8))\()\()(\C A B A C B A =,)\()\()(\C A B A C B A =.3.集合的相等(1)两个集合中元素相同,即两个集合中各元素对应相等;(2)利用定义,证明两个集合互为子集;(3)若用描述法表示集合,则两个集合的属性能够相互推出(互为充要条件),即等价;(4)对于有限个元素的集合,则元素个数相等、各元素的和相等、各元素之积相等是两集合相等的必要条件.【典例精析】【例1】在集合},,2,1{n 中,任意取出一个子集,计算它的各元素之和.则所有子集的元素之和是 .〖分析〗已知},,2,1{n 的所有的子集共有n 2个.而对于},,2,1{n i ∈∀,显然},,2,1{n 中包含i 的子集与集合},,1,1,,2,1{n i i +-的子集个数相等.这就说明i 在集合},,2,1{n 的所有子集中一共出现12-n 次,即对所有的i 求和,可得).(211∑=-=n i n n i S 【解】集合},,2,1{n 的所有子集的元素之和为2)1(2)21(211+⋅=+++--n n n n n =.2)1(1-⋅+⋅n n n 〖说明〗本题的关键在于得出},,2,1{n 中包含i 的子集与集合},,1,1,,2,1{n i i +-的子集个数相等.这种一一对应的方法在集合问题以及以后的组合总是中应用非常广泛.【例2】已知集合}034|{},023|{222<+-=<++=a ax x x B x x x A 且B A ⊆,求参数a的取值范围.〖分析〗首先确定集合A 、B,再利用B A ⊆的关系进行分类讨论.【解】由已知易求得}0)3)((|{},12|{<--=-<<-=a x a x x B x x A当0>a 时,}3|{a x a x B <<=,由B A ⊆知无解;当0=a 时,φ=B ,显然无解;当0<a 时, }3|{a x a x B <<=,由B A ⊆解得.321≤≤-a 综上知,参数a 的取值范围是]32,1[-.〖说明〗本题中,集合的定义是一个二次三项式,那么寻于集合B 要分类讨论使其取值范围数字化,才能通过条件求出参数的取值范围.【例3】已知+∈∈R y R x ,,集合}1,2,{},1,,1{2+--=---++=y y y B x x x x A .若B A =,则22y x +的值是( )A.5B.4C.25D.10 【解】0)1(2≥+x ,x x x -≥++∴12,且012>++x x 及集合中元素的互异性知 x x x -≠++12,即1-≠x ,此时应有.112-->->++x x x x而+∈R y ,从而在集合B 中,.21y y y ->->+ 由B A =,得)3()2()1(12112⎪⎪⎩⎪⎪⎨⎧-=---=-+=++yx y x y x x 由(2)(3)解得2,1==y x ,代入(1)式知2,1==y x 也满足(1)式..5212222=+=+∴y x〖说明〗本题主要考查集合相等的的概念,如果两个集合中的元素个数相等,那么两个集合中对应的元素应分别相等才能保证两个集合相等.而找到这种对应关系往往是解决此类题目的关键.【例4】已知集合}|,|,0{)},lg(,,{y x B xy y x A ==.若B A =,求++++)1()1(22yx y x ……+)1(20082008y x +的值.〖分析〗从集合A=B 的关系入手,则易于解决.【解】B A = ,⎩⎨⎧=⋅⋅+=++∴0)lg(||)lg(xy xy x y x xy xy x ,根据元素的互异性,由B 知0,0≠≠y x . B ∈0 且B A =,A ∈∴0,故只有0)lg(=xy ,从而.1=xy又由A ∈1及B A =,得.1B ∈所以⎩⎨⎧==1||1x xy 或⎩⎨⎧==11y xy ,其中1==y x 与元素的互异性矛盾! 所以,1-=y x 代入得:++++)1()1(22y x y x ……+)1(20082008yx +=(2-)+2+(2-)+2+……+(2-)+2=0. 〖说明〗本题是例4的拓展,也是考查集合相等的概念,所不同的是本题利用的是集合相等的必要条件,即两个集合相等,则两个集合中,各元素之和、各元素之积及元素个数相等.这是解决本题的关键.【例5】已知A 为有限集,且*N A ⊆,满足集合A 中的所有元素之和与所有元素之积相等,写出所有这样的集合A.【解】设集合A=)1}(,,,{21>n a a a n 且n a a a <<≤211,由=+++n a a a 21n a a a ⋅⋅⋅ 21, *)(N n n a n ∈≥,得≥n na =+++n a a a 21n a a a ⋅⋅⋅ 21)!1(-≥n a n ,即)!1(-≥n n 2=∴n 或3=n (事实上,当3>n 时,有)2)1()2)(1()!1(n n n n n >⋅-≥--≥-. 当2=n 时,1,2,21122121=∴<∴<+=⋅a a a a a a a ,而.2,1122≠∴+≠⋅n a a当3=n 时,3,3213321321<⋅∴<++=⋅⋅a a a a a a a a a ,.2,121==∴a a由3332a a +=,解得.33=a综上可知,}.3,2,1{=A〖说明〗本题根据集合中元素之间的关系找到等式,从而求得集合A.在解决问题时,应注意分析题设条件中所给出的信息,根据条件建立方程或不等式进行求解.【例6】已知集合}02|{},023|{22≤+-=≤+-=a ax x x S x x x P ,若P S ⊆,求实数a 的取值组成的集合A.【解】}21|{≤≤=x x P ,设a ax x x f +-=2)(2.①当04)2(2<--=∆a a ,即10<<a 时,φ=S ,满足P S ⊆;②当04)2(2=--=∆a a ,即0=a 或1=a 时,若0=a ,则}0{=S ,不满足P S ⊆,故舍去;若1=a 时,则}1{=S ,满足P S ⊆.③当04)2(2>--=∆a a 时,满足P S ⊆等价于方程022=+-a ax x 的根介于1和2之间.即⎪⎪⎩⎪⎪⎨⎧≥-≥-<<><⇔⎪⎪⎩⎪⎪⎨⎧≥≥<--<>∆0340121100)2(0)1(22)2(10a a a a a f f a 或φ∈⇔a . 综合①②③得10≤<a ,即所求集合A }10|{≤<=a a .〖说明〗先讨论特殊情形(S=φ),再讨论一般情形.解决本题的关键在于对∆分类讨论,确定a 的取值范围.本题可以利用数形结合的方法讨论.0>∆【例7】(2005年江苏预赛)已知平面上两个点集{(,)||1|,M x y x y x y =++≥∈R },{(,)||||1|1,,N x y x a y x y =-+-≤∈R }. 若 MN ≠∅, 则 a 的取值范围是. 【解】由题意知 M 是以原点为焦点、直线 10x y ++= 为准线的抛物线上及其凹口内侧的点集,N 是以 (,1)a 为中心的正方形及其内部的点集(如图).考察 M N =∅ 时, a 的取值范围:令 1y =,代入方程|1|x y ++=, 得 2420x x --=,解出得2x = 所以,当211a <= 时, M N =∅. ………… ③令 2y =,代入方程|1|x y ++=得 2610x x --=. 解出得3x =3a >时, M N =∅. ………… ④因此, 综合 ③ 与 ④ 可知,当13a ≤≤,即[13a ∈ 时, M N ≠∅.故填[1.【例8】已知集合},,,{4321a a a a A =,},,,{24232221a a a a B =,其中4321a a a a <<<,N a a a a ∈4321,,,.若},{41a a B A = ,1041=+a a .且B A 中的所有元素之和为124,求集合A 、B.【解】 4321a a a a <<<,且},{41a a B A = ,∴211a a =,又N a ∈1,所以.11=a又1041=+a a ,可得94=a ,并且422a a =或.423a a =若922=a ,即32=a ,则有,12481931233=+++++a a 解得53=a 或63-=a (舍)此时有}.81,25,9,1{},9,5,3,1{==B A 若923=a ,即33=a ,此时应有22=a ,则B A 中的所有元素之和为100≠124.不合题意.综上可得, }.81,25,9,1{},9,5,3,1{==B A 〖说明〗本题的难点在于依据已知条件推断集合A 、B 中元素的特征.同时上述解答中使用发分类讨论的思想.分类讨论是我们解决问题的基本手段之一,将问题分为多个部分,每一部分的难度比整体都要低,这样就使问题变得简单明了.【例9】满足条件||4|)()(|2121x x x g x g -≤-的函数)(x g 形成了一个集合M,其中R x x ∈21,,并且1,2221≤x x ,求函数)(23)(2R x x x x f y ∈-+==与集合M 的关系.〖分析〗求函数23)(2-+=x x x f 集合M 的关系,即求该函数是否属于集合M,也就是判断该函数是否满足集合M 的属性.【解】|3||||)23()23(||)()(|212122212121++⋅-=++-++=-x x x x x x x x x f x f 取65,6421==x x 时, .||4||29|)()(|212121x x x x x f x f ->-=- 由此可见,.)(M x f ∉〖说明〗本题中M 是一个关于函数的集合.判断一个函数)(x f 是否属于M,只要找至一个或几个特殊的i x 使得)(i x f 不符合M 中的条件即可证明.)