二次函数的应用题总结

合集下载

(完整版)二次函数应用题(含答案)整理版

(完整版)二次函数应用题(含答案)整理版

(完整版)二次函数应用题(含答案)整理版题目1:某公司的销售额可以用二次函数$y=-2x^2+20x$来表示,其中$x$表示月份(从1开始),$y$表示对应月份的销售额。

求解下列问题:问题1:请计算公司第6个月的销售额。

解答:将$x=6$代入二次函数中,可得:$y=-2\times6^2+20\times6=-72+120=48$所以公司第6个月的销售额为48。

问题2:请问公司销售额最高的月份是哪个月?解答:二次函数$y=-2x^2+20x$是一个开口朝下的抛物线,最高点即为销售额最高的月份。

通过求导数,我们可以找到函数的最高点。

首先,求导得到一次函数$y'=-4x+20$,令$y'=0$,解方程可得$x=5$。

因此,公司销售额最高的月份是第5个月。

题目2:一架火箭从地面起飞后,高度$h$(以米为单位)随时间$t$(以秒为单位)变化的规律可以用二次函数$h=-5t^2+100t$表示。

求解下列问题:问题1:请问火箭多少秒后达到最大高度?解答:同样地,通过求导数,我们可以找到火箭高度的最高点。

将二次函数$h=-5t^2+100t$求导得到一次函数$h'=-10t+100$,令$h'=0$,解方程可得$t=10$。

因此,火箭在10秒后达到最大高度。

问题2:请计算火箭达到最大高度时的高度。

解答:将$t=10$代入二次函数中,可得:$h=-5\times10^2+100\times10=-500+1000=500$所以火箭达到最大高度时的高度为500米。

以上是对二次函数应用题的解答,希望能帮助到您。

二次函数的应用题解析

二次函数的应用题解析

二次函数的应用题解析二次函数是一种常见的数学函数,其表达式为 y = ax^2 + bx + c,其中 a、b、c 是实数,且 a 不为零。

二次函数在数学领域有广泛的应用,尤其在物理学、经济学和工程学等实际问题中。

本文将通过几个具体的应用题,来解析二次函数的运用。

1. 弹跳高度问题假设有一个物体从 10 米的高度自由落下,每次弹起的高度是上一次的 0.8 倍。

问经过多次弹跳后,物体的总弹起高度是多少。

解析:设经过 n 次弹跳后,物体的总弹起高度为 H(n)。

第一次弹跳后,高度为 10 * 0.8 = 8 米。

第二次弹跳后,高度为 8 * 0.8 = 6.4 米。

可知第 n 次弹跳的高度为 10 * (0.8)^n 米。

因此,物体的总弹起高度为 H(n) = 10 + 10 * 0.8 + 10 * (0.8)^2 + ... + 10 * (0.8)^n 米。

2. 投掷问题一个物体从地面抛出,并以初速度 20 米/秒和抛出角度 45 度的方式进行抛射。

求该物体的运动方程,并计算它的最大高度和飞行时间。

解析:设物体的运动方程为 y = ax^2 + bx + c。

由于抛体运动的轨迹是一个抛物线,因此可以使用二次函数来描述。

首先,我们需要确定二次函数的系数。

由于初速度和角度已知,可以通过物理公式得到 x 方向和 y 方向的运动方程:x(t) = v0 * cosθ * ty(t) = v0 * sinθ * t - (1/2) * g * t^2其中,v0 是初速度,θ 是抛出角度,t 是时间,g 是重力加速度。

将x(t) 和 y(t) 代入二次函数的表达式中,得到物体的运动方程。

最大高度可以通过求解二次函数的顶点坐标得到,顶点的 x 坐标即为最大高度对应的时间。

飞行时间可以通过求解二次函数的 x 轴上的两个根得到,即物体在地面上的两个交点对应的时间。

3. 利润最大化问题一个公司生产某种产品,每个产品的售价为 p 元,每个产品的生产成本为 c 元。

二次函数的应用题总结

二次函数的应用题总结

二次函数的应用一、顶点坐标公式的应用(基本题型)1、某超市销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱的售价在40元~70元之间.市场调查发现:若每箱50 元销售,平均每天可销售90 箱,价格每降低1 元,平均每天多销售3 箱;价格每升高1 元,平均每天少销售3 箱.(1)写出平均每天的销售量y(箱)与每箱售价x(元)之间的函数关系式(注明自变量x 的取值范围);(2)求出超市平均每天销售这种牛奶的利润W(元)与每箱牛奶的售价x(元)之间的二次函数关系式(每箱的利润b 24ac b 2=售价-进价);(3)请把(2)中所求出的二次函数配方成y a(x )2的形式,并指出当x=40、70 时,2a 4aW 的值.(4)在坐标系中画出(2)中二次函数的图象,请你观察图象说明:当牛奶售价为多少时,平均每天的利润最大?最大利润为多少?练习:2、我市有一种可食用的野生菌,上市时,外商李经理按市场价格30 元/千克收购了这种野生菌1000 千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨 1 元;但冷冻存放这批野生菌时每天需要支出各种费用合计310 元,而且这类野生菌在冷库中最多保存160 天,同时,平均每天有 3 千克的野生菌损坏不能出售.(1)设x天后每千克该野生菌的市场价格为y元,试写出y与x之间的函数关系式.(2)若存放x天后,将这批野生菌一次性出售,设这批野生菌的销售总额为P元,试写出P与x之间的函数关系式.(3)李经理将这批野生茵存放多少天后出售可获得最大利润W 元?(利润=销售总额-收购成本-各种费用)练习3、汽车城销售某种型号的汽车,每辆进货价为25 万元,市场调研表明:当销售价为29 万元时,平均每周能售出8 辆,而当销售价每降低0.5 万元时,平均每周能多售出4 辆.如果设每.辆.汽车降价x 万元,每辆汽车的销售.利.润.为y 万元.(销售利润销售价进货价)(1)求y 与x的函数关系式;在保证商家不亏本的前提下,写出x的取值范围;(3 分)(2)假设这种汽车平均每周..的销售利润为z万元,试写出z与x之间的函数关系式;(3分)(3)当每辆汽车的定价为多少万元时,平均每周的销售利润最大?最大利润是多少?( 4 分)练习4、某集团将下设的内部小型车场改为对外开放的收费停车场。

人教版九年级上册数学 第十二章 二次函数 常考应用题总结

人教版九年级上册数学 第十二章  二次函数  常考应用题总结

人教版九年级上册数学第十二章二次函数常考应用题总结一、销售问题1、某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)当每千克涨价为多少元时,每天的盈利最多?最多是多少?(2)若商场只要求保证每天的盈利为6000元,同时又可使顾客得到实惠,每千克应涨价为多少元?2、商场某商品现在售价为每件600元,每星期可卖出3000件,市场调查反映;如果上调价格,每涨价1元,每星期要少卖出10件,已知商品的进价为每件400元,设每星期的销量为y件,每件商品的售价为x(x≥600)元.(1)求y与x的函数关系;(2)每件商品的售价为多少时,每星期所获总利润最大,最大利润是多少元?3、某电子商投产一种新型电子产品,每件制造成本为18元,试销过程发现,每月销量y(万件)与销售单价x(元)之间关系可以近似地看作一次函数y=﹣2x+100.(1)写出每月的利润z(万元)与销售单价x(元)之间函数解析式(利润=售价﹣制造成本);(2)当销售单价为多少元时,厂商每月能够获得350万元的利润?当销售单价为多少元时,厂商每月能够获得最大利润?最大利润是多少?4、将进货单价为 70 元的某种商品按零售价 100 元一个售出时,每天能售出 20 个.若这种商品的零售价在一定范围内每降价 1 元,其日销售量就增加 1 个,为了获得最大利润,则应降价多少元?5、某租赁公司拥有汽车100 辆,当每辆车的月租金为3000 元时,可全部租出.当每辆车的月租金每增加50 元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150 元,未租出的车每辆每月需要维护费50 元.(1)当每辆车的月租金为3 600 元时,能租出辆;(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?6、某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出x辆车时,日收益为y元.公司每日租出x辆车时,每辆车的日租金为多少元(用含x的代数式表示);(1)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?(2)当每日租出多少辆时,租赁公司的日收益不盈也不亏?7.我区的某公司,用1800万元购得某种产品的生产技术、生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.经过市场调研发现:该产品的销售单价,需定在100元到200元之间为合理.当单价在100元时,销售量为20万件,当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少1万件;设销售单价为x(元),年销售量为y(万件),年获利为W(万元).(年利润=年销售总额﹣生产成本﹣投资成本)(1)直接写出y与x之间的函数关系式;(2)求第一年的年获利W与x之间的函数关系式,并请说明不论销售单价定为多少,该公司投资的第一年肯定是亏损的,最小亏损是少?(3)在使第一年亏损最小的前提下,若该公司希望到第二年的年底,弥补第一年的亏损后,两年的总盈利为1490万元,且使产品销售量最大,销售单价应定为多少元?8. 在创新素质实践行活动中,某位同学参加了超市某种水果的销售调查工作.已知该水果的进价为8元/千克,下面是他们在调查结束后的对话:A:如果以10元/千克的价格销售,那么每天可以售出300千克;B:如果以13元/千克的价格销售,那么每天可获利750元;C:通过调查验证,我发现每天的销售量与销售单价之间存在一次函数关系.(1)设超市每天该水果的销售量是y(kg),销售单价是x(元),写出y与x的关系;(2)在进货成本不超过1200元时,销售单价定为多少元可获得最大利润?最大利润是多少?(3)如果要使该水果每天的利润不低于600元,销售单价应在什么范围内?二、面积问题1、如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB为多少米时,矩形土地ABCD的面积最大.2、用12m长的栅栏围成一个中间被隔断的鸭舍(栅栏占地面积忽略不计).(1)如图1,当AB=________m,BC=________m时,所围成两间鸭舍的面积最大,最大值为________m2;(2)如图2,若现有一面长4m的墙可以利用,其余三方及隔断使用栅栏,所围成两间鸭舍面积和的最大值是多少?3、在一块长方形镜面玻璃的四周镶上与它的周长相等的边框,制成一面镜子,镜子的长与宽的比是 2:1.已知镜面玻璃的价格是每平方米 120 元,边框的价格是每米 30 元,另外制作这面镜子还需加工费 45 元.设制作这面镜子的总费用是 y 元,镜子的宽度是 x 米.(1)求 y 与 x 之间的关系式.(2)如果制作这面镜子共花了 195 元,求这面镜子的长和宽.三、图像问题1、如图,△ABC 是一块锐角三角形材料,边 BC=6cm,高 AD=4cm,要把它加工成一个矩形零件,使矩形的一边在 BC 上,其余两个顶点分别在 AB、AC 上,要使矩形 EGFH 的面积最大,求 EG 的长.2、如图是一个横断面为抛物线形状的拱桥,当水面宽 4 米时,拱顶(拱桥洞的最高点)离水面 2 米,水面下降 1 米时,水面的宽度为多少米.3.如图,足球比赛中,一球员从球门正前方10 m 处将球射向球门.当球飞行的水平距离为6 m 时球到达最高点,此时球离地面3 m.若球运动的路线为一条抛物线,球门的高A B 为2.44 m,球能否被射进球门?4、如图,琪琪的父亲在相距2 米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是 2.5 米,绳子自然下垂呈抛物线状,身高 1 米的琪琪距较近的那棵树0.5 米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为多少米?5.跳绳时,绳甩到最高处时的形状为抛物线.正在甩绳的甲、乙两名同学拿绳的手间距AB 为6m,到地面的距离A O 和B D 均为0.9 m.身高为1.4 m 的小丽站在距点O的水平距离为1 m 的点F处,绳子甩到最高处时刚好通过她的头顶点E.以点O为原点建立如图所示的平面直角坐标系,设此抛物线的解析式为 y=ax2+bx+0.9.(1)求该抛物线的解析式;(2)如果小华站在O D 之间,且离点O的距离为3m,当绳子甩到最高处时,刚好通过他的头顶,请你算出小华的身高;(3)如果身高为1.4 m 的小丽站在O D 之间,且离点O的距离为t m,绳子甩到最高处时超过她的头顶,请结合图象,写出t的取值范围:.6、如图:河上有一座抛物线形桥洞,已知桥下的水面离桥拱顶部3m时,水面宽AB=6m,建立如图所示的坐标系.(1)当水位上升0.5m时,求水面宽度CD为多少米?(结果可保留根号)(2)有一艘游船它的左右两边缘最宽处有一个长方体形状的遮阳棚,此船正对着桥洞在上述河流中航行,若这船宽(最大宽度)2米,从水面到棚顶高度为1.8米.问这艘船能否从桥下洞通过?7.随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图①所示;种植花卉的利润与投资量成二次函数关系,如图②所示(注:利润与投资量的单位:万元)(1)分别求出利润与关于投资量的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?。

