蛋白质的折叠

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国科学院生物物理研究所生物大分子国家重点实验室王志珍

导读

您知道蛋白质折叠吗?这是一个很新的词。新到什么程度?您可以上网到著名的不列颠百科全书网站检索一下proteinfolding(即蛋白质折叠),还没有相应的解释。

您知道“蛋白质折叠病”吗?疯牛病、老年性痴呆症、囊性纤维病变、家族性高胆固醇症、家族性淀粉样蛋白症、某些肿瘤、白内障等等都是“折叠病”。就是相关蛋白质的三维空间结构异常。这种三维空间结构异常是由于致病蛋白质分子通过分子间作用感染正常蛋白质而造成的。请注意,致病蛋白质分子与正常蛋白质分子的构成完全相同,只是空间结构不同。

您知道蛋白质折叠有多复杂吗?美国“科学美国人”曾经载文称,用当今最快的计算机模拟计算蛋白质折叠,要花一百年!而当今最快的计算机已经达到每秒几万亿甚至十几万亿次浮点运算的高速了。

对于生命奥秘的探索,将贯穿新世纪乃至新千年人类的历史。而蛋白质折叠,就是其中的一大课题。

请您认真阅读王志珍研究员的这篇文章。不要害怕肽键、肽链、分子伴侣这类专业名词,因为它们与您、您的健康息息相关。读完这篇文章,这些专业名词将成为您的朋友。

提要

研究蛋白质的折叠,是生命科学领域的前沿课题之一。蛋白质是一种生物大分子,基本上是由20种氨基酸以肽键连接成肽链。肽链在空间卷曲折叠成为特定的三维空间结构,包括二级结构和三级结构二个主要层次。有的蛋白质由多条肽链组成,每条肽链称为亚基,亚基之间又有特定的空间关系,称为蛋白质的四级结构。所以蛋白质分子有非常特定的复杂的空间结构。

通过“蛋白质结构预测”破译“第二遗传密码”,是蛋白质研究最后几个尚未揭示的奥秘之一。天津大学和中国科学院生物物理所的科学家已经做出了优秀的研究成果。他们预测,蛋白质的种类虽然成千上万,但它们的折叠类型却只有有限的650种左右。我国科学家在分子伴侣和折叠酶方面有特色的研究成果,也已经赢得了国际同行的注意。

外界环境的变化可以导致蛋白质空间结构的破坏和生物活性的丧失,但却并不破坏它的一级结构(氨基酸序列),这称为蛋白质的变性。变性的蛋白质往往成为一条伸展的肽链,在一定的条件下可以重新折叠成原有的空间结构并恢复原有的活性。对蛋白质变性作用的认识是我国科学家吴宪在三十年代首先提出的。蛋白质异常的三维空间结构可以引发疾病,疯牛病、老年性痴呆症、囊性纤维病变、家族性高胆固醇症、家族性淀粉样蛋白症、某些肿瘤、白内障等等都是“折叠病”。造成疯牛病的Prion病蛋白可以感染正常蛋白而在蛋白质之间传染。研究蛋白质的折叠问题不仅具有重大的科学意义,而且在医学和在生物工程领域具有极大的应用价值。

1分子生物学的中心法则

五十年代初运用X射线衍射技术解出了生命遗传物质脱氧核糖核酸(DNA)分子的三维空间结构,阐明了生物遗传的分子基础,揭示了这个最主要的生命活动的本质,从而开创了在分子水平上认识生命现象的新学科———分子生物学。分子生物学的出现是经典生物学转变成近代生物学的里程碑。尽管自然界的生物物种千千万万,生命现象繁杂纷飞,在分子水平研究生命,使我们认识到各种生命现象的基本原理却是高度一致的!从最简单的单细胞生物到最高等的人类,它们最基本最重要的组成物质都是蛋白质和核酸。核酸是生物体遗传信息的携带者,所有生物体能世代相传,就是依靠核酸分子可以精确复制的性质。蛋白质则