(M x f ∉【例10】对集合}2008,,2,1{ 及每一个非空子集定义唯一“交替和”如下:把子集中的数按递减顺序排列,然后从最大数开始,交替地加减相继各数,如}9,6,4,2,1{的“交替和”是612469=+-+-,集合}10,7{的“交替和”是10-7=3,集合}5{的“交替和”是5等等.试求A 的所有的“交替和”的总和.并针对于集合},,2,1{n 求出所有的“交替和”.〖分析〗集合A 的非空子集共有122008-个,显然,要想逐个计算“交替和”然后相加是不可能的.必须分析“交替和”的特点,故可采用从一般到特殊的方法.如{1,2,3,4}的非空子集共有15个,共“交替和”分别为:{1} 1;{2} 2 ;{3} 3;{4} 4;{1,2} 2-1; {1,3} 3-1;{1,4} 4-1;{2,3} 3-2;{2,4} 4-2;{3,4} 4-3;{1,2,3} 3-2+1;{1,2,4} 4-2+1;{1,3,4} 4-3=1;{2,3,4} 4-3+2;{1,2,3,4} 4-3+2-1.从以上写出的“交替和”可以发现,除{4}以外,可以把{1,2,3,4}的子集分为两类:一类中包含4,另一类不包含4,并且构成这样的对应:设i A 是{1,2,3,4}中一个不含有的子集,令i A 与i A }4{相对应,显然这两个集合的“交替和”的和为4,由于这样的对应应有7对,再加上{4}的“交替和”为4,即{1,2,3.4}的所有子集的“交替和”为32.【解】集合}2008,,2,1{ 的子集中,除了集合}2008{,还有222008-个非空子集.将其分为两类:第一类是含2008的子集,第二类是不含2008的子集,这两类所含的子集个数相同.因为如果i A 是第二类的,则必有}2008{ i A 是第一类的集合;如果j B 是第一类中的集合,则j B 中除2008外,还应用1,2,……,2007中的数做其元素,即j B 中去掉2008后不是空集,且是第二类中的.于是把“成对的”集合的“交替和”求出来,都有2008,从而可得A 的所有子集的“交替和”为.2008220082008)22(2120072008⨯=+⨯- 同样可以分析},,2,1{n ,因为n 个元素集合的子集总数为n 2个(含φ,定义其“交替和”为0),其中包括最大元素n 的子集有12-n 个,不包括n 的子集的个数也是12-n 个,将两类子集一一对应(相对应的子集只差一个元素n ),设不含n 的子集“交替和”为S,则对应的含n 子集的“交替和”为S n -,两者相加和为n .故所有子集的“交替和”为.21n n ⋅-〖说明〗本题中"退到最简",从特殊到一般的思想及分类讨论思想、对应思想都有所体现,这种方法在数学竞赛中是常用的方法,在学习的过程中应注意强化.【例11】一支人数是5的倍数的且不少于1000人的游行队伍,若按每横排4人编队,最后差3人;若按每横排3人编队,最后差2人;若按每横排2人编队,最后差1人,求这支游行队伍的人数最少是多少?〖分析〗已知游行队伍的总人数是5的倍数,那么可设总人数为n 5.“按每横排4人编队,最后差3人”,从它的反面去考虑,可理解为多1人,同样按3人、2人编队都可理解为“多1人”,显然问题转化为同余问题.n 5被4、3、2除时都余地,即15-n 是12的倍数,再由总人数不少于1000人的条件,即可求得问题的解.【解】设游行队伍的总人数为)(5+∈N n n ,则由题意知n 5分别被4、3、2除时均余1,即15-n 是4、3、2的公倍数,于是可令)(1215+∈=-N m m n ,由此可得:5112+=m n ①要使游行队伍人数最少,则式①中的m 应为最少正整数且112+m 为5的倍数,应为2.于是可令)(25+∈+=N p q m ,由此可得:512]1)25(12[51+=++⋅=p p n ,25605+≥p n ② 所以10002560≥+p ,4116≥p . 取17=p 代入②式,得10452517605=+⨯=n故游行队伍的人数最少是1045人.〖说明〗本题利用了补集思想进行求解,对于题目中含有“至少”、“至多”、“最少”、“不都”、“都”等词语,可以根据补集思想方法,从词义气反面(反义词)考虑,对原命题做部分或全部的否定,用这种方法转化命题,常常能起到化繁为简、化难为易的作用,使之寻求到解题思想或方法,实现解题的目的.【例12】设n N ∈且n ≥15,B A ,都是{1,2,3,…,n }真子集,A B φ=,且A B ={1,2,3,…,n }.证明:A 或者B 中必有两个不同数的和为完全平方数.【证明】由题设,{1,2,3,…,n }的任何元素必属于且只属于它的真子集B A ,之一. 假设结论不真,则存在如题设的{1,2,3,…,n }的真子集B A ,,使得无论是A 还是B 中的任两个不同的数的和都不是完全平方数.不妨设1∈A ,则3∉A ,否则1+3=22,与假设矛盾,所以3∈B .同样6∉B ,所以6∈A ,这时10∉A ,,即10∈B .因n ≥15,而15或者在A 中,或者在B 中,但当15∈A 时,因1∈A ,1+15=24,矛盾;当15∈B 时,因10∈B ,于是有10+15=25,仍然矛盾.因此假设不真,即结论成立. 【赛向点拨】1.高中数学的第一个内容就是集合,而集合又是数学的基础.因此,深刻理解集合的概念,熟练地进行集合运算是非常重要的.由于本节中涉及的内容较多,所以抓好概念的理解和应用尤其重要.2.集合内容几乎是每年的高考与竞赛的必考内容.一般而言,一是考查集合本身的知识;二是考查集合语言和集合思想的应用.3.对于给定的集合,要正确理解其含义,弄清元素是什么,具有怎样的性质?这是解决集合问题的前提.4.集合语言涉及数学的各个领域,所以在竞赛中,集合题是普遍而又基本的题型之一.【针对练习】(A 组)1.(2006年江苏预赛) 设在xOy 平面上,20x y ≤<,10≤≤x 所围成图形的面积为31,则集合},1),{(≤-=x y y x M }1),{(2+≥=x y y x N 的交集N M 所表示的图形面积为( ) A.31 B.32 C.1 D.34 2. (2006年陕西预赛)b a ,为实数,集合M=x x f a P ab →=:},0,{},1,{表示把集合M 中的元素x 映射到集合P 中仍为x ,则b a +的值等于( )A.1-B.0C.1D.1± 3. (2004年全国联赛)已知M={}32|),(22=+y x y x ,N={}b mx y y x +=|),(,若对于所有的R m ∈,均有,φ≠⋂N M 则b 的取值范围是 A .[26,26-] B.(26,26-)C.(332,332-) D.[332,332-] 4. (2005年全国联赛) 记集合},6,5,4,3,2,1,0{=T },4,3,2,1,|7777{4433221=∈+++=i T a a a a a M i 将M 中的元素按从大到小的顺序排列,则第2005个数是( )A .43273767575+++ B .43272767575+++ C .43274707171+++ D .43273707171+++ 5. 集合A,B 的并集A ∪B={a 1,a 2,a 3},当且仅当A≠B 时,(A,B)与(B,A)视为不同的对,则这样的(A,B)对的个数有( )A.27B.28.C.26D.256.设A={n |100≤n ≤600,n ∈N },则集合A 中被7除余2且不能被57整除的数的个数为______________.7. 已知2{430,}A x x x x R =-+<∈,12{20,2(7)50,}x B x a x a x x R -=+-++∈且≤≤.若A B ⊆,则实数a 的取值范围是 .8. 设M={1,2,3,…,1995},A 是M 的子集且满足条件: 当x ∈A 时,15x ∉A ,则A 中元素的个数最多是_______________.9. (2006年集训试题)设n 是正整数,集合M={1,2,…,2n }.求最小的正整数k ,使得对于M 的任何一个k 元子集,其中必有4个互不相同的元素之和等于10. 设A ={a |a =22x y -,,x y Z ∈},求证:⑴21k -∈A (k Z ∈); ⑵42 ()k A k Z -∉∈.11.(2006年江苏)设集合()12log 32A x x ⎧⎫⎪⎪=-≥-⎨⎬⎪⎪⎩⎭,21a B x x a ⎧⎫=>⎨⎬-⎩⎭.若A B ≠∅,求实数a 的取值范围.12. 以某些整数为元素的集合P 具有下列性质:①P 中的元素有正数,有负数;②P 中的元素有奇数,有偶数;③-1∉P ;④若x ,y ∈P ,则x +y ∈P 试判断实数0和2与集合P 的关系.(B 组)1. 设S 为满足下列条件的有理数的集合:①若a ∈S ,b ∈S ,则a +b ∈S , S ab ∈;②对任一个有理数r ,三个关系r ∈S ,-r ∈S ,r =0有且仅有一个成立.证明:S 是由全体正有理数组成的集合.2.321,,S S S 为非空集合,对于1,2,3的任意一个排列k j i ,,,若j i S y S x ∈∈,,则k S y x ∈- (1)证明:三个集合中至少有两个相等.(2)三个集合中是否可能有两个集无公共元素?3.已知集合:}1|),{(},1|),{(},1|),{(22=+==+==+=y x y x C ay x y x B y ax y x A 问(1)当a 取何值时,C B A )(为含有两个元素的集合?(2)当a 取何值时,C B A )(为含有三个元素的集合?4.已知{}22(,)4470,,A x y x y x y x y R =++++=∈, {}(,)10,,B x y xy x y R ==-∈.