二次函数方程的应用题解析

二次函数方程的应用题解析

二次函数方程的应用题解析二次函数方程是高中数学中重要的一部分,它在实际生活和各个领域中有着广泛的应用。

本文将从实际问题出发,通过解析具体的应用题,介绍二次函数方程的应用方法和解题思路。

1. 弹射物体的高度计算假设一球从地面上以速度v0垂直上抛,经过时间t后,求球的高度h。

根据物理知识,球的高度h与时间t之间的关系可以用二次函数方程h=-gt^2+vt表示,其中g是自由落体加速度。

解题步骤:(1)确定二次函数的三要素,即开口方向、平移和伸缩等。

(2)将问题中已知的速度v0和时间t代入二次函数方程,解得球的高度h。

2. 投影问题假设有一个斜抛运动,以速度v0沿着夹角α斜抛出去,求物体的水平位移x和垂直位移y。

解题步骤:(1)将水平方向和垂直方向的速度分解,分别为v0cosα和v0sinα。

(2)根据时间t的不同,将x和y分别表达为关于t的函数。

(3)令y=0,求解方程得到物体落地的时间t0。

(4)将t0代入x的函数中,求解物体的水平位移x。

3. 关于顶点的最值问题对于二次函数方程f(x)=ax^2+bx+c,其中a>0,顶点的横坐标为x0=-b/2a。

(1)最值问题:若a>0,则f(x)在x0处取得最小值,最小值为f(x0)。

(2)最值问题:若a<0,则f(x)在x0处取得最大值,最大值为f(x0)。

通过上述例题,我们不难发现,二次函数方程在解决实际问题中起到了重要的作用。

掌握二次函数方程的应用方法和解题思路,将有助于我们更好地理解和应用数学知识。

总结:二次函数方程在实际应用中具有广泛的应用价值。

本文从弹射物体的高度计算、投影问题以及关于顶点的最值问题等方面,解析了二次函数方程的应用方法和解题思路。

通过深入理解和练习实际问题的解析,我们可以更好地掌握二次函数方程的应用技巧,提高数学解题能力。

二次函数的应用题及解答

二次函数的应用题及解答

二次函数的应用题及解答在数学中,二次函数是一类常见的函数类型,由形如y=ax²+bx+c的方程所定义,其中a、b和c是实数且a不等于零。

二次函数在现实生活中有着广泛的应用,例如在物理学、经济学和工程学等领域。

本文将探讨二次函数的应用题及解答,帮助读者更好地理解和应用这一概念。

1. 弹射问题假设有一个小球从地面上以初速度v0竖直上抛,忽略空气阻力的影响。

则小球的高度可用二次函数模型y=-gt²+v0t+h来描述,其中g是重力加速度,t为时间,h为抛射的起始高度。

问题:一个小球从地面上以10 m/s的速度竖直上抛,起始高度为1.5m。

求小球的高度和时间的关系,并计算小球落地时的时间。

解答:根据模型y=-gt²+v0t+h,将已知数据代入,得到二次函数模型为y=-5t²+10t+1.5。

我们需要求解该函数的根,即令y=0,解得t=0和t=2。

因此,小球的高度和时间的关系可用二次函数y=-5t²+10t+1.5表示。

落地时的时间为t=2秒。

2. 投射问题假设有一枚炮弹以一定角度a和初速度v0被抛射出去,并忽略空气阻力的影响。

则炮弹的水平位移可用二次函数模型x=v0cos(a)t来表示,垂直位移可用二次函数模型y=-gt²+v0sin(a)t来表示。

问题:一枚炮弹以60°的角度和100 m/s的速度被抛射,求炮弹的轨迹和最远射程。

解答:根据模型x=v0cos(a)t和y=-gt²+v0sin(a)t,将已知数据代入,得到二次函数模型x=50t和y=-5t²+86.6t。

炮弹的轨迹由这两个函数表示。

为了求解最远射程,我们需要找到函数y=-5t²+86.6t的顶点坐标。

通过求导可得到顶点坐标为(8.66, 346.4)。

因此,最远射程为346.4米,对应的水平位移为8.66米。

3. 经济问题假设某个公司的固定成本为C0,每单位产品的生产成本为C,每单位产品的售价为P。

初三数学二次函数的应用问题例题总结

初三数学二次函数的应用问题例题总结

第 1 讲 二次函数应用·实际问题一、知识点梳理要点一、列二次函数解应用题列二次函数解应用题与列整式方程解应用题的思路和方法是一致的,不同的是,学习了二次函数后,表示量与量的关系的代数式是含有两个变量的等式.对于应用题要注意以下步骤:(1)审清题意,弄清题中涉及哪些量,已知量有几个,已知量与变量之间的基本关系是什么,找出等量关系(即函数关系).(2)设出两个变量,注意分清自变量和因变量,同时还要注意所设变量的单位要准确. (3)列函数表达式,抓住题中含有等量关系的语句,将此语句抽象为含变量的等式,这就是二次函数.(4)按题目要求,结合二次函数的性质解答相应的问题。

(5)检验所得解是否符合实际:即是否为所提问题的答案. (6)写出答案. 要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.要点二、建立二次函数模型求解实际问题一般步骤:(1)恰当地建立直角坐标系;(2)将已知条件转化为点的坐标;(3)合理地设出所求函数关系式;(4)代入已知条件或点的坐标,求出关系式;(5)利用关系式求解问题. 要点诠释:(1)利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.(2)对于本节的学习,应由低到高处理好如下三个方面的问题: ①首先必须了解二次函数的基本性质; ②学会从实际问题中建立二次函数的模型; ③借助二次函数的性质来解决实际问题.二、典型例题类型一、利用二次函数求实际问题中的最大(小)值例1.某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?举一反三:变式:某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为元时,该服装店平均每天的销售利润最大.类型二、利用二次函数解决抛物线形建筑问题例2.如图所示,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系.(1)直接写出点M及抛物线顶点P的坐标;(2)求这条抛物线的解析式;(3)若要搭建一个矩形支撑架ADCB,使C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”总长的最大值是多少?类型三、利用二次函数求跳水、投篮等实际问题例3.某跳水运动员进行10 m跳台跳水训练时,身体(看作一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,正常情况下,该运动员在空中最高处距水面2103m,入水处距池边的距离为4 m,同时,运动员在距离水面高度为5m以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.(1)求这条抛物线的关系式;(2)在某次试跳中测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为335m,问此次跳水会不会失误?并通过计算说明理由.举一反三:变式:一位运动员在距篮下水平距离4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈,已知篮圈中心到地面的距离为3.05米. 若该运动员身高1.8米,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?类型四、利用二次函数求图形面积问题例4.在一边靠墙的空地上,用砖墙围成三格矩形场地,如图所示.已知砖墙在地面上占地总长度160 m,问分隔墙在地面上的长度x为多少时所围场地总面积最大?并求最大面积?本次课课后练习一、选择题1. 已知某商品的销售利润y(元)与该商品的销售单价x(元)之间满足220140020000y x x =-+-,则获利最多为( )元.A.4500B.5500C.450D.200002.向空中发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度的关系为2y ax bx c =++(a ≠0).若此炮弹在第7秒与第14秒的高度相等,则在下列时间中炮弹所在高度最高的是( ).A .第8秒B .第10秒C .第12秒D .第15秒3. 一件工艺品进价为100元,标价135元售出,每天可售出100件.根据销售统计,一件工艺品每降价1 元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为( ).A .5元B .10元C .0元D .3600元4.设计师以y=2x 2﹣4x+8的图形为灵感设计杯子如图所示,若AB=4,DE=3,则杯子的高CE=( ).A .17B . 11C . 8D .75.某民俗旅游村为接待游客住宿的需要开设了有100张床位的旅馆,当每张床位每天收费10元时,床位可全部租出,若每张床位每天收费提高2元,则相应的减少了10张床位租出,如果每张床位每天以2元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是( ).A .14元B .15元C .16元D .18元 6.(2016•衢州)某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50m ),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48m ,则这三间长方形种牛饲养室的总占地面积的最大值为 m 2.二、填空题7.出售某种文具盒,若每个获利x 元,一天可售出(6-x)个,则当x =_______元时,一天出售该种文具盒的总利润y 最大.8.如图,假设篱笆(虚线部分)的长度16m ,则所围成矩形ABCD 的最大面积是 .9.有一个抛物线形状的拱桥,其最大高度为16米,跨度为40米,现把它的示意图放在平面直角坐标系中,如图所示,则此抛物线的解析式为______ ______.10.如图,铅球运动员掷铅球的高度y (m)与水平距离x (m)之间的函数关系式是:35321212++-=x x y ,则该运动员此次掷铅球的成绩是 m .11.某幢建筑物,从10 m 高的窗口A ,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直,如图6,如果抛物线的最高点M 离墙1 m ,离地面340m ,则水流落地点B 离墙的距离OB 是 m . 12.如图,一小孩将一只皮球从A 处抛出去,它所经过的路线是某个二次函数图象的一部分,如果他的出手处A 距地面的距离OA 为1 m ,球路的最高点B (8,9),则这个二次函数的表达式为______,小孩将球抛出了约______米(精确到0.1 m) .三、解答题13.某商场将进价40元的商品按50元出售时,每月能卖500个,已知该商品每涨价2元,其月销售量就减少20个,当单价定为多少时,能够获得最大利润?14.如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,则求围成花圃的最大面积.15.某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?。

中考二次函数应用题(附答案解析)

中考二次函数应用题(附答案解析)

