020 网络虚拟化IRF2技术架构(堆叠增加带宽)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
网络虚拟化IRF2技术架构
注:支持IRF2的产品进行堆叠时能从芯片级的连接,从而提升交换机的整体带宽,但提升幅度不可能达到交换机的数量的位数。不支持IRF2的产品的堆叠只能通过堆叠口连接起来形成一台虚拟的逻辑设备,对设备性能没有任何提升。
由于IRF 系统是由多个支持IRF 特性的单机设备虚拟化而成的,IRF 系统的交换容量和端口数量就是I RF 内部所有单机设备交换容量和端口数量的总和。因此,IRF 技术能够通过多个单机设备的虚拟化,轻易的将设备的核心交换能力、用户端口的密度扩大数倍,从而大幅度提高了设备的性能。
IRF 物理端口可以使用以太网接口(RJ45),光口或专用IRF接口。
虚拟化技术是当前企业IT技术领域的关注焦点,采用虚拟化来优化IT架构、提升IT系统运行效率是当前技术发展的方向。
对于服务器或应用的虚拟化架构,IT行业相对比较熟悉:在服务器上采用虚拟化软件运行多台虚拟机(VM---Virtual Machine),以提升物理资源利用效率,可视为1:N的虚拟化;另一方面,将多台物理服务器整合起来,对外提供更为强大的处理性能(如负载均衡集群),可视为N:1的虚拟化。
对于基础网络来说,虚拟化技术也有相同的体现:在一套物理网络上采用VPN或VRF技术划分出多个相互隔离的逻辑网络,是1:N的虚拟化;将多个物理网络设备整合成一台逻辑设备,简化网络架构,是N:1虚拟化。H3C 虚拟化技术IRF2属于N:1整合型虚拟化技术范畴。
1H3C IRF2虚拟化技术解析
IRF2源自早期的堆叠技术,H3C或称为IRF1。
IRF1堆叠就是将多台盒式设备通过堆叠口连接起来形成一台虚拟的逻辑设备。用户对这台虚拟设备进行管理,来实现对堆叠中的所有设备的管理。这种虚拟设备既具有盒式设备的低成本优点,又具有框式分布式设备的扩展性以及高可靠性优点,早期在H3C S3600/S5600上提供此类解决方案。
IRF2既支持对盒式设备的堆叠虚拟化,同时支持H3C同系列框式设备的虚拟化(如图1所示):包括S12500,S9500E,S7500E,S5800,S5500,S5120EI各系列内的IRF2虚拟化整合。
图1 基于IRF22 的虚拟化
IRF2技术的软件体系架构如图2所示。IRF2虚拟化功能模拟出虚拟的设备,设备管理同时管理IRF2的虚拟设备与真实的物理设备,屏蔽其差异。而对于运行在此系统上的上层应用软件来说,通过设备管理层的屏蔽,已经消除了IRF2系统中不同设备物理上的差异,因此,对于单一运行的物理设备或IRF2虚拟出来的设备,上层软件都不
需要做任何的修改,并且对于上层软件系统新增的功能,可同步应用于所有硬件设备。
IRF2虚拟化模块:自动进行IRF2系统的拓扑收集、角色选举,并将设备组虚拟成单一的逻辑设备,上层软件所见只是一台设备;
硬件系统:IRF2组内的硬件设备及组件;
设备管理层:提供对线卡、接口等各种设备资源的管理。这里的设备包括对硬件的抽象,也包括通过IRF2虚拟化发现的逻辑设备;
系统管理与上层应用模块:运行在IRF2系统上的所有管理、控制程序,包括各种路由协议模块、链路层协议模块等。
图2 IRF2基本软件架构
IRF2作为通用的虚拟化技术平台,对不同形态产品的采用相同技术架构实现,便于整网运行特征一致性、升级能力一致性。
拓扑管理
设备上用于IRF2连接的物理端口被称为IRF2端口,它是一种逻辑接口。一个IRF2端口可能对应一个物理端口,也可能由多个物理端口聚合而成(称为聚合IRF2互联口),以达到增强带宽和链路备份的作用。IRF2物理端口之间可以使用专用线缆也可以使用光纤连接:专用线缆可提供更高带宽和较短的连接距离,光纤可提供远距的IRF2虚拟化能力。