⑴请根据自己对点到直线的距离,两条异面直线的距离中 “距离”的认识,给集合A 与B 的距离定义;⑵依据⑴中的定义求出A 与B 的距离.5.设集合=P {不小于3的正整数},定义P上的函数如下:若P n ∈,定义)(n f 为不是n 的约数的最小正整数,例如5)12(,2)7(==f f .记函数f 的值域为M.证明:.99,19M M ∉∈6.为了搞好学校的工作,全校各班级一共提了P )(+∈N P 条建议.已知有些班级提出了相同的建议,且任何两个班级都至少有一条建议相同,但没有两个班提出全部相同的建议.求证该校的班级数不多于12-P 个.【参考答案】A 组1.解: N M 在xOy 平面上的图形关于x 轴与y 轴均对称,由此N M 的图形面积只要算出在第一象限的图形面积乘以4即得.为此,只要考虑在第一象限的面积就可以了.由题意可得,N M 的图形在第一象限的面积为A =613121=-.因此N M 的图形面积为32. 所以选B.2.解:由M=P,从而1,0==a a b ,即0,1==b a ,故.1=+b a 从而选C. 3. 解:M N ≠∅相当于点(0,b )在椭圆2223x y +=上或它的内部221,322b b ∴≤∴-≤≤.故选A. 4.解: 用p k a a a ][21 表示k 位p 进制数,将集合M 中的每个数乘以47,得 32123412347{777|,1,2,3,4}{[]|,1,2,3,4}.i i M a a a a a T i a a a a a T i '=⋅+⋅+⋅+∈==∈= M ' 中的最大数为107]2400[]6666[=.在十进制数中,从2400起从大到小顺序排列的第2005个数是2400-2004=396.而=10]396[7]1104[将此数除以47,便得M 中的数.74707171432+++故选C. 5.解:A=φ时,有1种可能;A 为一元集时,B 必须含有其余2元,共有6种可能;A 为二元集时,B 必须含有另一元.共有12种可能;A 为三元集时,B 可为其任一子集.共8种可能.故共有1+6+12+8=27个.从而选A.6.解:被7除余2的数可写为7k +2. 由100≤7k +2≤600.知14≤k ≤85.又若某个k 使7k +2能被57整除,则可设7k +2=57n . 即57256227778n n n nk n -+--===+. 即n -2应为7的倍数. 设n =7m +2代入,得k =57m +16. ∴14≤57m +16≤85. ∴m =0,1.于是所求的个数为85-(14-1)-2=70. 7.解:依题意可得{13}A x x =<<,设1()2x f x a -=+,2()2(7)5g x x a x =-++ 要使A B ⊆,只需()f x ,()g x 在(1,3)上的图象均在x 轴的下方,则(1)0f ≤,(3)0f ≤, (1)0g ≤,(3)0g ≤,由此可解得结果.8.解:由于1995=15⨯133,所以,只要n >133,就有15n >1995.故取出所有大于133而不超过1995的整数. 由于这时己取出了15⨯9=135, … 15⨯133=1995. 故9至133的整数都不能再取,还可取1至8这8个数,即共取出1995—133+8=1870个数, 这说明所求数≥1870.另一方面,把k 与15k 配对,(k 不是15的倍数,且1≤k ≤133)共得133—8=125对,每对数中至多能取1个数为A 的元素,这说明所求数≤1870,综上可知应填1870.9.解:考虑M 的n +2元子集P={n -l ,n ,n +1,…,2n }.P 中任何4个不同元素之和不小于(n -1)+n +( n +1)+( n +2)=4 n +2,所以k ≥n +3.将M 的元配为n 对,B i =(i ,2 n +1-i ),1≤i ≤n . 对M 的任一n +3元子集A ,必有三对123,,i i i B B B 同属于A(i 1、I 2、I 3两两不同).又将M 的元配为n -1对,C I (i ,2n -i ),1≤i ≤n -1.对M 的任一n +3元子集A ,必有一对4i C 同属于A ,这一对4i C 必与123,,i i i B B B 中至少一个无公共元素,这4个元素互不相同,且和为2 n +1+2 n =4 n +1,最小的正整数k = n +310.10.解: ⑴∵k ,1k -∈Z 且21k -=22(1)k k --,∴21k -∈A ;⑵假设42 ()k A k Z -∈∈,则存在,x y Z ∈,使42k -=22x y -即()()2(21)x y x y k -+=- (*)由于x y -与x y +具有相同的奇偶性,所以(*)式左边有且仅有两种可能:奇数或4的倍数,另一方面,(*)式右边只能被4除余2的数,故(*)式不能成立.由此,42()k A k Z -∉∈.11.解:{}13A x x =-≤<,()(){}30B x x a x a =--<. 当0a >时,{}03B x a x a =<<<,由AB ≠∅得03a <<; 当0a <时,{}30B x a x a =<<<,由A B ≠∅得1a >-; 当0a =时,{}20B x x =<=∅,与A B ≠∅不符.综上所述,()()1,00,3a ∈-.12.解:由④若x ,y ∈P ,则x +y ∈P 可知,若x ∈P ,则)( N k P kx ∈∈(1)由①可设x ,y ∈P ,且x >0,y <0,则-y x =|y |x (|y |∈N )故x y ,-y x ∈P ,由④,0=(-y x )+x y ∈P .(2)2∉P .若2∈P ,则P 中的负数全为偶数,不然的话,当-(12+k )∈P (N k ∈)时,-1=(-12-k )+k 2∈P ,与③矛盾.于是,由②知P 中必有正奇数.设),( 12,2N n m P n m ∈∈--,我们取适当正整数q ,使12|2|->-⋅n m q ,则负奇数P n qm ∈-+-)12(2.前后矛盾B 组1.证明:设任意的r ∈Q ,r ≠0,由②知r ∈S ,或-r ∈S 之一成立.再由①,若r∈S ,则S r ∈2;若-r ∈S ,则S r r r ∈-⋅-=)()(2.总之,S r ∈2. 取r =1,则1∈S .再由①,2=1+1∈S ,3=1+2∈S ,…,可知全体正整数都属于S .设S q p ∈,,由①S pq ∈,又由前证知S q ∈21,所以21qpq q p ⋅=∈S .因此,S 含有全体正有理数.再由①知,0及全体负有理数不属于S .即S 是由全体正有理数组成的集合.2.证明:(1)若j i S y S x ∈∈,,则i k S x y x y S x y ∈-=--∈-)(,,所以每个集合中均有非负元素.当三个集合中的元素都为零时,命题显然成立.否则,设321,,S S S 中的最小正元素为a ,不妨设1S a ∈,设b 为32,S S 中最小的非负元素,不妨设,2S b ∈则b -a ∈3S .若b >0,则0≤b -a <b ,与b 的取法矛盾.所以b =0.任取,1S x ∈因0∈2S ,故x -0=x ∈3S .所以⊆1S 3S ,同理3S 1S ⊆.所以1S =3S .(2)可能.例如1S =2S ={奇数},3S ={偶数}显然满足条件,1S 和2S 与3S 都无公共元素.3.解:C B A )(=)()(C B C A .C A 与C B 分别为方程组(Ⅰ)⎩⎨⎧=+=+1122y x y ax (Ⅱ)⎩⎨⎧=+=+1122y x ay x 的解集.由(Ⅰ)解得(y x ,)=(0,1)=(212a a +,2211aa +-);由(Ⅱ)解得 (y x ,)=(1,0),(2211a a +-,212a a +) (1)使C B A )(恰有两个元素的情况只有两种可能: ①⎪⎪⎩⎪⎪⎨⎧=+-=+111012222a a a a ②⎪⎪⎩⎪⎪⎨⎧=+-=+011112222aa a a 由①解得a =0;由②解得a =1.故a =0或1时,C B A )(恰有两个元素.(2)使C B A )(恰有三个元素的情况是:212a a +=2211a a +- 解得21±-=a ,故当21±-=a 时,C B A )(恰有三个元素.4.解: (1)设1212,min P A P B d P P ∈∈=(即集合A 中的点与集合B 中的点的距离的最小值), 则称d 为A 与B 的距离.⑵解法一:∵A 中点的集合为圆22(2)(2)1,x y +++=圆心为(2,2)M --,令(,)P x y 是双曲线上的任一点,则2MP =22(2)(2)x y +++=224()8x y x y ++++=2()24()x y xy x y +-+++8=2()4()28x y x y ++++令t x y =+,则2MP =22428(2)24t t t ++=++当2t =-时,即102xy x y =-⎧⎨+=-⎩有解,∴min MP =∴1d = 解法二:如图,P 是双曲线上的任一点, Q 为圆22(2)(2)1x y +++=上任一点,圆心为M .显然,P M MP +Q Q ≥(当P M 、Q 、三点共线时取等号)∴min 1d MP =-.5.解:记!18=n 时,由于1,2,……18都是n 的约数,故此时.19)(=n f 从而.19M ∈ 若存在P n ∈,使99)(=n f ,则对于小于99的正整数k ,均有n k |,从而n n |11,|9,但是1)11,9(=,由整数理论中的性质9×11=99是n 的一个约数,这是一个矛盾!从而.99M ∉6.证明:假设该校共有m 个班级,他们的建议分别组成集合m A A A ,,,21 。