中考二次函数应用题(附答案解析)二次函数应用题1.某果农在销瓯柑时,经市场调査发现:瓯柑若售价为5元/千克,日销售量为34千克,若售价每提高1元/千克,日销售量就减少2千克.现设瓯柑售价为x元/千克(x≥5且为正整数).(1)若某日销售量为24千克,求该日瓯柑的单价;(2)若政府将销售价格定为不超过15元/千克.设每日销售额为w元,求w关于x的函数表达式,并求w的最大值和最小值;(3)市政府每日给果农补贴a元后(a为正整数),果农发现最大日收入(日收入=销售额+政府补贴)还是不超过350元,并且只有5种不同的单价使日收入不少于340元,请直按写出所有符合题意的a的值.2.某地在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为: y81620712x x xx x x+≤≤⎧=⎨-+≤≤⎩(,为整数)(,为整数),每件产品的利润z(元)与月份x(月)的关系如表:x123456789101112z191817161514131211101010(1)请你根据表格直接写出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?3.某商场购进一种每件成本为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式;(3)疫情期间,有关部门规定每件商品的利润率不得超过30%,那么将售价定为多少,来保证每天获得的总利润最大,最大总利润是多少?(利润率=利润÷成本×100%)(4)疫情过后,有关部门规定每件商品的利润率不得超过50%,每销售一件商品便向某慈善机构捐赠a 元(10≤a ≤25),捐赠后发现,该商品每天销售的总利润仍随着售价的增大而增大.请直接写出a 的取值范围.4.某服装厂批发应季T 恤衫,其单价y (元)与一次批发数量x (件)(x 为正整数....)之间的关系满足图中折线的函数关系.(1)求y 与x 的函数关系式;(2)若每件T 恤衫的成本价是60元,当100400x <≤时,求服装厂所获利润w (元)与x (件)之间的函数关系式,并求一次批发多少件时所获利润最大,最大利润是多少? 5.嘉琪第一期培植盆景与花卉各40盆,售后统计,盆景的平均每盆利润是120元,花卉的平均每盆利润是15元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.嘉琪计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为1W ,2W (单位:元).(1)第二期盆景的数量为_________盆,花卉的数量为_________盆; (2)用含x 的代数式分别表示1W ,2W ;(3)当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是多少?6.为响应政府“节能”号召,某强照明公司减少了白炽灯的生产数量,引进新工艺生产一种新型节能灯,己知这种节能灯的出厂价为每个20元.某商场试销发现,销售单价定为25元/个,每月销售量为250个;每涨价1元,每月少卖10个. (1)求出每月销售量y (个)与销售单价x (元)之间的函数关系式;(2)设该商场每月销售这种节能灯获得的利润为w (元)与销售单价x (元)之间的函数关系式;(3)若每月销售量不少于200个,且每个节能灯的销售利润至少为7元,则销售单价定为多少元时,所获利润最大?最大利润是多少?7.如图,用长30米的竹篱笆围成一个矩形菜园,其中一面靠墙,墙长10米,墙的对面有一个2米宽的门,设垂直于墙的一边长为x 米,菜园的面积为S 平方米.(1)直接写出S与x的函数关系式;(2)若菜园的面积为96平方米,求x的值;(3)若在墙的对面再开一个宽为a(0<a<3)米的门,且面积S的最大值为124平方米,直接写出a的值.8.榴莲上市的时候,某水果行以“线上”与“线下”相结合的方式一共销售了100箱榴莲.已知“线上”销售的每箱利润为100元,“线下”销售的每箱利润y(元)与销售量x(箱)(20≤x≤60)之间的函数关系如图中的线段AB.(1)求y与x之间的函数关系;(2)当“线下”的销售利润为4350元时,求x的值;(3)实际“线下”销售时,每箱还要支出其它费用a元(a>0),若“线上”与“线下”售完这100箱榴莲所获得的总利润为w元,当20≤x≤45时,w随x增大而增大,求a的取值范围.9.为缓解停车难的问题,太阳山小区利用一块长方形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52m,宽为28m,阴影部分设计为停车位,其余部分是等宽的通道,已知停车位占地面积为640m2.(1)求通道的宽是多少米;(2)该停车场共有64个车位,据调查发现:当每个车位的月租金为400元时,可全部租出;当每个车位的月租金每上涨10元时,就会少租出1个车位,当每个车位的月租金上涨时,停车场的月租金收入会超过27000元吗?10.从下列两题中选择1题完成,两题都完成的仅批改第1题.(1)第1题:某宾馆有50个房间供游客居住.当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对居住的每个房间每天支出20元的各种费用.房价定为多少时,宾馆利润最大? 第2题:张大爷佩戴能计步的运动手环进行快走锻炼,两次锻炼后整理数据如下表.与第一次锻炼相比,张大爷第二次锻炼时步数在增加,平均步长在减少,其中步数增长的百分率是其平均步长减少的百分率的3倍.设平均步长减少的百分率为x (0<x <0.5).(2)根据题意完成表格填空①_________,②_________.(3)求平均步长减少的百分率x ;【温馨提示:数学运算可以先约分后化简】(4)张大爷发现好友中步数排名第一为24000步,因此在两次锻炼结束后又走了500米,使得总步数恰好为24000步,求张大爷这500米的平均步长.【参考答案】二次函数应用题1.(1)10元/千克(2)2244w x x =-+(515x ≤≤,且x 为正整数)最大值是242元,最小值为170元 (3)106 107 108 【解析】 【分析】(1)根据售价每提高1元/千克,日销售量就减少2千克,且某日销售量为24千克,列方程可解答;(2)根据题意,利用销售额等于销售量乘以销售单价,列出函数关系式,根据二次函数的性质及配方法可求得答案;(3)由题意得:2340244350x x a ≤-++≤,由二次函数的对称性可知x 的取值为9,10,11,12,13,从而计算可得a 值. (1)解:根据题意得342524x --=(), 解得10x =.答:该日瓯柑的单价是10元/千克; (2)解:根据题意得222342524422212112121124]2[w x x x x x x x =--=-+=--+-=--+()()(),由题意得515x ≤≤,且x 为正整数, ∵20-< ,∴11x =时,w 有最大值是242元, ∵11-5=6,15-11=4,抛物线开口向下,∴5x =时,w 有最小值是22511242170--+=()元;则w 关于x 的函数表达式为:23425244[]w x x x x =--=-+()(515x ≤≤,且x 为正整数);(3)解:由题意得2340244350x x a ≤-++≤,∵只有5种不同的单价使日收入不少于340元,5为奇数, ∴由二次函数的对称性可知,x 的取值为9,10,11,12,13 当9x =或13时,2244234x x -+=; 当10x =或12时,2244240x x -+=, 当11x =时,2244242x x -+=.∵补贴后不超过350元,234+106=340,242+108=350, ∴当106a =或107或108时符合题意. 答:所有符合题意的a 值为:106,107,108. 【点睛】本题主要考查二次函数的应用.得到每天可售出的千克数是解决本题的突破点;本题需注意x 的取值应为整数.解题的关键是熟练掌握待定系数法求函数解析式、根据销售额的相等关系列出函数解析式及二次函数的性质. 2.(1)()()2019,101012,x x x z x x ⎧-+≤≤⎪=⎨≤≤⎪⎩为整数为整数(2)()()()221216016,4040079,102001012,x x x x w x x x x x x x ⎧-++⎪=-+≤≤⎨⎪-+≤≤⎩为整数为整数为整数(3)当6x =时,w 有最大值为196. 【解析】 【分析】(1)观察表中数据可得,当19x ≤≤时,20z x =-+;当1012x ≤≤时,10z =,则z 与x 的关系式可得;(2)分三种情况:当16x 时,当79x ≤≤时,当1020x ≤≤时,分别写出w 关于x 的函数关系式并化简,则可得答案;(3)分别写出当16x 时,当78x 时,当912x 时的函数最大值,然后比较取最大值即可. (1)解:观察表中数据可得,当19x ≤≤时,20z x =-+;当1012x ≤≤时,10z =.z ∴与x 的关系式为:()()2019,101012,x x x z x x ⎧-+≤≤⎪=⎨≤≤⎪⎩为整数为整数; (2)解:当16x 时,2(20)(8)12160w x x x x =-++=-++; 当79x ≤≤时,2(20)(20)40400w x x x x =-+-+=-+; 当1020x ≤≤时,10(20)10200w x x =-+=-+;w ∴与x 的关系式为:()()()221216016,4040079,102001012,x x x x w x x x x x x x ⎧-++⎪=-+≤≤⎨⎪-+≤≤⎩为整数为整数为整数;(3)解:当16x 时,212160w x x =-++2(6)196x =--+,6x ∴=时,w 有最大值为196;当79x ≤≤时,2240400(20)w x x x =-+=-,w 随x 增大而减小,7x ∴=时,w 有最大值为169;当1020x ≤≤时,10200w x =-+,w 随x 增大而减小, 10x ∴=时,w 有最大值为100;100169196<<,6x ∴=时,w 有最大值为196.【点睛】本题考查了二次函数在实际问题中的应用,理清题中的数量关系正确列式并分段计算是解题的关键.3.(1)180(100180)y x x =-+<≤ (2)228018000(100180)W x x x =-+-<≤(3)将售价定为130元,每天获得的总利润最大,最大总利润是1500元 (4)2025a ≤≤ 【解析】 【分析】(1)设y 与x 之间的函数关系式为(0)y kx b k =+≠,利用待定系数法可求出其解析式,再求出x 的取值范围即可;(2)根据利润=(售价-单价)×销售量,即可得出答案;(3)根据题意可求出x 的取值范围,再根据二次函数的性质,即可得出答案;(4)根据题意可求出x 的取值范围和W 与x 、a 的关系式,再将其配方,根据该商品每天销售的总利润仍随着售价的增大而增,即可得出关于a 的不等式,解出a 的解集即可得出答案. (1)解:设y 与x 之间的函数关系式为(0)y kx b k =+≠, 根据图象可知点(130,50)和点(150,30)在y kx b =+的图象上,∴5013030150k b k b =+⎧⎨=+⎩, 解得:1180k b =-⎧⎨=⎩.∴180y x =-+. 令0y =,则1800x -+=, 解得:180x =,∴y 与x 之间的函数关系式为180(100180)y x x =-+<≤; (2)根据题意可得2(100)(100)(180)28018000W x y x x x x =-=--+=-+-,即每天的利润W 与销售单价x 之间的函数关系式为228018000(100180)W x x x =-+-<≤; (3)根据题意可得:10030%100x -≤, 解得:130x ≤. ∴100130x <≤.∵2228018000(140)1600W x x x =-+-=--+, ∴当130x =时,W 有最大值,且2max (130140)16001500W =--+=(元).故将售价定为130元,每天获得的总利润最大,最大总利润是1500元; (4)根据题意可知10050%100x -≤ 解得:150x ≤.22228018000(180)(140)40160024a a W x x a x x a ⎡⎤=-+---+=--++-+⎢⎥⎣⎦.∵该商品每天销售的总利润仍随着售价的增大而增大, ∴1401502a+≥, 解得:20a ≥. ∵1025a ≤≤, ∴2025a ≤≤. 【点睛】本题考查一次函数与二次函数的实际应用.根据题意找到等量关系,列出等式是解题关键.4.(1)100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩(2)一次批发250件时,获得的最大利润为6250元【解析】 【分析】(1)利用待定系数法结合图象求出解析式;(2)根据件数乘以单件的利润列得函数关系式,根据二次根式的性质解答. (1)解:当0≤x ≤100时,y =100;当100<x ≤400时,设y 与x 的函数关系式为y =kx +b ,则10010040070k b k b +=⎧⎨+=⎩,解得110110k b ⎧=-⎪⎨⎪=⎩, ∴111010y x =-+; 当x >400时,y =70;综上,100(0100)1110(100400)1070(400)y x y y x x y x =≤≤⎧⎪⎪==-+<≤⎨⎪=>⎪⎩(2)11106010w x x ⎛⎫=-+- ⎪⎝⎭=215010x x -+ =()21250625010x --+ 当x =250时,w 有最大值,即一次批发250件时,最大利润为6250元. 【点睛】此题考查了求函数解析式,二次函数的最值问题,正确理解函数图象求出函数解析式是解题的关键. 5.(1)40x +,60x -(2)212404800W x x =-++,215900W x =-+(3)6x =时,W 最大,最大利润为5778元 【解析】 【分析】(1)根据第二期培植盆景与花卉共100盆,培植的盆景比第一期增加x 盆列式即可; (2)根据利润=平均利润×销售数量列式计算即可;(3)表示出总利润W ,根据二次函数的性质求出最大值即可. (1)解:由题意得:第二期盆景的数量为()40x +盆,则花卉的数量为()()1004060x x -+=-盆,故答案为:40x +,60x -;(2)解:由题意得:21(40)(1202)2404800W x x x x =+-=-++,()2156015900W x x =-=-+;(3)解:由题意得:22122404800159002255700W W W x x x x x -++--+=++=+=,∵对称轴为254x =,而x 为正整数, ∴当6x =时,5778W =, 当7x =时,5777W =, ∵57785777>,∴6x =时,W 最大,最大利润为5778元. 【点睛】本题主要考查了二次函数的应用,找到合适的数量关系列出算式是解题的关键. 6.(1)10500y x =-+ (2)21070010000w x x =-+-(3)销售单价定为30元时,所获利润最大,最大利润是2000元. 【解析】 【分析】(1)根据“销售单价定为25元/个,每月销售量为250个;每涨价1元,每月少卖10个”可得函数解析式;(2)由(1)及题意可进行求解;(3)由题意可得10500200207x x -+≥⎧⎨-≥⎩,然后根据(2)及二次函数的性质可进行求解.(1)解:由题意得:()250102510500y x x =--=-+;(2)解:由(1)及题意得:()()220105001070010000w x x x x =--+=-+-;(3)解:由题意可得10500200207x x -+≥⎧⎨-≥⎩,解得:2730x ≤≤,由(2)可知21070010000w x x =-+-, ∵100-<,即开口向下,对称轴为直线352bx a=-=, ∴当2730x ≤≤时,w 随x 的增大而增大,∴当x =30时,所获利润最大,最大利润为1090070030100002000w =-⨯+⨯-=; 答:销售单价定为30元时,所获利润最大,最大利润是2000元.【点睛】本题主要考查二次函数的应用,熟练掌握二次函数中的销售问题是解题的关键.7.(1)S=﹣2x2+32x(2)12(3)2.8【解析】【分析】(1)根据矩形面积公式即可写出函数关系式;(2)根据(1)所得关系式,将S=96代入即可求解;(3)再开一个宽为a的门,即矩形的另一边长为(32-2x+a)m,根据矩形的面积公式即可求解.(1)根据题意得,S=(30﹣2x+2)x=﹣2x2+32x;(2)当S=96时,即96=﹣2x2+32x,解得:x1=12,x2=4,∵墙长10米,∴30﹣8+2=25>10,∴x的值为12;(3)∵S=(30﹣2x+a+2)x=﹣2x2+(32+a)x,∵32﹣2x+a≤10,则x≥12a+11,∵面积取得最大值为S=124,∴﹣2x2+(32+a)x=124,把x=12a+11代入,得﹣2(12a+11)2+(32+a)(12a+11)=124,解得a=2.8.答:a的值为2.8.【点睛】本题主要考查二次函数的应用,根据矩形面积公式得出函数解析式是根本,根据养鸡场的长不超过墙长取舍是关键.8.(1)y=﹣0.5x+160(20≤x≤60)(2)x的值为30(3)a的取值范围为0<a<15.5【解析】【分析】(1)根据函数图象中的数据,可以计算出y与x之间的函数关系;(2)根据题意和(1)中的结果,可以得到x(﹣0.5x+160)=4350,然后求解即可;(3)根据题意,可以得到利润w与m的函数关系式,再根据二次函数的性质,可以求得a的取值范围.(1)解:(1)设y与x的函数关系式为y=kx+b,∵点(20,150),(60,130)在该函数图象上,∴20150 60130k bk b+=⎧⎨+=⎩,解得0.5160kb=-⎧⎨=⎩,即y与x的函数关系式为y=﹣0.5x+160(20≤x≤60);(2)由题意可得,xy=4350,又∵y=﹣0.5x+160,∴x(﹣0.5x+160)=4350,解得x1=30,x2=290(舍去),即x的值30;(3)设“线下”销售榴莲x箱,则“线上”销售榴莲(100﹣x)箱,总利润为w元,由题意可得,w=x(﹣0.5x+160﹣a)+100(100﹣x)=﹣12x2+(60﹣a)x+10000,该函数的对称轴为直线x=﹣6012()2a-⨯-=60﹣a,∵当20≤x≤45时,w随x增大而增大,∴60﹣a>44.5,解得a<15.5,∴0<a<15.5.【点睛】本题考查二次函数的应用、一次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,写出相应的方程和函数关系式,利用数形结合的思想解答.9.(1)通道的宽是6米;(2)停车场的月租金收入会超过27000元.【解析】(1)解:设通道的宽是x m,则阴影部分可合成长为(52-2x)米,宽为(28-2x)米的长方形,依题意得:(28-2x)(52-2x)=640,整理得:x2-40x+204=0,解得:x1=6,x2=34.又∵28-2x>0,∴x<14,∴x =6.答:通道的宽是6米;(2)解:设当每个车位的月租金上涨y 元时,停车场的月租金收入为w 元,则可租出(6410y -)个车位, 依题意得:w =(400+y )(6410y -)=110-y 2+24y +25600=110-(y -120)2+27040, ∵110-<0, ∴当y =120时,w 取得最大值,最大值为27040.又∵27040>27000,∴停车场的月租金收入会超过27000元.【点睛】本题考查了一元二次方程的应用和二次函数的应用,理解题意,设出未知数,列出方程和二次函数关系式是解题关键.10.(1)房价为350元时,宾馆利润最大;(2)①0.6(1-x );②10000(1+3x );(3)x =0.1;(4)王老师这500米的平均步幅为0.5米【解析】【分析】(1)设房价为(180+10x )元,宾馆总利润为y 元,根据利润=(房价-支出)×房间数量,列出关系式求解即可;(2)根据题意结合表格中的数据求解即可;(3)根据距离=步长×步数列出方程求解即可;(4)先由(3)求出两次张大爷的步数,即可得到500m 的步数,从而即可求出步长.(1)解:设房价为(180+10x )元,宾馆总利润为y 元,依题意得:()22(1801020)(50)103408000101710890y x x x x x =+--=-++=--+∵-10<0,抛物线开口向下,∴当x =17时,y 有最大值,180+10x=350元,答:房价为350元时,宾馆利润最大.(2)解:由题意得第二次锻炼的平均步长为()0.61x -,第二次锻炼的平均步数为()1000013x +,故答案为:()0.61x -;()1000013x +;(3)解:由题意得:10000(1+3x)×0.6(1-x)=7020.解得:1170.5 30x=>(舍去),20.1x=∴x=0.1;(4)解:根据题意可得:10000+10000(1+0.1×3)=23000,500÷(24000-23000)=0.5(m).答:王老师这500米的平均步幅为0.5米.【点睛】本题主要考查了二次函数的应用,列代数式,一元二次方程的应用,有理数混合计算的应用,正确理解题意是解题的关键.。

(完整版)经典二次函数应用题(含答案)

(完整版)经典二次函数应用题(含答案)