如图4所示,IRF2系统连接拓扑有两种:链形连接和环形连接。
图3 IRF2的主要连接拓扑
IRF2系统中的各台设备通过与直接相邻的其它成员交互HELLO报文来收集整个IRF2系统的拓扑关系。HELLO 报文会携带拓扑信息,包括连接关系、成员设备编号、成员设备优先级、成员设备的桥MAC等内容。
IRF2成员设备在本地记录自己已知的拓扑信息,拓扑信息通过IRF2互联端口传递,经过一段时间的收集,所有设备上都会收集到完整的拓扑信息(称为拓扑收敛)。此时会进入角色选举阶段,确定成员为Master或者Slave。
角色选举会在拓扑发生变化的情况下产生,比如:IRF2建立、新设备加入、IRF2分裂或者两个IRF2系统合并。角色选举规则如下(按规则次序判断,直到找到唯一的最优成员,才停止选举。此最优成员即为IRF2系统的Master 设备,其它设备则均为Slave设备):
1、当前Master优于非Master成员;
2、当成员设备均是框式分布式设备时,本地主用主控板优于本地备用主控板;
3、当成员设备均是框式分布式设备时,原Master的备用主控板优于非Master成员上的主控板;
4、成员优先级大的优先;
5、系统运行时间长的优先;
6、成员桥MAC小的优先。
角色选举阶段Master还会负责成员编号冲突处理、软件版本加载、IRF2合并管理等工作。拓扑与角色选举处理成功后,IRF2系统才能形成和正常运行。
成员管理
通过IRF2连接形成的虚拟设备在管理上可以看作是单一实体,用户使用Console口或者Telnet方式登录到IRF2中任意一台成员设备,都可以对整个IRF2系统进行管理和配置。
Master设备作为IRF2系统的管理中枢,负责响应用户的登录请求,即用户无论使用什么方式,通过哪个成员设备登录IRF2,最终都是通过Master设备进行配置,这种方式可以使IRF2内所有设备的配置保持高度统一。
IRF2系统使用成员编号(Member ID)来标志和管理成员设备,IRF2中所有设备的成员编号都是唯一的。成员编号被引入到端口编号中,便于用户配置和识别成员设备上的接口。
成员设备加入。IRF2系统当发现有新的成员设备加入时,会根据新加入设备的状态采取不同的处理:新加入的设备本身未形成IRF2(如:新成员是新上电,但IRF2已经配置和电缆连接),则该设备会被选为Slave;加入的设备本身已经形成了IRF2运行结构(如:新成员已经在IRF2状态下工作,使用IRF2电缆连接到已有IRF2系统),此时相当于两个IRF2合并(merge),两个系统会进行竞选,竞选失败的一方所有IRF2成员设备需要重启(冗余的网络结构设计已经保证了网络业务承载的不中断性),然后全部作为Slave设备加入竞选获胜的一方。
成员设备离开。正常情况下,直接相邻的IRF2成员设备之间周期性交换HELLO报文。如果持续10周期未收到直接邻居的HELLO报文,则认为该成员设备已经离开IRF2系统,IRF2系统会将该成员设备从拓扑中隔离出来。如果发现IRF2互联端口Down,则拥有该端口的成员设备会紧急广播通知其它成员,立即重新计算当前拓扑,而不用等到HELLO报文超时再处理。
如果离开的是Slave设备,则系统仅仅相当于失去一个备用主控板以及此板上的接口等物理资源;如果离开的是Master设备,则IRF2系统会重新进行选举,选举出的新Master接管原有Master的所有功能。
单台设备离开IRF2系统后会回到独立运行状态,相连的多台设备离开IRF2系统后会形成独立的两个IRF2系统,这种情况称为分裂。
盒式设备IRF2互联形成的虚拟设备相当于一台框式分布式设备,IRF2互联电缆模拟了交换背板,IRF2中的Master相当于虚拟设备的主用主控板,Slave设备相当于备用主控板(同时担任接口板的角色),如图4所示。