奥林匹克数学竞赛简介

奥林匹克数学竞赛简介

奥林匹克数学竞赛简介“奥数”是奥林匹克数学竞赛的简称。

1934年和1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克的名称,1959年在布加勒斯特举办第一届国际数学奥林匹克竞赛。

国际数学奥林匹克(IMO)作为一项国际性赛事,由国际数学教育专家命题的国际性大赛。

我国奥林匹克数学竞赛由中国科技部下属的中国数学会,奥林匹克数学委员会负责组织和安排。

数学奥林匹克活动在我国已有一段普及的历史,也多次在国际大赛上取得了优异的成绩。

奥林匹克数学研究也已成为数学教育的重要课题。

目前在我国大部分高等师范院校的数学系中,也都开设了“数学竞赛研究”或“奥林匹克数学理论”的必修或选修课。

奥林匹克数学理论正逐渐成为一门独立的数学教育分支。

因此,系统的研究和探讨奥林匹克数学理论,无论对高等师范数学教育,还是对中学数学奥林匹克活动都有十分重要的现实意义和理论意义。

数学奥林匹克国内赛况我国的数学竞赛起步不算晚。

解放后,在华罗庚教授等老一辈数学家的倡导下,从1956年起,开始举办中学数学竞赛,在北京、上海、福建、天津、南京、武汉、成都等省、市都恢复了中学数学竞赛,并举办了由京、津、沪、粤、川、辽、皖合办的高中数学联赛;1979年,我国大陆上的29个省、市、自治区全部举办了中学数学竞赛。

此后,全国各地开展数学竞赛的热情有了空前的高涨。

1980年,在大连召开的第一届全国数学普及工作会议上,确定将数学竞赛作为中国数学会及各省、市、自治区数学会的一项经常性工作,每年10月中旬的第一个星期日举行“全国高中数学联合竞赛”。