二次函数应用题1、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.(1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?2、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?3、张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD .设AB 边的长为x 米.矩形ABCD 的面积为S 平方米.(1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值范围).(2)当x 为何值时,S 有最大值?并求出最大值.(参考公式:二次函数2y ax bx c =++(0a ≠),当2bx a=-时,244ac b y a -=最大(小)值)4、某电视机生产厂家去年销往农村的某品牌电视机每台的售价y (元)与月份x 之间满足函数关系502600y x =-+,去年的月销售量p (万台)与月份x 之间成一次函数关系,其中两个月的销售情况如下表:月份 1月 5月 销售量3.9万台4.3万台(1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了%m ,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m 的值(保留一位小数). 34 5.83135 5.91637 6.08338 6.164)5、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =. (1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围.6、某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。

二次函数应用题归纳

二次函数应用题归纳

二次函数应用类问题二次函数的表达式:一般式:)0(2≠++=a c bx ax ya 的正负表示开口方向,a 表示开口大小,对称轴ab x 2-=,c 表示截距.顶点式:()a b ac a b x a k h x a y 442222-+⎪⎭⎫⎝⎛+=++=()0≠a()k h ,-表示二次函数的顶点,即对称轴为h x -=,最值为k .交点式:()()21x x x x a y --=()0≠a21,x x 为函数与x 轴交点的横坐标.二次函数配方:)0(2≠++=a c bx ax y ab ac a b x a ca ba b x a ca b a b x a b x a cx a b x a 44242442222222222-+⎪⎭⎫ ⎝⎛+=+-⎪⎭⎫ ⎝⎛+=+⎪⎪⎭⎫⎝⎛-++=+⎪⎭⎫⎝⎛+=二次函数的求法:给顶点→设顶点式()k h x a y ++=2()0≠a给两个交点→设交点()()21x x x x a y --=()0≠a过原点→设bx ax y +=2()0≠a任意三点→设一般式)0(2≠++=a c bx ax y实际应用类题型:一、如果题目中已建立好直角坐标系,按题目要求来:①② ③ 由题意可设2ax y =()0≠a ,由题可设k ax y +=2()0≠a , 由题意可设()()02≠+=a h x a y , 再找一个非原点带入求出a 即可再找两点带入解方程组即可 再找两点带入解方程组即可④⑤ 由题意可设()02≠+=a bx ax y ,由题意可设()02≠++=a c bx ax y , 再找两个非原点带去解方程组即可找三点带去解方程组即可例1、施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系(如图1所示).(1)求出这条抛物线的函数解析式,并写出自变量x的取值范围;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽2.5米、高5米的特种车辆?请通过计算说明;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A、D点在抛物线上.B、C点在地面OM线上(如图2所示).为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少,请你帮施工队计算一下.例2、如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,则求围成花圃的最大面积.例3、如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB 的水平距离为3m时,到地面OA的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?例4、横跨松花江两岸的阳明滩大桥是我市首座悬索桥,夜色中的璀璨灯光已成为一道亮丽的风景线,桥梁双塔间的悬索成抛物线型,如图,以桥面为x轴,以抛物线的对称轴为y轴,以1米为一个单位长度,建立平面直角坐标系.已知大桥的双塔AE和BF 与桥面垂直,且它们的高度均是83米,悬索抛物线上的点C、D的坐标分别为(0,3)、(50,8).(1)求抛物线的解析式;(2)李大爷以每秒0.8米的速度沿桥散步,那么从点E走到点F所用时间为多少秒?二、如果题目中没有建立直角坐标系:(这种情况比较少)按题目要求,建立最简便的坐标系,方便计算.例1、如图是一座抛物线拱形桥,在正常水位时,水面AB宽是20m,水位上升3m就达到警戒线CD,这是水面宽度为10m,请构建适当的水平直角坐标系求抛物线所对应的函数表达式,并求水位到达警戒线时拱顶与水面之间的距离.经济利润类型问题利润=单件利润×件数(常考)利润=总收入—总成本(通用)利润=单件利润×件数—额外支出这类问题一般分为两问到三问,第一问常考求件数与销售单件的方程,最后一问常考最大利润问题,只要把利润化成二次函数顶点式来求最大利润即可.注意点:1、可以写出自变量的取值范围.2、写出最大利润时要进行一个简单的讨论(a开口方向,对称轴,增减性)3、如果出题人设陷阱,通常是①对称轴不在取值范围内,根据二次函数图像性质来求解②如自变量必须是整数,如衣服件数,但是对称轴不是整数,对称轴最近的整数即为最值的横坐标.4、如果每提高1元,少卖5件 每提高a元,少卖a5件.例1、为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y=﹣10x+1200.(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额﹣成本);(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?例2、鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?例3、小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?例4、某市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为w 万元.(毛利润=销售额﹣生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(2)求w与x之间的函数关系式;并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?例5、一种进价为每件40元的T恤,若销售单价为60元,则每周可卖出300件,为提高利益,就对该T恤进行涨价销售,经过调查发现,每涨价1元,每周要少卖出10件,请确定该T恤涨价后每周销售利润y(元)与销售单价x(元)之间的函数关系式,并求出销售单价定为多少元时,每周的销售利润最大?例6、“淮南牛肉汤”是安徽知名地方小吃。

二次函数的实际应用六大压轴题型归纳总结(含答案)

二次函数的实际应用六大压轴题型归纳总结(含答案)

