工程材料实训报告

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热加工工艺专用周教学计划

本周实习内容主要是铸造、锻压、焊接。

先说铸造吧!

铸造:1.将液态金属浇注到与零件的形状和尺寸相适应的铸型空腔中,待其冷却凝固,以获

得毛坯或零件的生产方法。

2.用于铸造的金属统称为铸造合金。铸造方法包括两大类:砂型铸造(最常用的方法)和特种铸造。

铸造的优点:

l .可以制成形状复杂、特别是具有复杂内腔的毛坯,如箱体、汽缸体、床身、机座等,而且铸件的重量可轻仅几克,重达几百吨(铸件在液态下成型,因而可以制成各种形状复杂的铸件)。

2 .适应性强。工业中常用的金属材料(碳钢、合金钢、铸铁、铜合金、铝合金、镁合金等),都可以用于铸造,其中应用最广的是铸铁;

3 .铸造所用的原材料来源广泛,价格低廉,设备投资小,铸件成本较低。因此,铸造方法是最常用的毛坯生产手段之一,广泛应用于机器制造业中。

铸造生产存在的主要问题:

1.生产过程较复杂,工序多,影响铸件质量的因素较多,所以废品率较高。特别是手工造型,劳动强度大,生产率低,铸件质量不够稳定;

2.铸件质量问题不仅涉及铸型工艺,还与铸型材料、模具、合金种类、合金熔炼及浇注等因素密切相关,而这些因素在生产过程中较难综合、精确地控制,所以,铸件一般较容易出现成分和组织不太均匀、晶粒较粗、缩孔、缩松、气孔、夹渣、砂眼等缺陷,使铸件的力学性能一般不如锻件高。

合金的铸造性能

铸造合金除具有符合要求的物理、化学和力学性能外,还要考虑它的铸造性能。合金的铸造性能是指在铸造生产中表现出来的工艺性能,它对获得合格铸件具有极大的影响。

一、

1 .流动性及其对铸件质量的影响

金属液充满铸型的能力称为流动性。合金的流动性好,容易充满铸型,能获得外形完整、轮廓清晰、尺寸精确、薄而复杂的铸件;合金凝固收缩时能得到补缩;此外还有利于非金属合金的流动性

杂质及气体的上浮和排除,使铸件的质量提高。相反,流动性差的合金,由于充型不好,可使铸件产生浇不足、冷隔、气孔和夹渣等缺陷。

2 温度及铸型条件等。

(1)化学成分位于共晶成分附近的合金,凝固温度低,凝固范围窄,流动性好;离开共晶点越远,凝固范围越宽,其流动性越差。这是由于枝晶发达,会嘛磕属液的流动。铸铁中的硅和磷可提高铁水的流动性,而硫则使铁液的流动性降低。在常用的铸造合金中,铸铁和有色合金的流动性较好,铸钢较差。

(2)浇注温度提高浇注温度可使金属液的粘度下降,同时因过热度大,金属液含热量增加,传给铸型的热量也增多,减慢了金属液的冷却速度,使合金的流动性提高。所以高温浇注是防止铸件产生浇不足、冷隔和某些气孔、夹渣等铸造缺陷的主要工艺措施。但过大地提高浇注温度,会使合金的总收缩量增加,吸气增多,氧化严重,晶粒粗大,又会使铸件产生缩孔、缩松、粘砂和气孔等缺陷。

(3)铸型条件含水量过高,导热性好,型腔薄而复杂,浇口截面小,直浇口过低,铸

型排气不畅或透气性不好,都要降低合金的流动性。

二、合金的收缩

1 .合金的收缩及其影响因素

铸件在凝固和冷却过程中,其体积和尺寸减小的现象称为收缩。收缩能使铸件产生缩孔、缩松、内应力、变形和裂纹等缺陷,严重地影响铸件的质量。

金属从浇注温度冷却到室温,要经历三个互相联系的收缩阶段:

(1)液态收缩从浇铸温度冷却到凝固开始温度(液相线温度)的收缩

(2)凝固收缩从凝固开始温度冷却到凝固终止温度(固相线温度)的收缩

(3)固态收缩从凝固终止温度冷却到室温的收缩。

液态收缩和凝固收缩表现为合金的体积缩小,通常用体收缩率来表示,它们是使铸件产生缩孔、缩松缺陷的基本原因。固态收缩只引起铸件外部尺寸的变化,通常用线收缩率来表示,它是铸件产生内应力、变形和裂纹等缺陷的主要原因。

铸件的收缩与合金的种类、化学成分、浇注温度和铸型条件等有关。

(1)化学成分不同的铸造合金有不同的收缩率。在常用合金中,铸钢收缩最大,灰铸铁最小。碳素钢随, c 的增加,凝固收缩要增加,固态收缩略有减少。灰铸铁由于大部分的碳是以石墨状态存在,因石墨比热容大,在结晶过程中,析出石墨所产生的体积膨胀,抵消了一部分收缩。硅是促进石墨化的元素,所以碳硅含量越多,收缩就越小。硫能阻碍石墨的析出,使铸件的收缩率增大,若适当提高含锰量,可减小硫对石墨化的阻碍作用,使收缩率减小。但含锰量过高,也有阻碍石墨化的作用,又使铸铁的收缩率有所增加。

(2)浇注温度浇注温度越高,过热度越大,液态收缩增加。

(3)铸型结构与铸型条件合金在铸型中并不是自由收缩,而是受阻收缩。其阻力来自两个方面:①铸件各部分冷速不同,相互制约而对收缩产生阻力;②铸型和型芯对收缩的机械阻力。显然,铸件的实际线收缩率比合金的自由线收缩率小。因此,在设计模型时,应根据合金的材质,铸件的形状、尺寸等,选用适当的收缩率。

2 .缩孔和缩松

(1)缩孔和缩松的形成液态金属在铸型内凝固时,如果收缩得不到补充,在铸件最后凝固的部位将形成孔洞,这种孔洞称为缩孔。缩孔可分为集中缩孔和分散缩孔两类。集中缩孔是容积较大的孔洞,通常所说的缩孔是指集中缩孔。分散缩孔通常称为缩松。

1)缩孔缩孔通常

隐藏在铸件上部或最后凝

固的部位,有时经机械加

工可暴露出来。在某些情

况下,缩孔产生在铸件的

上表面,呈明显凹坑,这

种缩孔又称为“明缩孔”。

缩孔的外形特征是:形状

不规则,但多近于倒圆锥

形,其内表面粗糙

缩孔的形成过程如图 10 - 2 所示。金属液填满铸型(图 10 -za )后,由于铸型吸热,靠近型腔表面的金属液很快就降低到凝固温度,结成一层外壳(图 10-zb ) ; 温度继续下降,凝固层加厚,内部的剩余液体由于液态收缩和补充凝固层的凝固收缩,体积缩减,液面下降,在铸件内出现了空隙(图 10 - 2 。);温度继续下降,外壳继续加厚,液面不断下降,待内部完全凝固,则在铸件上表面形成了缩孔(图 10 - zd ) ;已经产生缩孔的铸件自凝固终止温度冷却到室温,因固态收缩使外廓尺寸略有缩小(图 10 - ze )。纯金属或共晶成分的合

相关文档
最新文档