同时,我国数学界也在积极准备派出选手参加国际数学奥林匹克的角逐。

1985年,开始举办全国初中数学联赛;1986年,开始举办“华罗庚金杯”少年数学邀请赛;1991年,开始举办全国小学数学联赛。

现在.我国的高中数学竞赛分三级:每年10月中旬的全国联赛;次年一月的CMO(冬令营);次年三月开始的国家集训队的训练与选拔.为使我国的数学竞赛活动能广泛而有序、深入而持久地开做好各级各类数学竞赛的培训选拔工作,国内采取了一系列有效措施。

华中师大---数学奥林匹克竞赛的体会与思考

华中师大---数学奥林匹克竞赛的体会与思考

7.有利于高师培养合格的中学数学教师
“一个没有亲身体验过某种创造性工作的教 师绝不能期望他能够去启发、引导、帮助, 甚至鉴别他的学生的创造性活动,我们不 能要求一般的数学教师从事某个非常高深 的课题的研究。不过非常规的数学问题的 求解也是真正的创造性工作……应该列入 中学数学教师的课程。”
建议诸位:
2.有利于激发学生学习数学的兴趣, 形成锲而不舍的钻研精神和科学态度
• 数学竞赛问题具有挑战性,有利于增强学生的好 奇心、好胜心,有利于激发学生学习数学的兴趣, 有利于调动学生学习的积极性和主动性.正如美 国著名数学家波利亚所言:“如果他(指老师)把 分配给他的时间都用来让学生操练一些常规运算, 那么他就会扼杀他们的兴趣,阻碍他们的智力发 展,从而错失他的良机.相反的,如果他用和学 生的知识相称的题目来激发他们的好奇心,并用 一些鼓励性的问题去帮助他们解答题目,那么他 就能培养学生独立思考的兴趣,并教给他们某些 方法.”(波利亚,2002)
• 1、没有给学生配备统一的竞赛参考书。 • 2、不搞单纯讲授,一些典型问题尽量让学生各抒
己见,介绍自己的解法或想法,教师加以点评。 • 3、考试的评讲让做得好的同学和错得典型的同学
评讲,展开讨论。 • 4、高二年级组织学生专题讲座活动。老师指定内
容,由学生组织材料,经老师审查修改后,发给 其他同学预习,然后由他本人讲解,互相交流, 暴露学生的知识缺陷,培养了知识迁移,归纳整 理和解决问题的能力。 • 5、长期开展有将征题和问题征解活动。学生提供 的题目特别是改编的新题,得到师生认可后给予 适当奖励(一个练习本或一本参考书),师生在学 习过程中遇到的困难问题可利用教室后面的黑板 向小组同学征求解答,这些做法极大地调动了同 学们的学习热情。

中学生奥数建设计划方案

中学生奥数建设计划方案

中学生奥数建设计划方案中学生奥数建设计划方案一、背景介绍奥数(奥林匹克数学竞赛)是指由国际数学联合会主办的国际性的、以初中生和高中生为主要参赛对象的纯粹数学竞赛,旨在鼓励青少年对于数学知识的探究和发现,培养其对于数学的兴趣和热爱。

随着我国教育水平的不断提高,越来越多的中学生开始参加奥数竞赛,这对于他们未来的发展有着重要的意义。

二、目标设定本次中学生奥数建设计划旨在帮助中学生全面提高其数学能力,增强其解决问题和思考问题的能力。

具体目标如下:1. 提升参与者基础算术运算水平,使其熟练掌握基础算法。

2. 培养参与者对于分析问题和解决问题的能力。

3. 提高参与者对于几何图形及其相关知识点的理解和掌握程度。

4. 增强参与者对于概率统计及其应用领域知识点的掌握程度。

三、实施方案1. 课程设置本次中学生奥数建设计划共设四门课程,包括基础算术、分析与解决问题、几何图形、概率统计。

每门课程均安排为一个月左右,每周上课2-3次,总共约12节课。

具体内容如下:(1)基础算术:脑力训练、数字规律、小学奥数竞赛试题讲解等。

(2)分析与解决问题:数学思维训练、奥数竞赛技巧分享、奥数竞赛试题解析等。

(3)几何图形:基本概念的理解和掌握、平面几何的证明方法介绍、奥数竞赛相关试题的讲解等。

(4)概率统计:基本概念和知识点的介绍及相关公式的推导和应用实例演示等。

2. 教学方法为了实现中学生奥数建设计划的目标,我们将采用以下教学方法:(1)启发式教育法:通过启发式教育法引导参与者自主探究和思考问题,培养其对于问题分析和解决问题的能力。

(2)竞赛式教育法:通过奥数竞赛的形式,激发参与者的学习兴趣和热情,提高其学习动力和学习效率。

(3)互动式教育法:通过互动式教育法增强参与者之间的交流与合作,促进知识点之间的融合和应用。

3. 教材选择为了能够更好地实现中学生奥数建设计划的目标,我们将结合不同阶段参与者的实际情况,采用不同的教材进行教学。

学奥数你不可不知的十大杯赛

学奥数你不可不知的十大杯赛

学奥数你不可不知的十大杯赛奥数,即奥林匹克数学,是指以培养学生分析问题、解决问题和创新思维等能力为主要目标的一种数学教育形式。

为了提高学生的数学能力,促进数学教育的发展,世界各地纷纷举办了多种奥数比赛,其中一些备受青少年学子和数学爱好者的关注。

本文将介绍学奥数不可不知的十大杯赛,以期启发读者对奥数竞赛的兴趣和参与。

1. 国际数学奥林匹克竞赛(IMO)作为世界范围内最高水平的奥林匹克数学竞赛,IMO自1959年首次举办以来,已成为青少年数学学术交流的重要平台。

每年,来自不同国家和地区的高中生参与IMO,比拼数学才华。

通过解决六道复杂的数学问题,考察学生的数学思维能力和创新性。

IMO不仅是一场竞赛,更是国际数学界的盛会。

2. 中国数学奥林匹克竞赛(China IMO)作为国内最具影响力的奥林匹克数学竞赛,中国 IMO 不仅挖掘和培养了无数优秀的青少年数学人才,也成为了中国奥数文化的重要组成部分。