二次函数的实际应用六大压轴题型归纳总结【题型1 利用二次函数解决几何图形问题】【例1】(2020春•萧山区月考)如图窗户边框的上部分是由4个全等扇形组成的半圆,下部分是矩形,现在制作一个窗户边框的材料总长度为6米.(π取3)(1)若设扇形半径为x,请用含x的代数式表示出AB.并求出x的取值范围.(2)当x为何值时,窗户透光面积最大,最大面积为多少?(窗框厚度不予考虑)【解题思路】(1)根据2AB+7半径+弧长=6列出代数式即可;(2)设面积为S,列出关于x的二次函数求得最大值即可.【解答过程】解:(1)根据题意得:2AB+7x+πx=2AB+10x=6,整理得:AB=3﹣5x;根据3﹣5x>0,所以x的取值范围是:0<x<3 5;(2)设面积为S,则S=2x(3﹣5x)+32x2=−172x2+6x=−172(x−617)2+1817,当x=617时,S最大=1817.【变式1-1】(2020•安徽模拟)如图,某住宅小区有一块矩形场地ABCD,AB=16m,BC=12m,开发商准备对这块地进行绿化,分别设计了①②③④⑤五块地,其中①③两块形状大小相同的正方形地用来种花,②④两块形状大小相同的矩形地用来种植草坪,⑤为矩形地用来养殖观赏鱼.(1)设矩形观赏鱼用地LJHF的面积为ym2,AG长为xm,求y与x之间的函数关系式;(2)求矩形观赏鱼用地LJHF面积的最大值.【解题思路】(1)根据矩形的性质得到CD=AB=16,AD=BC=12,根据正方形AEFG和正方形JKCI 形状大小相同,矩形GHID和矩形EBKL形状大小相同,得到DG=12﹣x,FL=x﹣(12﹣x)=2x﹣12,BE=16﹣x,LI=(16﹣x)﹣x=16﹣2x,根据矩形的面积公式即可得到结论;(2)根据二次函数的性质即可得到结论.【解答过程】解:(1)在矩形ABCD中,CD=AB=16,AD=BC=12,∵正方形AEFG和正方形JKCI形状大小相同,矩形GHID和矩形EBKL形状形状大小相同,AG=x,∴DG=12﹣x,FL=x﹣(12﹣x)=2x﹣12,BE=16﹣x,LI=(16﹣x)﹣x=16﹣2x,∵S矩形LJHF=FL•LJ,∴y=(2x﹣12)(16﹣2x)=﹣4x2+56x﹣192;(2)由(1)得,y=﹣4x2+56x﹣192=﹣4(x﹣7)2+4,∵FL=2x﹣12>0,LJ=16﹣2x>0,∴6<x<8,∵a=﹣4<0,∴当x=7时,y的最大值=4;故矩形观赏鱼用地LJHF面积的最大值为4m2.【变式1-2】(2020•富顺县三模)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm,花园的面积为Sm2.(1)若花园的面积为192m2,求x的值;(2)写出花园面积S与x的函数关系式.x为何值时,花园面积S有最大值?最大值为多少?(3)若在P处有一棵树与墙CD,AD的距离分别是a(14≤a≤22)和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),设花园面积S的最大值为y,直接写出y与a的关系式.【解题思路】(1)根据题意得出长×宽=192,进而得出答案;(2)由题意可得出:S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,再利用二次函数增减性求得最值;(3)根据题意确定x的取值范围,利用二次函数增减性计算即可.【解答过程】解:(1)依题意得S=x(28﹣x),当S=192时,有S=x(28﹣x)=192,即x2﹣28x+192=0,解得:x1=12,x2=16,答:花园的面积为192m2,x的值为12m或16m;(2)由题意可得出:S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,答:x为14m时,花园面积S有最大值,最大值为196m2;(3)依题意得:{28−x≥ax≥6,解得:6≤x≤28﹣a,S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,∵a=﹣1<0,当x≤14,y随x的增大而增大,又6≤x≤28﹣a,∴当x=28﹣a时,函数有最大值,是y=﹣(28﹣a﹣14)2+196=﹣(14﹣a)2+196.【变式1-3】(2020•温州模拟)某植物园有一块足够大的空地,其中有一堵长为a米的墙,现准备用20米的篱笆围两间矩形花圃,中间用篱笆隔开.小俊设计了如图甲和乙的两种方案: 方案甲中AD 的长不超过墙长;方案乙中AD 的长大于墙长. (1)若a =6.①按图甲的方案,要围成面积为25平方米的花圃,则AD 的长是多少米? ②按图乙的方案,能围成的矩形花圃的最大面积是多少?(2)若0<a <6.5,哪种方案能围成面积最大的矩形花圃?请说明理由.【解题思路】(1)①设AB 的长是x 米,根据矩形的面积公式列出方程; ②列出面积关于x 的函数关系式,再根据函数的性质解答;(2)设AB =x ,能围成的矩形花圃的面积为S ,根据题意列出S 关于x 的函数关系,再通过求最值方法解答.【解答过程】解:(1)①设AB 的长是x 米,则AD =20﹣3x , 根据题意得,x (20﹣3x )=25, 解得:x 1=5,x 2=53, 当x =53时,AD =15>6, ∴x =5, ∴AD =5,答:AD 的长是5米;②设BC 的长是x 米,矩形花圃的最大面积是y 平方米,则AB =13[20﹣x ﹣(x ﹣6)]=263−23x , 根据题意得,y =x (263−23x )=−23x 2+263x =−23(x −132)2+1696(x >6), ∴当x =132时,y 有最大值为1696.答:按图乙的方案,能围成的矩形花圃的最大面积是1696平方米;(2)设BC =x ,能围成的矩形花圃的面积为S ,按图甲的方案,S =x ×20−x 3=−13x 2+203x =−13(x −10)2+1003, ∴在x =a <10时,S 的值随x 的增大而增大,∴当x =a 的最大值n 时,S 的值最大,为S =−13(n −10)2+1003;按图乙方案,S =13[20﹣x ﹣(x ﹣a )]x =−23(x −a+204)2+(a+20)224,∴当x =a+204时,S 的值最大为S =(a+20)224,此时a 取最大值n 时,S 的值最大为S =(n+20)224; ∵(n+20)224−[−13(n ﹣10)2+1003]=9n 2−120n+40024>0, ∴(n+20)224>−13(n −10)2+1003,故第二种方案能围成面积最大的矩形花圃.【题型2 利用二次函数解决销售利润问题】【例2】2020年1月,全国爆发新型冠状病毒肺炎,2月某工厂购进某防护材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价但不高于成本价2倍,经试销,销售量y (千克)与销售单价x (元)的关系如图所示.(1)求y 与x 的函数关系式,并写出自变量x 的取值范围;(2)若在销售过程中每天还要支付其他费用450元,当销售单价为多少元时,当天该工厂日利润最大,最大日利润为多少元?【解题思路】(1)直接利用待定系数法求出一次函数关系式;(2)利用销量×每件利润=总利润,进而结合二次函数增减性得出答案. 【解答过程】解:(1)设y 与x 的函数关系式为:y =kx +b (k ≠0),根据图象可得方程组{30k +b =14050k +b =100,解得:{k =−2b =200,∴y 与x 的函数关系式为:y =﹣2x +200,x 的取值范围是:30≤x ≤60; (2)设日利润为w ,则可以列出函数关系式为: w =(﹣2x +200)(x ﹣30)﹣450 =﹣2x 2+260x ﹣6450, 当x =−b2a=65, 又∵30≤x ≤60,∴当x =60时,w 取得最大值,w =1950,答:当销售单价为60元时,当天该工厂日利润最大,最大日利润为1950元.【变式2-1】某公司推出一款产品,经市场调查发现,该产品的日销售量y (个)与销售单价x (元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表: 销售单价x (元) 85 95 105 115 日销售量y (个) 175 125 75 m 日销售利润w (元)87518751875875(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y 关于x 的函数解析式(不要求写出x 的取值范围)及m 的值; (2)根据以上信息,填空:该产品的成本单价是 元,当销售单价x = 元时,日销售利润w 最大,最大值是 元; (3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【解题思路】(1)根据题意和表格中的数据可以求得y 关于x 的函数解析式; (2)根据题意可以列出相应的方程,从而可以求得生产成本和w 的最大值; (3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本. 【解答过程】解;(1)设y 关于x 的函数解析式为y =kx +b , {85k +b =17595k +b =125,得{k =−5b =600,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【变式2-2】(2020•安徽二模)某市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为w万元.(毛利润=销售额﹣生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(2)求w与x之间的函数关系式;并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?【解题思路】(1)利用待定系数法可求出y与x以及z与x之间的函数关系式;(2)根据(1)的表达式及毛利润=销售额﹣生产费用,可得出w与x之间的函数关系式,再利用配方法求函数最值即可;(3)首先求出x的取值范围,再利用二次函数增减性得出答案即可.【解答过程】解:(1)图①可得函数经过点(100,1000),设抛物线的解析式为y=ax2(a≠0),将点(100,1000)代入得:1000=10000a,解得:a=1 10,故y与x之间的关系式为y=110x2.图②可得:函数经过点(0,30)、(100,20),设z=kx+b,则{100k+b=20 b=30,解得:{k=−110 b=30,故z与x之间的关系式为z=−110x+30;(2)W=zx﹣y=−110x2+30x−110x2=−15x2+30x=−15(x2﹣150x)=−15(x﹣75)2+1125,∵−15<0,∴当x=75时,W有最大值1125,∴年产量为75万件时毛利润最大,最大毛利润为1125万元;(3)令y=360,得110x2=360,解得:x=±60(负值舍去),由图象可知,当0<y≤360时,0<x≤60,由W=−15(x﹣75)2+1125的性质可知,当0<x≤60时,W随x的增大而增大,故当x=60时,W有最大值1080,答:今年最多可获得毛利润1080万元.【变式2-3】(2020•邢台二模)一家经营打印耗材的门店经销各种打印耗材,其中某一品牌硒鼓的进价为a 元/个,售价为x元/个(a≤x≤48).下面是门店在销售一段时间后销售情况的反馈:①若每个硒鼓按定价30元的8折出售,可获20%的利润;②如果硒鼓按30元/个的价格出售,每月可售出500个,在此基础上,售价每增加5元,月销售量就减少50个.(1)求a的值,并写出该品牌硒鼓每月的销售量y(个)与售价x(元/个)之间的函数关系式,并注明自变量x的取值范围;(2)求该耗材店销售这种硒鼓每月获得的利润W(元)与售价x(元/个)之间的函数关系式,并求每月获得的最大利润;(3)在新冠肺炎流行期间,这种硒鼓的进价降低为n元/个,售价为x元/个(n≤x≤48).耗材店在2月份仍然按照销售量与售价关系不变的方式销售,并决定将当月销售这种硒鼓获得的利润全部捐赠给火神山医院,支援武汉抗击新冠肺炎.若要使这个月销售这种硒鼓获得的利润G(元)随售价x(元/个)的增大而增大,请直接写出n的取值范围.【解题思路】(1)根据实际售价﹣进价=进价×利润率建立关于a的方程,解之可得a的值;用原销售量﹣因价格上涨而减少的销售量可得答案.(2)根据“总利润=每个硒鼓利润×销售量”列出关于x的函数,配方成顶点式,再利用二次函数的性质求解可得;(3)根据以上相等关系,并结合新进价列出关于x的二次函数,找到其对称轴,利用二次函数的增减性求解可得.【解答过程】解:(1)30×0.8﹣a=20%a,解得a=20.y=500﹣10(x﹣30),即y=﹣10x+800(20≤x≤48).(2)根据题意,得W=(x﹣20)(﹣10x+800)=﹣10(x﹣50)2+9000.∵﹣10<0,销售单价不能超过48元/个,即当20≤x≤48时,W随x的增大而增大,∴当x=48时,W有最大值,最大值为8960.答:当售价为48元/个时,每月获得的利润最大,最大利润为8960元.(3)根据题意,得G=(x﹣n)(﹣10x+800)=﹣10x2+(800+10n)x﹣800n,对称轴x=80+n 2.∵a=﹣10<0,∵当n ≤x ≤48时,该商品利润G 随x 的增大而增大, ∴80+n 2≥48,解得n ≥16. ∵进价是降低的,∴n 的取值范围是16≤n <20.【题型3 利用二次函数解决抛物线形轨迹问题】【例3】(2020秋•渑池县期末)如图,小明在一次高尔夫球争霸赛中,从山坡下O 点打出一球向球洞A 点飞去,球的路线为抛物线,如果不考虑空气阻力,当球移动的水平距离为9米时,球达到最大高度12米.已知山坡OA 与水平方向OC 的夹角为30o ,O 、A 两点相距8√3米. (1)求出球的飞行路线所在抛物线的解析式;(2)判断小明这一杆能否把高尔夫球从O 点直接打入球洞A 点,并说明理由.【解题思路】(1)分析题意可知,抛物线的顶点坐标为(9,12),经过原点(0,0),设顶点式可求抛物线的解析式;(2)OA 与水平方向OC 的夹角为30°,OA =8√3米,解直角三角形可求点A 的坐标,把点A 的横坐标x =12代入抛物线解析式,看函数值与点A 的纵坐标是否相符. 【解答过程】解:(1)∵顶点B 的坐标是(9,12), ∴设抛物线的解析式为y =a (x ﹣9)2+12, ∵点O 的坐标是(0,0)∴把点O 的坐标代入得:0=a (0﹣9)2+12, 解得a =−427,∴抛物线的解析式为y =−427(x ﹣9)2+12 即y =−427x 2+83x ;(2)在Rt△AOC中,∵∠AOC=30°,OA=8√3,∴AC=OA•sin30°=8√3×12=4√3,OC=OA•cos30°=8√3×√32=12.∴点A的坐标为(12,4√3),∵当x=12时,y=323≠4√3,∴小明这一杆不能把高尔夫球从O点直接打入球洞A点.【变式3-1】如图,运动员甲在距篮下4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5m 时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米.(1)建立如图所示的直角坐标系,求抛物线的解析式.(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?(3)运动员乙跳离地面时,最高能摸到3.3m,问:在(2)的条件下,运动员乙在运动员甲与篮板之间的什么范围内能在空中截住球?【解题思路】(1)设抛物线的表达式为y=ax2+3.5,依题意可知图象经过的坐标,由此可得a的值.(2)设球出手时,他跳离地面的高度为hm,则可得h+2.05=﹣0.2×(﹣2.5)2+3.5.(3)当y=3.3m,进而代入函数解析式,求出x的值,即可得出答案.【解答过程】解:(1)∵当球运行的水平距离为2.5米时,达到最大高度3.5米,∴抛物线的顶点坐标为(0,3.5),∴设抛物线的表达式为y=ax2+3.5.由图知图象过以下点:(1.5,3.05).∴2.25a+3.5=3.05,解得:a=﹣0.2,∴抛物线的表达式为y=﹣0.2x2+3.5.(2)设球出手时,他跳离地面的高度为hm,因为(1)中求得y=﹣0.2x2+3.5,则球出手时,球的高度为h+1.8+0.25=(h+2.05)m,∴h+2.05=﹣0.2×(﹣2.5)2+3.5,∴h=0.2(m).答:球出手时,他跳离地面的高度为0.2m.(3)由题意可得出:y=3.3,则3.3=﹣0.2x2+3.5解得:x1=1,x2=﹣1,∴2.5﹣1=1.5(m),1.5﹣1=0.5(m)∴乙在距离甲1.5米以内或离篮板0.5米以内能在空中截住球.【变式3-2】(2021•嘉善县一模)已知,足球球门高2.44米,宽7.32米(如图1)在射门训练中,一球员接传球后射门,击球点A距离地面0.4米,即AB=0.4米,球的运动路线是抛物线的一部分,当球的水平移动距离BC为6米时,球恰好到达最高点D,即CD=4.4米.以直线BC为x轴,以直线AB为y轴建立平面直角坐标系(如图2).(1)求该抛物线的表达式;(2)若足球恰好击中球门横梁,求该足球运动的水平距离;(3)若要使球直接落在球门内,则该球员应后退m米后接球射门,击球点为A'(如图3),请直接写出m的取值范围.【解题思路】(1)根据条件可以得到抛物线的顶点坐标是(6,4.4),利用待定系数法即可求得函数的解析式;(2)求出当y=2.44时,x的值,取正;(3)先求出y=0时,x的值,取正,减去恰好击中球门横梁时,足球的水平距离.【解答过程】解:(1)抛物线的顶点坐标是(6,4.4),设抛物线的解析式是:y=a(x﹣6)2+4.4,把(0,0.4)代入得36a+4.4=0.4,解得a=−1 9,则抛物线是y=−19(x﹣6)2+4.4;(2)∵球门高为2.44米,即y=2.44,则有2.44=−19(x﹣6)2+4.4,解得:x1=10.2,x2=1.8,从题干图2中,发现球门在CD右边,∴x=10.2,即足球运动的水平距离是10.2米;(3)不后退时,刚好击中横梁,∴往后退,则球可以进入球门,而当球落地时,球刚好在门口,是一个临界值,当y=0时,有0=−19(x﹣6)2+4.4,解得:x1=6+35√110,x2=6−35√110,取正值,x=6+35√110,∴后退的距离需小于6+35√110−10.2=(35√110−4.2)米故0<m<35√110−4.2.【变式3-3】(2020•绍兴)如图1,排球场长为18m,宽为9m,网高为2.24m,队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点A时,高度为2.88m,即BA=2.88m,这时水平距离OB=7m,以直线OB为x轴,直线OC为y轴,建立平面直角坐标系,如图2.(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式(不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由.(2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1m,边线0.5m),问发球点O在底线上的哪个位置?(参考数据:√2取1.4)【解题思路】(1)求出抛物线表达式;再确定x=9和x=18时,对应函数的值即可求解;(2)当y=0时,y=−150(x﹣7)2+2.88=0,解得:x=19或﹣5(舍去﹣5),求出PQ=6√2=8.4,即可求解.【解答过程】解:(1)设抛物线的表达式为:y=a(x﹣7)2+2.88,将x=0,y=1.9代入上式并解得:a=−1 50,故抛物线的表达式为:y=−150(x﹣7)2+2.88;当x=9时,y=−150(x﹣7)2+2.88=2.8>2.24,当x=18时,y=−150(x﹣7)2+2.88=0.46>0,故这次发球过网,但是出界了;(2)如图,分别过点O,P作边线的平行线交于点Q,在Rt△OPQ中,OQ=18﹣1=17,当y=0时,−150(x﹣7)2+2.88=0,解得:x=19或﹣5(舍去﹣5),∴OP=19,而OQ=17,故PQ=6√2=8.4,∵9﹣8.4﹣0.5=0.1,∴发球点O在底线上且距右边线0.1米处.。

二次函数应用题知识点总结

二次函数应用题知识点总结

二次函数应用题知识点总结【基本思想】一、转化思想————实际问题中的最优化问题转化为求二次函数的最值问题。

1、方案设计最优问题:费用最低?利润最大?储量最大?等等。

2、面积最优化问题:全面观察几何图形的结构特征,挖掘出相应的内在联系,列出包含函数,自变量在内的等式,转化为函数解析式,求最值问题。

二、建模思想————从实际问题中发现、提出、抽象、简化、解决、处理问题的思维过程。

1、建立图像模型:自主建立平面直角坐标系,构造二次函数关系式解决实际问题。

2、方程模型和不等式模型:根据实际问题中的数量关系,列出方程或不等式转化为二次函数解决问题。

3、根据实际问题情境抽象出二次函数模型。

三、运动思想————图像上的动点问题及几何图形的形状的确定。

四、分类讨论的思想————二次函数与其他知识的综合题时经常用到。

【最值的确定方法】1.二次函数在没有范围条件下的最值:二次函数的一般式()化成顶点式,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值).2.二次函数在有范围条件下的最值:如果自变量的取值范围是,如果顶点在自变量的取值范围内,则当,,如果顶点不在此范围内,则需考虑函数在自变量的取值范围内的增减性〖2012年中考第23题分类汇总分析〗一、分段函数型1.【2010四月调考】某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价为x元,每个月的销售量为y件.(1)求与的函数关系式并直接写出自变量的取值范围;(2)设每月的销售利润为W,请直接写出与的函数关系式;(3)每件商品的售价定位多少元时,每个月可获得最大利润?最大的月利润是多少元?二、与不等式结合型2.【2009四月调考】某商场将进货价为30元的书包以40元售出,平均每月能售出600个。

完整二次函数的实际应用题

完整二次函数的实际应用题

完整二次函数的实际应用题二次函数是高中数学中的重要内容之一,它具有广泛的实际应用价值。

完整二次函数是指二次函数的导数为零的函数,其图像是一个开口向上或向下的抛物线。

本文将通过几个实际题例,来探讨完整二次函数的应用。

例一:火箭发射假设一个火箭发射到离地面 h 米的高度时,其速度为 v 米/秒。

已知此火箭发射的过程可以用一个完整二次函数来描述,其中 h 是时间 t 的函数。

试找到这个函数表示的抛物线的顶点、开口方向和最大高度。

解:由于抛物线的顶点在 t = -b/2a 处,其中 a 为二次项系数,b 为一次项系数。

而开口方向则取决于二次项系数的正负。

假设这个函数为 h(t) = at^2 + bt + c。

要找到顶点,即求解 t = -b/2a。

根据解析几何的知识,顶点的横坐标为 -b/2a,纵坐标为 -(b^2 - 4ac)/4a。

因此,顶点的坐标为 (-b/2a, -(b^2 - 4ac)/4a)。

根据问题描述,火箭发射的过程中速度为 v 米/秒,即 h'(t) = v。

由于 h(t) = at^2 + bt + c,我们可以求导,得到 h'(t) = 2at + b。

将 h'(t) = v 代入,得到 2at + b = v。

通过这个方程求解 t 的值,就可以得到对应的时间。

最后,要求出抛物线的开口方向,只需判断 a 的正负即可。

如果 a > 0,则抛物线开口向上;如果 a < 0,则抛物线开口向下。

例二:炮弹的弹道现有一艘炮艇,需要向距离 x 米的目标射击,并且保证炮弹击中的高度为 y 米。

已知炮艇大炮的射击速度为 v 米/秒,角度为α 弧度。

试找到一个二次函数,可以描述炮弹的弹道轨迹。

解:炮弹的弹道轨迹可以用一个二次函数来描述,其中 x 是时间 t 的函数。

假设这个函数为 x(t) = a t^2 + b t + c。

根据物理学原理,炮弹的水平速度始终保持不变,即 dx(t)/dt =v*cos(α)。

二次函数实际问题题型总结

二次函数实际问题题型总结

二次函数实际问题题型总结二次函数是高中数学中比较重要的一个章节,它表示的是一种形式为$y=ax^2+bx+c$ 的函数关系。

我们可以通过这个函数来解决很多实际问题,例如运动问题、经济学问题、物理学问题等等。

下面来总结一下二次函数实际问题的题型:1.飞行时间问题。

如果一架飞机从地面起飞并上升至高度 $H$,则它的飞行时间可以表示为 $t=\frac{-b-\sqrt{b^2-4ac}}{2a}$。

其中 $a$ 表示重力加速度,$b$ 表示初速度, $c$ 表示起飞高度。

2.弹射高度问题。

如果一个弹球从地面弹射,并上升至高度 $H$ 后又落回地面,它的弹射高度可以表示为 $H=\frac{V_i^2\sin^2\theta}{2g}$。

其中$V_i$ 表示初速度, $\theta$ 表示仰角, $g$ 表示重力加速度。

3.投射距离问题。

如果一个物体以速度 $V$ 投出,发射角度为 $\theta$,则它的投射距离可以表示为 $R=\frac{V^2\sin2\theta}{g}$。

4.向上抛球的时间问题。

如果一个物体在 $t$ 秒时从地面抛出,当它达到最高点的时候它的高度为 $H$,则它的上升时间可以表示为$t=\frac{1}{2}\sqrt{\frac{H}{g}}$。