是生命活动的主要承担者。所有的生命活动,呼吸、运动、消化……甚至感知、思维和学习,无一例外是依靠蛋白质来完成的。蛋白质是一种生物大分子,基本上是由20种氨基酸以肽键连接成肽链。肽键连接成肽链称为蛋白质的一级结构。不同蛋白质其肽链的长度不同,肽链中不同氨基酸的组成和排列顺序也各不相同。肽链在空间卷曲折叠成为特定的三维空间结构,包括二级结构和三级结构二个主要层次。有的蛋白质由多条肽链组成,每条肽链称为亚基,亚基之间又有特定的空间关系,称为蛋白质的四级结构。所以蛋白质分子有非常特定的复杂的空间结构。每一种蛋白质分子都有自己特有的氨基酸的组成和排列顺序,由这种氨基酸排列顺序决定它的特定的空间结构,这就是荣获诺贝尔奖的著名的Anfinsen原理。蛋白质分子只有处于它自己特定的三维空间结构情况下,才能获得它特定的生物活性;三维空间结构稍有破坏,就很可能会导致蛋白质生物活性的降低甚至丧失。

二十世纪生物学领域最重要的成就之一,是继DNA双螺旋结构的发现总结出分子生物学的中心法则,揭示生命遗传信息传递的方向和途径。近半个世纪以来对阐明中心法则有关问题有杰出贡献而获得诺贝尔奖的学者先后多达34位。分子生物学的中心法则简单表达如下:

分子生物学的中心法则中,DNA和核糖核酸(RNA)的复制、DNA转录成RNA、RNA 逆转录成DNA以及以信使RNA为模板翻译成多肽链的过程和机制基本上已经阐明。但从多肽链折叠成蛋白质的过程,即所谓“新生肽的折叠”问题,是中心法则至今留下的空白,又是从“遗传信息”到“生物功能”的关键环节,有待我们在21世纪去解决。

2蛋白质折叠与“折叠病”

人们对由于基因突变造成蛋白质分子中仅仅一个氨基酸残基的变化就引起疾病的情况已有所了解,即所谓“分子病”,如地中海镰刀状红血球贫血症就是因为血红蛋白分子中第六位的谷氨酸突变成了颉氨酸。现在则发现蛋白质分子的氨基酸序列没有改变,只是其结构或者说构象有所改变也能引起疾病,那就是所谓“构象病”,或称“折叠病”。

大家都知道的疯牛病,它是由一种称为Prion的蛋白质的感染引起的,这种蛋白质也可以感染人而引起神经系统疾病。在正常机体中,Prion是正常神经活动所需要的蛋白质,而致病Prion与正常Prion的一级结构完全相同,只是空间结构不同。这一疾病的研究涉及到许多生物学的基本问题。一级结构完全相同的蛋白质为什么会有不同的空间结构,这与Anfinsen原理是否矛盾?显然这里有蛋白质的能量和稳定性问题。

从来认为蛋白结构的变化来自于序列的变化,而序列的变化来自于基因的变化,生命信息从核酸传递到蛋白。而致病Prion的信息已被诺贝尔奖获得者普鲁辛纳证明不是来自基因的变化,致病蛋白Prion导致正常蛋白Prion转变为致病的折叠状态是通过蛋白分子间的作用而感染!这种相互作用的本质和机制是什么?仅仅改变了折叠状态的分子又如何导致严重的疾病?这些问题都不能用传统的概念给予满意的解释,因此在科学界引起激烈的争论,有关研究的强度和竞争性也随之大大增强。

由于蛋白质折叠异常而造成分子聚集甚至沉淀或不能正常转运到位所引起的疾病还有老年性痴呆症、囊性纤维病变、家族性高胆固醇症、家族性淀粉样蛋白症、某些肿瘤、白内障等等。由于分子伴侣在蛋白质折叠中至关重要的作用,分子伴侣本身的突变显然会引起蛋白质折叠异常而引起折叠病。随着蛋白质折叠研究的深入,人们会发现更多疾病的真正病因和更针对性的治疗方法,设计更有效的药物。现在发现有些小分子可以穿越细胞作为配体与突变蛋白结合,从而使原已失去作战能力的突变蛋白逃逸“蛋白质质量控制系统”而“带伤作战”。这种小分子被称为“药物分子伴侣”,有希望成为治疗“折叠病”的新药。新生肽的折叠问题或蛋白质折叠问题不仅具有重大的科学意义,除了上面提到的在医学上的应用价值外,在生物工程上具有极大的应用价值。基因工程和蛋白工程已经逐渐发展成为产值以数十亿美元计的大产业,进入21世纪后,还将会有更大的发展。但是当前经常遇到的困难,

相关文档
最新文档