中国 IMO 分为初赛、复赛和决赛三个阶段,考验学生的数学理论与实践能力。

参与其中,学生不仅能够接触到数学上的精彩问题,还能与其他奥数爱好者进行交流。

3. 亚洲太平洋地区数学奥林匹克竞赛(APMO)亚太地区数学奥赛是面向亚洲和太平洋地区学生举办的知名数学竞赛。

这个竞赛中的数学问题往往需要更深入的思考和创新。

APMO的参与者通过解决五道数学难题,展示自己运用数学知识解决实际问题的能力,并与来自其他亚太国家和地区的学生切磋学术。

4. 中国高中生数学竞赛(CGMO)中国高中生数学竞赛是一项为中学生提供锻炼和交流机会的数学比赛。

这个赛事旨在挖掘数学优秀学生,并促进中学数学的普及和发展。

CGMO考察学生的数学知识广度和深度,通过解决实际问题展示学生的创新思维和应用能力。

5. 北京航空航天大学“华罗庚杯”数学竞赛(Hua LuoGeng Cup)全国范围内的高中生都可以参与的华罗庚杯数学竞赛是中国六大赛事之一。

以“自由创新、数学探索”为宗旨,华罗庚杯鼓励学生使用多种解题方法和思路,开拓数学思维的边界。

国际中学生奥林匹克数学竞赛

国际中学生奥林匹克数学竞赛
为使我国的数学竞赛活动能广泛而有序、深入而持久地开做好各级各类数学竞赛的培训选拔工作,国内采取 了一系列有效措施。
一试
一试ห้องสมุดไป่ตู้
全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即 高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。
奖项设定
奖项设定
竞赛设一等奖(金牌)、二等奖(银牌)、三等奖(铜牌),比例大致为1:2:3;获奖者总数不能超过参 赛学生的半数。各届获奖的标准与当届考试的成绩有关。
国际赛史
国际赛史
在世界上,以数为内容的竞赛有着悠久的历史:古希腊时就有解几何难题的比赛;我国战国时期齐威王与大 将田忌的赛马,实是一种对策论思想的比赛;到了16、17世纪,不少数学家喜欢提出一些问题向其他数学家挑战, 有时还举行一些公开的比赛,方程的几次公开比赛,赛题中就有最著名的费尔玛大定理:在整数n≥3时,方程没 有正整数解。
近代的数学竞赛,仍然是解题的竞赛,但主要在学生(尤其是高中生)之间进行。目的是为了发现与培育人 才。
现代意义上的数学竞赛是从匈牙利开始的。1894年,为纪念数理学会主席埃沃斯荣任教育大臣,数理学会通 过一项决议:举行以埃沃斯命名的,由高中学生参加的数学竞赛,每年十月举行,每次出三题,限4小时完成,允 许使用任何参考书,试题以奥妙而奇特的形式见长,一般都有富创造特点的简明解答。在埃沃斯的领导下,这一 数学竞赛对匈牙利的数学发展起了很大的作用,许多卓有成就的数学家、科学家是历届埃沃斯竞赛的优胜者,如 1897年弗叶尔、1898年冯卡门等。
职责
职责
1)、选定试题; 2)、确定评分标准; 3)、用工作语言准确表达试题,并翻译、核准译成各参加国文字的试题; 4)、比赛期间,确定如何回答学生用书面提出的关于试题的疑问; 5)、解决个别领队与协调员之间在评分上的不同意见; 6)、决定奖牌的个数与分数线。 考试分两天进行,每天连续进行4.5小时,考3道题目。同一代表队的6名选手被分配到6个不同的考场,独 立答题。答卷由本国领队评判,然后与组织者指定的协调员协商,如有分歧,再请主试委员会仲裁。每道题7分, 满分为42分。

全国高中数学联赛(数学奥赛)简介

全国高中数学联赛(数学奥赛)简介

全国高中数学联赛(数学奥赛)简介大家好,我是高中数学老师王老师。

最近有读者朋友私信王老师,询问关于高中奥赛的问题。

今天,我就和朋友们聊聊这个。

你为什么想参加比赛?近年来,五大学科(数学、物理、化学、生物、信息)的高中竞赛越来越受到关注。

我觉得主要是自主招生带动的。

以前学生参加比赛的主要好处就是步行去名牌大学,但是步行名额有限,门槛太高。

所以对比赛的关注仅限于极少数尖子生。

这几年很多高校都注重竞赛成绩,不仅是上品,也有略低的。

为什么是数学竞赛?中国数学奥林匹克,又称全国高中数学联赛,是经教育部批准,由中国科协主管,中国数学学会主办的传统竞赛活动。

五大学科竞赛中,数学是最难的,也是高校中最受认可的。

建议能力强的同学以数学为主攻方向。

数学竞赛每年举办一次,不限年级。

理论上高中三年可以参加三次,但一般来说高三最容易出成绩,基础好的同学可以参加高二甚至高一。

高中数学联赛分为,预赛,联赛,决赛(因为决赛一般在每年11月份举办,所以俗称数学冬令营)下面详细介绍各个比赛流程:预赛时间一般在4-5月份,每个省份的时间不一样,学生自愿参加,先在学校选拔,然后地级市参赛,选拔参加全国数学联赛的学生。

联赛(复赛)每年9月中旬的第一个周日举行,联赛分为选拔赛和试训赛。

其中,自愿参加复试,但有意在赛区争夺一等奖并参加全国中学生数学冬令营(即数学竞赛决赛)的学生,必须参加初试和复试,两次考试的总成绩将作为确定赛区一等奖和冬令营营员的标准。

一试所涉及的知识范围不超出高中教学大纲大要求,只是题目比较灵活,对解题方法要求较高。

二试与国际数学奥林匹克接轨,在知识方面有所扩展,适当增加了一些教学大纲之外的内容。

联赛的试题分为AB两套试卷,多数省份使用A卷;极少数偏远地区则使用B卷。

目前试卷的结构及题型、分值搭配等是:一试考试时间为 8:00—9:20,共80分钟,包括8道填空题(每题8分)和3道解答题(分别为16分、20分、20分),满分120分。