其中 $g$ 表示重力加速度。

5.落地时间问题。

如果一个物体从高度为 $H$ 的地方落下,则它的落地时间可以表示为 $t=\sqrt{\frac{2H}{g}}$。

6.成本问题。

如果生产一个产品的成本可以表示为 $C(x)=ax^2+bx+c$,其中$x$ 表示生产的数量, $a$ 表示固定成本, $b$ 表示每个产品的变动成本, $c$ 表示额外的成本,则我们可以通过求导数来确定生产的最优数量。

7.利润问题。

如果销售一个产品的收入可以表示为 $R(x)=mx$,其中 $m$ 表示每个产品的销售额,则利润可以表示为 $P(x)=R(x)-C(x)$。

二次函数实际问题易考题型总结(全)

二次函数实际问题易考题型总结(全)

二次函数实际问题易考题型总结技巧1.二次函数的应用:(1)二次函数常用来解决最优化问题,这类问题实际上就是求函数的最大(小)值;(2)二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系;运用二次函数的知识解决实际问题中的最大(小)值.注意:二次函数实际问题主要分为两个方面的问题,几何图形面积问题和经济问题。

解几何图形面积问题时要把面积公式中的各个部分分别用同一个未知数表示1,我们要用x分别把h,l表示出来。

经济问题:总利润=出来,如三角形S=hl2总销售额-总成本;总利润=单件利润×销售数量。

解最值问题时,一定要注意自变量的取值范围。

分为三类:①对称轴在取值范围内;②取值范围在对称轴左边;③取值范围在对称轴右边。

2.解决实际问题时的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.题型:一、利润最值问题1、某商店销售一种商品,每件的进价为2.50元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.50元时,销售量为500件,而单价每降低1元,就可以多售出200件.请你分析,销售单价多少时,可以获利最大.2.某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价y(元)与销售月份x (月)满足关系式1336 8y x=-+,而其每千克成本2y(元)与销售月份x(月)满足的函数关系如图所示.(1)试确定b,c的值;(2)求出这种水产品每千克的利润y(元)与销售月份x(月)之间的函数关系式;(3)“五一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?3、某食品零售店为食品厂供销一种面包,未售出的面包可退回厂家.经统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个.在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个.考虑了所有因素后该零售店每个面包的成本是5角.设这种面包的单价为x(角),零售店每天销售这种面包所获得的利润为y(角).⑴用含x的代数式分别表示出每个面包的利润与卖出的面包个数;⑵求y与x之间的函数关系式;⑶当面包单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少?二、面积最值问题1.蒋老师的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,蒋老师准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?2、小王家在农村,他家想利用房屋侧面的一面墙,围成一个矩形猪圈(以墙为长人现在已备足可以砌10米长的墙的材料.他想使猪圈的面积最大,你能帮他计算一下矩形的长和宽应当分别是多少米吗?此时猪圈的面积有多大?3.如图,把一张长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm 2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.三、图形问题1、学校要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA .O 恰好在水面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.且在过OA 的任意平面上的抛物线如图l -2-36所示,建立平面直角坐标系(如图l -2-37),水流喷出的高度y (m)与水面距离x (m)之间的函数关系式是25322y x x =-++,请回答下列问题: (1)花形柱子OA 的高度;(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水不至于落在池外?O 2.某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O 的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.(1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中完成规定的翻腾动作并调整好入水姿势时,距池边的水平距离为米,问此次跳水会不会失误?并通过计算说明理由.2103335四、图像问题(一)长度最值、平行四边形问题8.如图,抛物线1417452++-=x y 与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C(3,0).(1)求直线AB 的函数关系式;(2)动点P 在线段OC 上从原点出发以每秒一个单位的速度向C 移动,过点P 作PN ⊥x 轴,交直线AB 于点M ,交抛物线于点N. 设点P 移动的时间为t 秒,MN 的长度为s 个单位,求s 与t 的函数关系式,并写出t 的取值范围;(3)设在(2)的条件下(不考虑点P 与点O ,点C 重合的情况),连接CM ,BN ,当t 为何值时,四边形BCMN 为平行四边形?问对于所求的t 值,平行四边形BCMN 是否菱形?请说明理由.O xAMNBPC 题22图(二)周长与面积最值问题9.如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E 点的坐标.(三)等腰三角形问题10.如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.(1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.(四)直角三角形 如图,在平面直角坐标系中放置一直角三角板,其顶点为A (0,1),B (2,0),O (0,0),将此三角板绕原点O 逆时针旋转90°,得到△A′B′O.(1)一抛物线经过点A′、B′、B ,求该抛物线的解析式;(2)设点P 是在第一象限内抛物线上的一动点,是否存在点P ,使四边形PB′A′B 的面积是△A′B′O 面积4倍?若存在,请求出P 的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB′A′B 是哪种形状的四边形?并写出四边形PB′A′B 的两条性质.A CB y x0 1 1(五)圆如图,半径为2的⊙C 与x 轴的正半轴交于点A ,与y 轴的正半轴交于点B ,点C 的坐标为(1,0).若抛物线23y x bx c =-++过A 、B 两点. (1)求抛物线的解析式;(2)在抛物线上是否存在点P ,使得∠PBO=∠POB?若存在,求出点P 的坐标;若不存在说明理由;(3)若点M 是抛物线(在第一象限内的部分)上一点,△MAB 的面积为S ,求S 的最大(小)值.(六)分段函数、累计二次函数问题11.启优学堂积极应对2018年世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线,由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次),公司累积获得的利润y(万元)与销售时间第x月之间的函数关系(即前x个月的利润总和y 与x之间的关系)对应的点都在如图所示的图象上,该图象从左至右,依次是线段OA、曲线AB和曲线BC,其中曲线AB为抛物线的一部分,点A为该抛物线的顶点,曲线BC为另一抛物线y=-5x2+205x-1230的一部分,且点A、B、C的横坐标分别为4、10、12。

中考专项复习:二次函数的应用---题型总结解析版

中考专项复习:二次函数的应用---题型总结解析版
+200)=﹣2x2+280x—8000
即 W 与 x 之间的函数表达式是 w=﹣2x2+280x—8000
(3) W=﹣2x2+280x—8000=—2(x—70)2+1800,其中40≤x≤80 ,∵﹣2<0,
∴当40≤x≤70时,W 随 x 的增大而增大,当70≤x≤80时,w 随 x 的增大而减小,当售价为 70元时,获得最大利润,这时最大利润为1800元.
【答案】2(x﹣8)(x+2)
【解析】50−x
试题分析:(1)∵y=x·⋅
=−1/2(x−25)2+625/2,
∴当 x=25 时,占地面积最大, 即饲养室长 x 为 25m 时,占地面积 y 最大;
(2)∵y=x·
=−12(x−26)2+338,
∴当 x=26 时,占地面积最大, 即饲养室长 x 为 26m 时,占地面积 y 最大;
考点:A:应用二次函数求最大利润 ,B:求一次函数的解析式 例3.(2017山东潍坊)工人师傅用一块长为10dm,宽为6dm 的矩形铁皮制作一个无盖的长方 体容器,需要将四角各裁掉一个正方形.(厚度不计)
(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折 痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?
当 4<x≤14 时,设 P=kx+b,
4k+b=40
k=1
将(4,40)、(14,50)代入, 可得: 14k+b=50 ,解得: b=36 ,
∴P=x+36;
①当 0≤x≤4 时,W=(60−40)·7.5x=150x,
∵W 随 x 的增大而增大, ∴当 x=4 时,W 最大=600 元; ②当 4<x≤14 时,W=(60−x−36)(5x+10)=−5x2+110x+240=−5(x−11)2+845,

二次函数的应用题

二次函数的应用题

二次函数的应用题一、购买商品的问题假设某店铺正在进行促销活动,销售员告诉你,购买该商品的价格与购买数量之间存在着某种关系。

假设购买数量为x,商品价格为y (单位:人民币)。

经过一番调查,销售员向你透露了以下信息:1. 当你购买1件商品时,价格为10元;2. 当你购买2件商品时,价格为16元;3. 当你购买3件商品时,价格为22元。

问题:据此可否推断出购买7件商品的价格是多少?为了解决这个问题,我们可以使用二次函数来建立价格和购买数量的关系。

假设二次函数的表达式为y = ax^2 + bx + c,其中a、b和c为待确定的常数。

1. 首先,根据已知条件,我们可以列出三个方程:当x = 1时,y = 10;当x = 2时,y = 16;当x = 3时,y = 22。

将这三组(x, y)数值代入二次函数的表达式中,得到以下方程组:a +b +c = 10 ————(方程1)4a + 2b + c = 16 ————(方程2)9a + 3b + c = 22 ————(方程3)2. 接下来,我们可以解这个方程组,求出a、b和c的值。

由于这里只涉及三个方程,我们可以通过代入消元法进行计算。

首先,我们从方程1中解出c = 10 - a - b,然后将c代入方程2和方程3中,得到以下方程组:4a + 2b + (10 - a - b) = 169a + 3b + (10 - a - b) = 22化简这个方程组,得到:3a + b = 6 ————(方程4)8a + 2b = 12 ————(方程5)继续化简,得到:4a + b = 2 ————(方程6)解方程4和方程6,得到:a = 2b = -6将a和b的值代入方程1中,解得c = 14。

因此,二次函数的表达式为y = 2x^2 - 6x + 14。

3. 最后,我们用求得的二次函数来计算购买7件商品的价格。

当x = 7时,代入二次函数的表达式,得到:y = 2(7^2) - 6(7) + 14 = 98 - 42 + 14 = 70因此,购买7件商品的价格为70元。

二次函数综合应用 知识归纳+真题解析

二次函数综合应用 知识归纳+真题解析

二次函数综合应用 知识归纳+真题解析【知识归纳】一.二次函数与一元二次方程的关系一元二次方程ax 2+bx+c=0(a ≠0)的解的情况等价于抛物线y=ax 2+bx+c(c ≠0)与直线y=0(即x 轴)的公共点的个数。

抛物线y=ax 2+bx+c(a ≠0)与x 轴的公共点有三种情况: 公共点(即有两个交点), 公共点, 公共点,因此有:(1)抛物线y=ax 2+bx+c 与x 轴有两个公共点(x 1,0)(x 2,0),一元二次方程ax 2+bx+c=0有 个不等实根△=b 2-4ac 0。

⇔(2)抛物线y=ax 2+bx+c 与x 轴只有一个公共点时,此公共点即为顶点(,0)一2b a -⇔元二次方程ax 2+bx+c=0有 实根, 122b x x a==-⇔(3)抛物线y=ax 2+bx+c 与x 轴没有公共点,一元二次方程ax 2+bx+c=0 根△⇔=b 2-4ac 0.二.二次函数的应用.利用二次函数能解决生活实际问题如物体运动规律、销售问题、利润问题、几何图形变化问题等等.【知识归纳答案】一.二次函数与一元二次方程的关系两个公共点(即有两个交点),一个公共点,没有公共点,因此有:(1)抛物线y=ax 2+bx+c 与x 轴有两个公共点(x 1,0)(x 2,0),一元二次方程ax 2+bx+c=0有两个不等实根△=b 2-4ac >0。

⇔(2)抛物线y=ax 2+bx+c 与x 轴只有一个公共点时,此公共点即为顶点(,0) 一元2b a -⇔二次方程ax 2+bx+c=0有两个相等实根,122b x x a==-⇔240b ac -=(3)抛物线y=ax 2+bx+c 与x 轴没有公共点,一元二次方程ax 2+bx+c=0没有实数根△⇔=b 2-4ac <0.二.二次函数的应用.利用二次函数能解决生活实际问题如物体运动规律、销售问题、利润问题、几何图形变化问题等等.真题解析一.选择题(共5小题)1.设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,( )A.若m>1,则(m﹣1)a+b>0B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m﹣1)a+b>0D.若m<1,则(m﹣1)a+b<0【考点】H4:二次函数图象与系数的关系.【分析】根据对称轴,可得b=﹣2a,根据有理数的乘法,可得答案.【解答】解:由对称轴,得b=﹣2a.(m+1)a+b=ma+a﹣2a=(m﹣1)a,当m>1时,(m﹣1)a<0,(m﹣1)a+b与0无法判断.当m<1时,(m﹣1)a>0,(m﹣1)a+b>0.故选:C.2.如图,是二次函数y=ax2+bx+c的图象,对下列结论①ab>0,②abc>0,③<1,其中错误的个数是( )A.3B.2C.1D.0【考点】H4:二次函数图象与系数的关系.【分析】根据抛物线的开口方向,判断a的符号,对称轴在y轴的右侧判断b 的符号,抛物线和y轴的交点坐标判断c的符号,以及抛物线与x轴的交点个数判断b2﹣4ac的符号.【解答】解:∵抛物线的开口向上,∴a>0,∵对称轴在y轴的右侧,∴b<0,∴ab<0,故①错误;∵抛物线和y轴的负半轴相交,∴c<0,∴abc>0,故②正确;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴<1,故③正确;故选C.3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,以下四个结论:①a>0;②c>0;③b2﹣4ac>0;④﹣<0,正确的是( )A.①②B.②④C.①③D.③④【考点】H4:二次函数图象与系数的关系.【分析】①由抛物线开口向上可得出a>0,结论①正确;②由抛物线与y轴的交点在y轴负半轴可得出c<0,结论②错误;③由抛物线与x轴有两个交点,可得出△=b2﹣4ac>0,结论③正确;④由抛物线的对称轴在y轴右侧,可得出﹣>0,结论④错误.综上即可得出结论.【解答】解:①∵抛物线开口向上,∴a>0,结论①正确;②∵抛物线与y轴的交点在y轴负半轴,∴c<0,结论②错误;③∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,结论③正确;④∵抛物线的对称轴在y轴右侧,∴﹣>0,结论④错误.故选C.4.如图,垂直于x轴的直线AB分别与抛物线C1:y=x2(x≥0)和抛物线C2:y=(x≥0)交于A,B两点,过点A作CD∥x轴分别与y轴和抛物线C2交于点C,D,过点B作EF∥x轴分别与y轴和抛物线C1交于点E,F,则的值为( )A.B.C.D.【考点】H5:二次函数图象上点的坐标特征.【分析】可以设A、B横坐标为a,易求得点E、F、D的坐标,即可求得OE、CE、AD、BF的长度,即可解题.【解答】解:设点A、B横坐标为a,则点A纵坐标为a2,点B的纵坐标为,∵BE∥x轴,∴点F纵坐标为,∵点F是抛物线y=x2上的点,∴点F横坐标为x==,∵CD∥x轴,∴点D纵坐标为a2,∵点D是抛物线y=上的点,∴点D横坐标为x==2a,∴AD=a,BF=a,CE=a2,OE=a2,∴则==×=,故选D.5.如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )A.B.C.D.【考点】H6:二次函数图象与几何变换.【分析】先根据二次函数图象上点的坐标特征求出A、B两点的坐标,再过A 作AC∥x轴,交B′B的延长线于点C,则C(4,1),AC=4﹣1=3,根据平移的性质以及曲线段AB扫过的面积为9(图中的阴影部分),得出AA′=3,然后根据平移规律即可求解.【解答】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),∴AC=4﹣1=3,∵曲线段AB扫过的面积为9(图中的阴影部分),∴AC•AA′=3AA′=9,∴AA′=3,即将函数y=(x﹣2)2+1的图象沿y轴向上平移3个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=(x﹣2)2+4.故选D.二.填空题(共5小题)6.对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,因此,min{﹣,﹣}= ﹣ ;若min{(x﹣1)2,x2}=1,则x= 2或﹣1 .【考点】H3:二次函数的性质;2A:实数大小比较.【分析】首先理解题意,进而可得min{﹣,﹣ }=﹣,min{(x﹣1)2,x2}=1时再分情况讨论,当x=0.5时,x>0.5时和x<0.5时,进而可得答案.【解答】解:min{﹣,﹣ }=﹣,∵min{(x﹣1)2,x2}=1,当x=0.5时,x2=(x﹣1)2,不可能得出,最小值为1,∴当x>0.5时,(x﹣1)2<x2,则(x﹣1)2=1,x﹣1=±1,x﹣1=1,x﹣1=﹣1,解得:x1=2,x2=0(不合题意,舍去),当x<0.5时,(x﹣1)2>x2,则x2=1,解得:x1=1(不合题意,舍去),x2=﹣1,故答案为:;2或﹣1.7.若抛物线y=ax2+bx+c的开口向下,则a的值可能是 ﹣1 .(写一个即可)【考点】H3:二次函数的性质.【分析】根据二次项系数小于0,二次函数图象开口向下解答.【解答】解:∵抛物线y=ax2+bx+c的开口向下,∴a<0,∴a的值可能是﹣1,故答案为:﹣1.8.已知抛物线:y=ax2+bx+c(a>0)经过A(﹣1,1),B(2,4)两点,顶点坐标为(m,n),有下列结论:①b<1;②c<2;③0<m<;④n≤1.则所有正确结论的序号是 ①②④ .【考点】H4:二次函数图象与系数的关系.【分析】根据点A、B的坐标,利用待定系数法即可求出b=﹣a+1、c=﹣2a+2,结合a>0,可得出b<1、c<2,即结论①②正确;由抛物线顶点的横坐标m=﹣,可得出m=﹣,即m<,结论③不正确;由抛物线y=ax2+bx+c(a>0)经过A(﹣1,1),可得出n≤1,结论④正确.综上即可得出结论.【解答】解:∵抛物线过点A(﹣1,1),B(2,4),∴,∴b=﹣a+1,c=﹣2a+2.∵a>0,∴b<1,c<2,∴结论①②正确;∵抛物线的顶点坐标为(m,n),∴m=﹣=﹣=﹣,∴m<,结论③不正确;∵抛物线y=ax2+bx+c(a>0)经过A(﹣1,1),顶点坐标为(m,n),∴n≤1,结论④正确.综上所述:正确的结论有①②④.故答案为:①②④.9.已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线y=(x+1)2向下平移m个单位(m>0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值范围是 2≤m≤8 .【考点】H6:二次函数图象与几何变换.【分析】根据向下平移横坐标不变,分别代入B的横坐标和D的横坐标求得对应的函数值,即可求得m的取值范围.【解答】解:设平移后的解析式为y=y=(x+1)2﹣m,将B点坐标代入,得4﹣m=2,解得m=2,将D点坐标代入,得9﹣m=1,解得m=8,y=(x+1)2向下平移m个单位(m>0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值范围是2≤m≤8,故答案为:2≤m≤8.10.如图是抛物线y1=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②方程ax2+bx+c=3有两个相等的实数根;③抛物线与x轴的另一个交点是(﹣1,0);④当1<x<4时,有y2>y1;⑤x(ax+b)≤a+b,其中正确的结论是 ②⑤ .(只填写序号)【考点】HC:二次函数与不等式(组);H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.【分析】根据二次函数的性质、方程与二次函数的关系、函数与不等式的关系一一判断即可.【解答】解:由图象可知:a<0,b>0,c>0,故abc<0,故①错误.观察图象可知,抛物线与直线y=3只有一个交点,故方程ax2+bx+c=3有两个相等的实数根,故②正确.根据对称性可知抛物线与x轴的另一个交点是(﹣2,0),故③错误,观察图象可知,当1<x<4时,有y2<y1,故④错误,因为x=1时,y1有最大值,所以ax2+bx+c≤a+b+c,即x(ax+b)≤a+b,故⑤正确,所以②⑤正确,故答案为②⑤.三.解答题(共7小题)11.设a、b是任意两个实数,用max{a,b}表示a、b两数中较大者,例如:max{﹣1,﹣1}=﹣1,max{1,2}=2,max{4,3}=4,参照上面的材料,解答下列问题:(1)max{5,2}= 5 ,max{0,3}= 3 ;(2)若max{3x+1,﹣x+1}=﹣x+1,求x的取值范围;(3)求函数y=x2﹣2x﹣4与y=﹣x+2的图象的交点坐标,函数y=x2﹣2x﹣4的图象如图所示,请你在图中作出函数y=﹣x+2的图象,并根据图象直接写出max{﹣x+2,x2﹣2x﹣4}的最小值.【考点】H7:二次函数的最值;F3:一次函数的图象;F5:一次函数的性质;H2:二次函数的图象.【分析】(1)根据max{a,b}表示a、b两数中较大者,即可求出结论;(2)根据max{3x+1,﹣x+1}=﹣x+1,即可得出关于x的一元一次不等式,解之即可得出结论;(3)联立两函数解析式成方程组,解之即可求出交点坐标,画出直线y=﹣x+2的图象,观察图形,即可得出max{﹣x+2,x2﹣2x﹣4}的最小值.【解答】解:(1)max{5,2}=5,max{0,3}=3.故答案为:5;3.(2)∵max{3x+1,﹣x+1}=﹣x+1,∴3x+1≤﹣x+1,解得:x≤0.(3)联立两函数解析式成方程组,,解得:,,∴交点坐标为(﹣2,4)和(3,﹣1).画出直线y=﹣x+2,如图所示,观察函数图象可知:当x=3时,max{﹣x+2,x2﹣2x﹣4}取最小值﹣1.(2)当y=0时(x+a)(x﹣a﹣1)=0,解得x1=﹣a,x2=a+1,y1的图象与x轴的交点是(﹣a,0),(a+1,0),当y2=ax+b经过(﹣a,0)时,﹣a2+b=0,即b=a2;当y2=ax+b经过(a+1,0)时,a2+a+b=0,即b=﹣a2﹣a;(3)当P在对称轴的左侧(含顶点)时,y随x的增大而增大,(1,n)与(0,n)关于对称轴对称,由m<n,得0<x0≤;当时P在对称轴的右侧时,y随x的增大而减小,由m<n,得<x0<1,综上所述:m<n,求x0的取值范围0<x0<1.13.如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;(3)若点P在第一象限内的抛物线上,且S△ABP=4S△COE,求P点坐标.注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)【考点】H4:二次函数图象与系数的关系;H3:二次函数的性质;H5:二次函数图象上点的坐标特征;H8:待定系数法求二次函数解析式;HA:抛物线与x 轴的交点.【分析】(1)将A、B的坐标代入抛物线的解析式中,即可求出待定系数b、c 的值,进而可得到抛物线的对称轴方程;(2)令x=0,可得C点坐标,将函数解析式配方即得抛物线的顶点C的坐标;(3)设P(x,y)(x>0,y>0),根据题意列出方程即可求得y,即得D点坐标.【解答】解:(1)由点A(﹣1,0)和点B(3,0)得,解得:,∴抛物线的解析式为y=﹣x2+2x+3;(2)令x=0,则y=3,∴C(0,3),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4);(3)设P(x,y)(x>0,y>0),S△COE=×1×3=,S△ABP=×4y=2y,∵S△ABP=4S△COE,∴2y=4×,∴y=3,∴﹣x2+2x+3=3,解得:x1=0(不合题意,舍去),x2=2,∴P(2,3).14.如图,△AOB的顶点A、B分别在x轴,y轴上,∠BAO=45°,且△AOB的面积为8.(1)直接写出A、B两点的坐标;(2)过点A、B的抛物线G与x轴的另一个交点为点C.①若△ABC是以BC为腰的等腰三角形,求此时抛物线的解析式;②将抛物线G向下平移4个单位后,恰好与直线AB只有一个交点N,求点N 的坐标.【考点】HA:抛物线与x轴的交点;H6:二次函数图象与几何变换;KH:等腰三角形的性质.【分析】(1)首先证明OA=OB,利用三角形的面积公式,列出方程即可求出OA、OB,由此即可解决问题;(2)①首先确定A、B、C的坐标,再利用的待定系数法即可解决问题;②抛物线G向下平移4个单位后,经过原点(0,0)和(4,﹣4),设抛物线的解析式为y=mx2+nx,把(4,﹣4)代入得到n=﹣1﹣4m,可得抛物线的解析式为y=mx2+(﹣1﹣4m)2x,由,消去y得到mx2﹣4mx﹣4=0,由题意△=0,可得16m2+16m=0,求出m的值即可解决问题.【解答】解:(1)在Rt△AOB中,∵∠BAO=45°,∴AO=BO,∴•OA•OB=8,∴OA=OB=4,∴A(4,0),B(0,4).(2)①由题意抛物线经过C(﹣4,0),B(0,4),A(4,0),顶点为B(0,4),时抛物线解析式为y=ax2+4,(4,0)代入得到a=﹣,∴抛物线的解析式为y=﹣x2+4.②抛物线G向下平移4个单位后,经过原点(0,0)和(4,﹣4),设抛物线的解析式为y=mx2+nx,把(4,﹣4)代入得到n=﹣1﹣4m,∴抛物线的解析式为y=mx2+(﹣1﹣4m)2x,由,消去y得到mx2﹣4mx﹣4=0,由题意△=0,∴16m2+16m=0,∵m≠0,∴m=﹣1,∴抛物线的解析式为y=﹣x2+3x,由,解得,∴N(2,2).15.已知抛物线C1:y=ax2﹣4ax﹣5(a>0).(1)当a=1时,求抛物线与x轴的交点坐标及对称轴;(2)①试说明无论a为何值,抛物线C1一定经过两个定点,并求出这两个定点的坐标;②将抛物线C1沿这两个定点所在直线翻折,得到抛物线C2,直接写出C2的表达式;(3)若(2)中抛物线C2的顶点到x轴的距离为2,求a的值.【考点】HA:抛物线与x轴的交点;H6:二次函数图象与几何变换.【分析】(1)将a=1代入解析式,即可求得抛物线与x轴交点;(2)①化简抛物线解析式,即可求得两个定点的横坐标,即可解题;②根据抛物线翻折理论即可解题;(3)根据(2)中抛物线C2解析式,分类讨论y=2或﹣2,即可解题;【解答】解:(1)当a=1时,抛物线解析式为y=x2﹣4x﹣5=(x﹣2)2﹣9,∴对称轴为x=2;∴当y=0时,x﹣2=3或﹣3,即x=﹣1或5;∴抛物线与x轴的交点坐标为(﹣1,0)或(5,0);(2)①抛物线C1解析式为:y=ax2﹣4ax﹣5,整理得:y=ax(x﹣4)﹣5;∵当ax(x﹣4)=0时,y恒定为﹣5;∴抛物线C1一定经过两个定点(0,﹣5),(4,﹣5);②这两个点连线为y=﹣5;将抛物线C1沿y=﹣5翻折,得到抛物线C2,开口方向变了,但是对称轴没变;∴抛物线C2解析式为:y=﹣ax2+4ax﹣5,(3)抛物线C2的顶点到x轴的距离为2,则x=2时,y=2或者﹣2;当y=2时,2=﹣4a+8a﹣5,解得,a=;当y=﹣2时,﹣2=﹣4a+8a﹣5,解得,a=;∴a=或;16.湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;(2)设这批淡水鱼放养t天后的质量为m(kg),销售单价为y元/kg.根据以往经验可知:m与t的函数关系为;y与t的函数关系如图所示.①分别求出当0≤t≤50和50<t≤100时,y与t的函数关系式;②设将这批淡水鱼放养t天后一次性出售所得利润为W元,求当t为何值时,W最大?并求出最大值.(利润=销售总额﹣总成本)【考点】HE:二次函数的应用.当50<t≤100时,设y与t的函数解析式为y=k2t+n2,将点(50,25)、代入,得:,解得:,∴y与t的函数解析式为y=﹣t+30;②由题意,当0≤t≤50时,W=20000(t+15)﹣=3600t,∵3600>0,∴当t=50时,W最大值=180000(元);当50<t≤100时,W=(﹣t+30)﹣=﹣10t2+1100t+150000=﹣10(t﹣55)2+180250,∵﹣10<0,∴当t=55时,W最大值=180250(元),综上所述,放养55天时,W最大,最大值为180250元.17.我市雷雷服饰有限公司生产了一款夏季服装,通过实体商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量y1(百件)与时间t(t为整数,单位:天)的部分对应值如下表所示,网上商店的日销售量y2(百件)与时间t(t为整数,单位:天)的部分对应值如图所示.0510********时间t(天)025*********日销售量y1(百件)(1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映y1与t的变化规律,并求出y1与t的函数关系式及自变量t的取值范围;(2)求y2与t的函数关系式,并写出自变量t的取值范围;(3)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y(百件),求y与t的函数关系式;当t为何值时,日销售总量y达到最大,并求出此时的最大值.【考点】HE:二次函数的应用.【分析】(1)根据观察可设y1=at2+bt+c,将(0,0),(5,25),(10,40)代入即可得到结论;(2)当0≤t≤10时,设y2=kt,求得y2与t的函数关系式为:y2=4t,当10≤t ≤30时,设y2=mt+n,将(10,40),(30,60)代入得到y2与t的函数关系式为:y2=k+30,(3)依题意得y=y1+y2,当0≤t≤10时,得到y最大=80;当10<t≤30时,得到y最大=91.2,于是得到结论.【解答】解(1)根据观察可设y1=at2+bt+c,将(0,0),(5,25),(10,40)代入得:,解得,∴y1与t的函数关系式为:y1=﹣t2+6t(0≤t≤30,且为整数);(2)当0≤t≤10时,设y2=kt,∵(10,40)在其图象上,∴10k=40,∴k=4,∴y2与t的函数关系式为:y2=4t,当10≤t≤30时,设y2=mt+n,将(10,40),(30,60)代入得,解得,∴y2与t的函数关系式为:y2=k+30,综上所述,y2=;(3)依题意得y=y1+y2,当0≤t≤10时,y=﹣t2+6t+4t=﹣t2+10t=﹣(t﹣25)2+125,∴t=10时,y最大=80;当10<t≤30时,y=﹣t2+6t+t+30=﹣t2+7t+30=﹣(t﹣)2+,∵t为整数,∴t=17或18时,y最大=91.2,∵91.2>80,∴当t=17或18时,y最大=91.2(百件).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数的应用一、顶点坐标公式的应用(基本题型)1、某超市销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱的售价在40元~70元之间.市场调查发现:若每箱50元销售,平均每天可销售90箱,价格每降低1元,平均每天多销售3箱;价格每升高1元,平均每天少销售3箱.(1)写出平均每天的销售量y (箱)与每箱售价x (元)之间的函数关系式(注明自变量x 的取值范围);(2)求出超市平均每天销售这种牛奶的利润W (元)与每箱牛奶的售价x (元)之间的二次函数关系式(每箱的利润=售价-进价);(3)请把(2)中所求出的二次函数配方成ab ac a b x a y 44)2(22-++=的形式,并指出当x =40、70时,W 的值.(4)在坐标系中画出(2)中二次函数的图象,请你观察图象说明:当牛奶售价为多少时,平均每天的利润最大?最大利润为多少?练习:2、我市有一种可食用的野生菌,上市时,外商李经理按市场价格30元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存160天,同时,平均每天有3千克的野生菌损坏不能出售. (1)设x 天后每千克该野生菌的市场价格为y 元,试写出y 与x 之间的函数关系式.(2)若存放x 天后,将这批野生菌一次性出售,设这批野生菌的销售总额为P 元,试写出P 与x 之间的函数关系式. (3)李经理将这批野生茵存放多少天后出售可获得最大利润W 元? (利润=销售总额-收购成本-各种费用)练习3、汽车城销售某种型号的汽车,每辆进货价为25万元,市场调研表明:当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆.如果设每辆..汽车降价x 万元,每辆汽车的销售利润....为y 万元.(销售利润=销售价-进货价)(1)求y 与x 的函数关系式;在保证商家不亏本的前提下,写出x 的取值范围;(3分) (2)假设这种汽车平均每周..的销售利润为z 万元,试写出z 与x 之间的函数关系式;(3分) (3)当每辆汽车的定价为多少万元时,平均每周的销售利润最大?最大利润是多少?(4分)练习4、某集团将下设的内部小型车场改为对外开放的收费停车场。