数学中的游戏与竞赛活动

数学中的游戏与竞赛活动

数学中的游戏与竞赛活动数学是一门既具有实用价值又富有趣味性的学科,在学习数学的过程中,游戏和竞赛活动起到了重要的作用。

游戏和竞赛活动不仅能够激发学生对数学的兴趣,提高他们的学习动力,还能培养他们的思维能力和解决问题的能力。

本文将介绍数学中的一些常见游戏和竞赛活动,并探讨它们对数学学习的促进作用。

一、数学游戏数学游戏是一种融合了数学元素和娱乐性的活动。

通过数学游戏,学生不仅能够在愉快的氛围中学习数学知识,还能培养他们的逻辑思维和问题解决能力。

以下是一些常见的数学游戏:1. 数独:数独是一种基于逻辑推理的数学游戏。

通过填充9×9方格的数字,满足每行、每列和每个3×3的小方块中数字不重复的规则,完成数独游戏。

数独游戏不仅能够锻炼学生的逻辑思维和观察力,还能培养他们的耐心和坚持不懈的精神。

2. 狼羊菜过河问题:这是一道经典的数学难题。

问题描述为:有一个农夫要把一只狼、一只羊和一颗菜过河,但是船只只能容纳农夫和另一个物品,而且狼和羊不能同处一边,羊和菜也不能同处一边。

学生需要通过合理的安排,使得农夫能够安全地将狼、羊和菜都过河。

这个问题既考验学生的逻辑思维能力,又培养他们的合作意识和团队精神。

3. 数字推理游戏:这类游戏常见于数学竞赛中,通过给出一串数字或图形,要求学生推理出隐藏的规律或下一个数字(图形)。

这类游戏能够锻炼学生的观察力、推理能力和数学思维,激发他们对数学问题的兴趣。

二、数学竞赛活动数学竞赛活动是一种对数学知识和解题能力的考验。

通过参与数学竞赛活动,学生能够提高自己的数学水平,培养他们的团队合作精神和解决问题的能力。

以下是一些常见的数学竞赛活动:1. 数学建模竞赛:数学建模竞赛要求学生根据给定的问题,运用数学知识和方法进行建模和分析,并提出解决问题的方案。

参与数学建模竞赛可以培养学生的实际应用能力和创新思维,提高他们解决实际问题的能力。

2. 数学奥林匹克竞赛:数学奥林匹克竞赛是一个面向初高中生的数学竞赛,要求学生在有限的时间内解答一系列复杂的数学问题。

高中数学奥林匹克竞赛---集合

高中数学奥林匹克竞赛---集合
(3)(A B) C A (B C),
A B C A (B C)(结 合 律); (4)A B C A B A C A B C A B A C( 分 配 律 ) ; (5)A B A A, A A B A( 吸 收 律 ) ;
(6) 设 全 集U,A, B为U的 子 集 , 则
3、设A a1, a 2 , a3 ,...,a n ,则A的所有子集中元素之总和为
S 2n1(a1 a 2 ... a n ),其中a i Z
4、 集 合 间 的 交 集 、 并 集、 补 集 有 以 下 性 质 : (1)A A A, A A A( 幂 等 律 ) ; (2)A B B A, A B B A( 交 换 律 ) ;
赛题精讲:
例4 (: 1994年北京市高一数学竞赛初试)已知x R, y R ,
集合A
x2
x
1,x,x
1
,B
y,
y 2
,
y
1.若A
B,
则x 2 y2
CU (A B) (CU A) (CU B)
CU (A B) (CU A) CU B
赛题精讲:例1(:ຫໍສະໝຸດ 1996 年全国高中数学联赛一试)
求集合A
x
1
log
10 1
x
1,1 2
x
N的真子集的个数.
赛题精讲:
例2 (: 1983年上海市一试)在集合1,2,...,n中,随意取出一个子集,
高中数学奥林匹克竞赛 ---集合
1、集合中的元素具有三个特征 : 确定性、互异性、无序性.
2、 若 非 空 有 限 集A中 有n个 元 素 , 则 有 如 下 结 论: (1)A的子集的个数是2n ; (2)A的“非空子集”和“真子集”的个数都是2n 1; (3)A的“非空真子集”的个数是2n 2.

AMC简介

AMC简介

AMC简介一、AMC是怎么回事?1950年美国数学协会(MAA)开始举办美国高中数学竞(AHSME)。

卷面最初是50个选择题,1974年改为30个选择题,每题答对5分,不答2分,答错0分。

2000年开始AHSME改为AMC,同时分成了AMC10和AMC12。

AMC10供10年级和10年级以下的同学参加,AMC12则供12年级和12年级以下的同学参加,原来的AJHSME 则改为AMC8,供8年级和8年级以下的同学参加。

AMC目前的卷面为选择题25个,考试时间45分钟,每题答对6分,不答2.5分,答错0分,满分150分。

AMC10和AMC12的比赛时间相同,每年两次,即(A)和(B),分别安排在2月初和2月中旬,(A)和(B)两次的题目不同,但作用相同,因为它们都是参加AIME的必经之路。

此外AMC10和AMC12的部分试题是一样的。

AMC成绩优秀的学生应邀参加3月份的美国数学邀请赛(AIME)。

它的卷面包括15个填充题,答题时间3小时;AIME成绩好的美国近300名学生应邀参加美国数学奥林匹克(USAMO),每天3个解答题,答题时间4.5小时,从中选出美国参加IMO的六名选手。

10年前北京、上海、天津等地都曾断断续续地参加过这项活动。

二、竞赛当天都做些什么?北京地区的竞赛时间初步安排在2008年11月18日(星期二)下午4:35—5:15,考试时间为40分钟,学生在自己学校参加竞赛。

试题由美国数学协会数学竞赛委员会提供,卷面全部为英文,采用与美国中学生完全相同的试卷,考试时可以带普通的英汉词典,但是不许带电子词典。

试卷由25个选择题构成,有A,B,C,D,E五个答案,其中有且只有一个是正确的。

考前监考老师会把处于密封状态的试题夹(Package)发给每一位考生,学生只能看到封面和封底。

封面是一个考试说明(包括:题型、题量、考试时间、评分方式、在答题纸上使用什么样的铅笔、结束时应该做什么等等内容);封底则是对监考人员的要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学竞赛是发现人才的有效手段之一。

一些重大数学竞赛的优胜者,大多在他们后来的事业中卓有建树。

因此,世界发达国家都十分重视数学竞赛活动。

十余年来,我国中学数学竞赛活动蓬勃发展,其影响越来越大,特别是我国中学生在影响最大、水平最高的国际数学奥林匹克竞赛中,多次荣登榜首,成绩令世人瞩目,充分显示了中华民族的聪明才智和数学才能。

了解国际赛史,熟悉国内赛况,认识数赛意义是必要的,也是有益的。

国际赛史[top]在世界上,以数为内容的竞赛有着悠久的历史:古希腊时就有解几何难题的比赛;我国战国时期齐威王与大将田忌的赛马,实是一种对策论思想的比赛;到了16、17世纪,不少数学家喜欢提出一些问题向其他数学家挑战,有时还举行一些公开的比赛,方程的几次公开比赛,赛题中就有最著名的费尔玛大定理:在整数n≥3时,方程没有正整数解;……近代的数学竞赛,仍然是解题的竞赛,但主要在学生(尤其是高中生)之间进行。

目的是为了发现与培育人才。

现代意义上的数学竞赛是从匈牙利开始的。

1894年,为纪念数理学会主席埃沃斯荣任教育大臣,数理学会通过一项决议:举行以埃沃斯命名的,由高中学生参加的数学竞赛,每年十月举行,每次出三题,限4小时完成,允许使用任何参考书,试题以奥妙而奇特的形式见长,一般都有富创造特点的简明解答。

在埃沃斯的领导下,这一数学竞赛对匈牙利的数学发展起了很大的作用,许多卓有成就的数学家、科学家是历届埃沃斯竞赛的优胜者,如1897年弗叶尔、1898年冯卡门等。

受到匈牙利的影响,数学竞赛在东欧各国蓬勃开展:1902年罗马尼亚,1934年前苏联,1949年保加利亚,1950年波兰,1951年前捷克斯洛伐克,……相继进行了数学竞赛。

把中学生的数学竞赛命名为“数学奥林匹克”的是前苏联,采用这一名称的原因是数学竞赛与体育竞赛有着许多相似之处,两者都崇尚奥林匹克精神。

竞赛的成果使人们意外地发现,数学竞赛的强国往往也是体育竞赛的强国,这给了人们一定的启示。

1934年在列宁格勒,1935年在莫斯科,有关的国立大学分别组织了地区性的数学竞赛,并称之为“中学数学奥林匹克”。

当时,莫斯科的著名数学家都参加了这一工作。

前苏联的数学奥林匹克分为五级:学校奥林匹克,县奥林匹克,地区奥林匹克,共和国奥林匹克,全国奥林匹克,再选出参加国际数学奥林匹克的六名代表。

对国际间组织数学竞赛最热心的是罗马尼亚的教授罗曼。

经过他的积级策划,1959年7月,第一届国际数学奥林匹克(简称IMO)在罗马尼亚古都布拉索举行,拉开了国际数学竞赛的帷幕。

当时参加竞赛的学生共52名,分别来自东欧的罗马尼亚、保加利亚、匈牙利、波兰、前捷克斯洛伐克、前德意志民主共和国和前苏联等7个国家。

每个国家有8名队员,前苏联只派了4名队员。

以后(除1980年由于东道主蒙古经费困难而暂停)每年举行一次,到1990年在我国举办第31届时,已发展到54个国家和地区的308名选手。

到1995年在加拿大举办第36届时,双增加到73个国家和地区,400多名选手。

IMO的运转方式已经制度化,其竞赛章程规定:(1)一年一度的IMO的东道国由参赛国(或地区)轮流担任,所需经费由东道国负担,整个活动由东道国出任主席,由各国领队组成的主试委员会主持,试题和解答由参赛国提供,每国3~5题(也可不提供),东道国不提供试题,而由东道国组成选题委员会,对各国提供的试题进行评议与初选,主要考虑试题是否与以往的试题重复,并把试题按代数、数论、几何、组合数学、组合几何等分类,确定试题难度(A、B、C三级),选择30题左右。