试运营发现:每辆次小车的停车费不超过5元时,每天来此处停放的小车为1440辆次,超过5元时,每涨1元,每天来此处停放的小车就减少120辆次,而此停车场每天需固定支出的费用(设施维修费、车辆管理人员工资等)为800元。

为便天结算,规定每辆次小车的停车费x (元)只取整数,用y (元)表示此停车场的日净收入,且要求日净收不低于2512元。

(日净收入=每天共收取的停车费-每天的固定支出)(1)当x ≤5时,写出y 与x 之间的关系式。

并说明每辆次小车的停车费最少不低于多少元;(2)当x >5时,写出y 与x 之间的函数关系式(不必写出x 的取值范围);(3)该集团要求此停车场既要吸引客户,使每天小车停放的辆次校多,又要有较大的日净收入。

按此要求,每辆次小车的停车费应定为多少元?此时日净收入是多少?练习5、某地区盛产一特种产品,帮扶公司经过市场调查,发现该产品在A市有很好的消费市场,于是06年开始投入资金购销该产品,现了解到公司06年的一些购销情况:公司以9万元/吨的市场保护价收购该产品,收购产品、分类包装、运往A 市等費用約為0.5万元/吨,所收购产品的损耗率为5%,在A 市的销售价为15万元/吨.07年公司为了提高该产品的知名度,扩大销量,在收购价与销售价不变的前提下,准备拿出一定的资金在A 市做广告宣传.根据经验,投入广告费x(万元)与在06年销量的基础上该产品的销量y(吨)之间满足关系: y=ax 2+bx+50.并且当投入1万元的广告费时,销量为59吨;当投入2万元的广告费时,销量为66吨.(1)公司06年将销售利润全部回报后,在市场保护价的基础上,农民卖出1千克的产品还可增收 元;(2)试写出y 与x 之间的函数关系式:y = ,根据关系式可知,06年公司实际收购该产品 吨;(3)设07年公司的销售利润为W(万元)(销售利润=销售额-成本费-广告费),试写出W与x 之间的二次函数关系式;练习6、.某公司有甲、乙两个绿色农产品种植基地.在收获期这两个基地当天收获的某种农产品,一部分存入仓库,另一部分运往外地销售.根据经验,该农产品在收获过程中两个种植基地累积总产量y (吨)与收获天数x (天)满足函数关系23y x =+(1≤x ≤10且x 为整数).该农产品在收获过程中甲、乙两基地的累积产量分别占两基地累积总产量的百分比和甲、乙两基地累积存入仓库的量分别占甲、乙两基地的累积产量的百分比如下表:(1)请用含y 的代数式分别表示在收获过程中甲、乙两个基地累积存入仓库的量;(2)设在收获过程中甲、乙两基地累积存入仓库的该种农产品的总量为p (吨).请求出p (吨)与收获天数x (天)的函数关系式;(3)在(2)的基础上,若仓库内原有该种农产品42.6吨,为满足本地市场需求,在此收获期开始的同时,每天从仓库调出一部分该种农产品投入本地市场,若在本地市场售出的该种农产品总量m (吨)与收获天数x (天)满足函数关系213.2 1.6m x x =-+-(1≤x ≤10,且x 为整数).问在此收获期内连续销售几天,该农产品库存量达到最低值?最低库存量是多少吨?附加练习 某大棚蔬菜生产基地指导菜农修建大棚种植蔬菜.通过调查得知:平均修建每公顷大棚要用支架、农膜等材料费2.7万元;购置滴灌设备,这项费用(万元)与大棚面积(公顷)的平方成正比,比例系数为0.9;另外每公顷种植蔬菜需种子、化肥、农药等开支0.3万元.每公顷蔬菜年均可卖7.5万元. (1)基地的菜农共修建大棚x (公顷),当年收益(扣除修建和种植成本后)为y (万元), 写出y 关于x 的函数关系式.(2)若某菜农期望通过种植大棚蔬菜当年获得5万元收益,工作组应建议他修建多少公项大棚.(用分数表示即可) (3)除种子、化肥、农药投资只能当年受益外,其它设施3年内不需增加投资仍可继续使用.如果按3年计算,是否修建大棚面积越大收益越大?修建面积为多少时可以得到最大收益?请帮工作组为基地修建大棚提一项合理化建议.二、表达式的应用7、练习:8、某校初三年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高920m ,与篮圈中心的水平距离为7m ,当球出手后水平距离为4m 时到达最大高度4m ,设篮球运行的轨迹为抛物线,篮圈距地面3m .(1)建立如图所示的平面直角坐标系,求抛物线的解析式并判断此球能否准确投中?(2)此时,若对方队员乙在甲前面1m 处跳起盖帽拦截,已知乙的最大摸高为3.1m ,那么他能否获得成功?三、不等式与二次函数的综合应用9、、某公司销售一种市场需求较大的新型产品,已知每件产品的进价为40元,经销过程中测出销售量y(万件)与销售单价x(元)存在如图所示的一次函数关系,每年销售该种产品的总开支z(万元)(不含进价)与年销量y(万件)存在函数关系z=10y+42.5.(1)求y关于x的函数关系式;(2)度写出该公司销售该种产品年获利w(万元)关于销售单价x(元)的函数关系式;(年获利=年销售总金额-年销售产品的总进价-年总开支金额)当销售单价x为何值时,年获利最大?最大值是多少?(3)若公司希望该产品一年的销售获利不低于57.5万元,请你利用(2)小题中的函数图象帮助该公司确定这种产品的销售单价的范围.在此条件下要使产品的销售量最大,你认为销售单价应定为多少元?练习10、、某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元进行批量生产。

已知生产每件产品的成本为40元,在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x元,年销售量为y万件,年获利(年获利=年销售额-生产成本-投资)z万元。

(1)试写出y与x之间的函数关系式;(不必写出x的取值范围)(2)试写出z与x之间的函数关系式;(不必写出x的取值范围)(3)计算销售单价为160元时的年获利,并说明同样的年获利,销售单价还可以定为多少元?相应的年销售量分别为多少万件?(4)公司计划:在第一年按年获利最大确定的销售单价进行销售,第二年年获利不低于1130万元。

请你借助函数的大致图象说明,第二年的销售单价x(元)应确定在什么范围内?练习11为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y(万件)与销售单价x(元)(x>40)之间的函数关系如图所示.(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额-生产成本-员工工资-其它费用),该公司可安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?四、双二次函数综合应用12、 某企业信息部进行市场调研发现:信息一:如果单独投资A 种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:信息二:如果单独投资B 种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax 2+bx ,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元. (1)求出y B与x 的函数关系式.(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x 之间的关系,并求出y A与x 的函数关系式.(3)如果企业同时对A 、B 两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?练习13、某地区地理位置偏僻,严重制约着经济的发展,某种土特产品只有在本地销售。

该地区政府每投资x 万元,所获利润为P=-1601(x-40)2+10万元。

为顺应开发大西北的宏伟决策,该地区政府在制订经济发展十年规划时,拟开发此种土特产品,而开发前后用于该项目投资的专项财政拨款每年都是60万元。

若开发该产品,必须在前5年中,每年从60万元专款中拿出30万元投资修通一条公路,且5年可以修通。

公路修通后该土特产品在异地销售,每投资x 万元,可获利润Q,Q=-160159(60-x )2+2119(60-x )万元,问: (1)如果某种土特产品只能在本地销售,求10年的最大总利润是多少? (2)如果按开发此种土特产品的十年规划进行,求10年的最大总利润是多少? (3)从10年的总利润来看,该项目有无开发价值?3题答案:解:(1)2925y x =-- 4(04)y x x =-+∴≤≤(2)840.5x z y ⎛⎫=+⨯ ⎪⎝⎭(88)(4)x x =+-+(3)282432z x x =-++∴ 238502x ⎛⎫=--+ ⎪⎝⎭∴当32x =时,50z =最大 ∴当定价为29 1.527.5-=万元时,有最大利润,最大利润为50万元.或:当24 1.522(8)b x a =-=-=⨯- 2244(8)32245044(8)ac b z a -⨯-⨯-===⨯-最大值 ∴当定价为29 1.527.5-=万元时,有最大利润,最大利润为50万元4、题答案:(1)y=1440x-800 因为1440x-800≥2512,所以x ≥2.3,因为x 取整数,所以x 最小取3,即每辆次小车的停车费最少不低于3元。

相关文档
最新文档