如果这些题有新解法的话,还要求提供原解法以外的解答,译成英文供主试委员选用。

(2)每个参赛团组织一个参赛队,成员不超过8人,其中队员不超过6人(是中学或同等级学校学生),正、副领队各1人,考试分两天两试,每试3题,每试4.5 小时,每题7分,所以每个选手的最高得分是42分。

(3)IMO的官方用语为英、法、德、俄语,而参赛国大约需要26种文字,届时由各领队把试卷译成本国语言,并经协调委员会认可。

度卷先由各国的正、副领队评判,再与协调委员会协商(每个协调员负责一个试题的评分),如有分歧,由主试委员会仲裁,协商工作是在信任与友好的气氛中进行的。

(4)IMO的获奖人数约占参赛人数的一半,评奖根据分数段评出一、二、三等奖获得者,其比例平均为1:2:3。

此外,主试委员会还可因在某个试题上作出了非常漂亮(指思路简捷巧妙,有独创性)或在数学上有意义的解答的学生给予特别奖。

为避免再次出现1980年那样的中断,IMO设立一个专门的委员会(有的译为场所委员会)负责确定各届的东道主。

1991—2001年的东道主已经过协商基本上排妥。

按IMO的规定,每一届的东道主必须向上一届的所有参赛国发出邀请,而新参加的国家则应当向东道主表明参加的意愿,再由东道主发出邀请。

东欧外的国家中,第一个加入的是芬兰(1965年第7届),接着法国、英国、意大利、瑞典、荷兰等也都在60年代陆续加入。

1974年,美国、越南加入。

此后,参加国逐年增加,并遍布欧、美、亚、非及大洋洲,IMO才成为名副其实的全球性的数学大赛。

1988年第29届,根据香港的建议,IMO首次设立了荣誉奖,奖给那些虽然未得金、银、铜牌,但至少有一道题得满分的选手。

这一措施,大大调动了各参赛国及其参赛选手的积极性。

IMO的精神就是奥林匹克精神:“重要的不在于取胜,而在于参加。

”据此,自1983年第24届以来,虽然每一个代表队(6个人为组员)都计算自己的总分,且知道按总分的顺序排在多少名,但组织委员会不向团体优胜者颁奖,因为IM()只是个人的竞赛,不是团体的竞赛。

1981年第22届,美国是IMO的东道主。

美国数学奥林匹克委员会主席格雷策发信邀请我国参加,中国数学会复信同意参加,后因故未能成行,只派了当时在美的访问学者作为观察员参加了。

到了1984年,在宁波召开的中国数学会首次普及工作会议上,确定1985年派两名选手参加第26届IMO,以了解情况、取得经验。

由于选拔时间仓促,只指派了北京、上海各1名优秀学生参加。

结果有1人得三等奖,两人平均成绩与以色列第17位,两人总分则排在32位。

1986年起,我国均派6名选手参赛。

我国选手的辉煌成绩,极大地激发了千百万中学生学习科学文化知识的热情,也极大地增强了中国人的民族自豪感。

国内赛况[top]我国的数学竞赛起步不算晚。

解放后,在华罗庚教授等老一辈数学家的倡导下,从1956年起,开始举办中学数学竞赛,在北京、上海、福建、天津、南京、武汉、成都等省、市都恢复了中学数学竞赛,并举办了由京、津、沪、粤、川、辽、皖合办的高中数学联赛;1979年,我国大陆上的29个省、市、自治区全部举办了中学数学竞赛。

此后,全国各地开展数学竞赛的热情有了空前的高涨。

1980年,在大连召开的第一届全国数学普及工作会议上,确定将数学竞赛作为中国数学会及各省、市、自治区数学会的一项经常性工作,每年10月中旬的第一个星期日举行“全国高中数学联合竞赛”。

同时,我国数学界也在积极准备派出选手参加国际数学奥林匹克的角逐。

1985年,开始举办全国初中数学联赛;1986年,开始举办“华罗庚金杯”少年数学邀请赛;1991年,开始举办全国小学数学联赛。

现在.我国的高中数学竞赛分三级:每年10月中旬的全国联赛;次年一月的CMO(冬令营);次年三月开始的国家集训队的训练与选拔。

对我国中学影响较大的还有美国中学生数学竞赛。

该赛也分三轮进行:美国中学数学竞赛(AHSME),考试形式是30道选择题,要求90分钟内完成;美国数学邀请赛(AIMS),考15道空题,答案均为不超过999的正整数,要求3个小时内完成;国数学奥林匹克(USAMO),这是美国国内水平最高的数学赛活动,每次考5道题,3.5小时内完成。

为使我国的数学竞赛活动能广泛而有序、深入而持久地开做好各级各类数学竞赛的培训选拔工作,国内采取了一系列有效措施。

首先是创造数学竞赛的良好场景;中小学组织各年的教学兴趣小组活动,做到定时间、定地点、定辅导教师、定辅内容;对一些数学“苗子”开办数学奥林匹克业余学校,有计划给以强化性的辅导与培训。

其次是增强数学竞赛的辅导力量;各级数学奥林匹克教练员队伍,不断提高这支队伍的辅导与教练素质。

再次是优化数学竞赛的辅导体系;编写与出版基础性的数学竞赛培训教材或辅导读物,收集与整理国内外数学竞赛资料,研究与提炼数学竞赛题的解题思想方法及技能技巧,健全与完善数学竞赛的选拔机制及辅导方式。

“全国小学数学奥林匹克”(创办于1991年),它是一个“普及型、大众化”的活动,分为初赛(每年3月)、夏令营(每年暑期)。

“全国初中数学联赛”(创办于1984年),采用“轮流做东”的形式由各省、市、自治区数学竞赛组织机构具体承办,每年4月举行,分为一试和二试。

“全国高中数学联赛”(创办于1981年),承办方式与初中联赛相同,每年10月举行,分为一试和二试,在这项竞赛中取得优异成绩的全国约90名学生有资格参加由中国数学会主办的“中国数学奥林匹克(CMO)暨全国中学生数学冬令营“(每年元月)。

在“普及的基础上不断提高”的方针指引下,全国数学竞赛活动方兴未艾,特别是连续几年我国选手在国际数学奥林匹克中取得了可喜的成绩,使广大中小学师生和数学工作者为之振奋,热忱不断高涨,数学竞赛活动进入一个新的阶段,为了使全国数学竞赛活动持久、健康、逐步深入地开展,应广大中学师生和各级数学奥林匹克教练员的要求,特制定《数学竞赛大纲》以适应当前形势的需要。

本大纲是在国家教委制定的“全日制中学数学教学大纲”的精神和基础上制定的。

《教学大纲》在教学目的一栏中指出;“要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性”。

具体作法是:“对学有余力的学生,要通过课外活动或开设选修课等多种方式,充分发展他们的数学才能”,“要重视能力的培养……,着重培养学生的运算能力、逻辑思维能力和空间想象能力,要使学生逐步学会分析、综合、归纳、演绎、概括、抽象、类比等重要的思想方法。

同时,要重视培养学生的独立思考和自学的能力”。

《教学大纲》中所列出的内容,是教学的要求,也是竞赛的最低要求。

在竞赛中对同样的知识内容的理解程度与灵活运用能力,特别是方法与技巧掌握的熟练程度,有更高的要求。

而“课堂教学。

为主,课外活动为辅”是必须遵循的原则。

因此,本大纲所列的课外讲授的内容必须充分考虑学生的实际情况,分阶段、分层次让学生逐步地去掌握,并且要贯彻“少而精”的原则,这样才能加强基础,不断提高。

—试全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。

相关文档
最新文档