钢板桩围堰支护结构计算书

钢板桩围堰支护结构计算书
钢板桩围堰支护结构计算书

钢板桩围堰支护结构验算书

设计:

校对:

审核:

二O一七年一月

目录

目录 (2)

一、概述 (1)

1.1计算说明 (1)

1.2施工流程 (1)

1.3计算依据 (1)

1.4计算参数及材料选择 (2)

1.4.1计算参数 (2)

1.4.2材料选择 (2)

1.5计算方法 (2)

二、钢板桩围堰支护计算分析 (5)

2.1#81墩钢板桩支护验算 (5)

2.1.1悬臂端允许最大跨度 (5)

2.1.2钢板桩最小入土深度t (5)

2.1.3基底抗隆起验算 (7)

2.1.4钢板桩及内支撑结构验算 (7)

2.2#54墩钢板桩支护验算 (9)

2.2.1悬臂端允许最大跨度 (9)

2.2.2钢板桩最小入土深度t (9)

2.2.3基底抗隆起验算 (11)

2.2.4抗管涌验算 (12)

2.2.5 C30水下砼灌注厚度验算 (13)

2.2.6钢板桩及内支撑结构验算 (13)

2.3A匝道1号桥#7墩钢板桩支护验算......... 错误!未定义书签。

2.3.1悬臂端允许最大跨度 ......................... 错误!未定义书签。

2.3.2钢板桩最小入土深度t ....................... 错误!未定义书签。

2.3.3基底抗隆起验算 ................................. 错误!未定义书签。

2.3.4抗管涌验算 ......................................... 错误!未定义书签。

2.3.5 C30水下砼灌注厚度验算................... 错误!未定义书签。

2.3.6钢板桩及内支撑结构验算.................. 错误!未定义书签。

2.4底模板支撑计算 ....................................... 错误!未定义书签。

2.4.1工字钢强度验算 ................................. 错误!未定义书签。

2.4.2牛腿焊缝强度验算 ............................. 错误!未定义书签。

三、结论及意见 ............................................... 错误!未定义书签。

一、概述

1.1计算说明

1.2施工流程

1.总体施工方案

根据现场施工场地的特点,陆域承台基坑拟采用钢板桩围护施工,水中墩采用筑岛围堰作为施工平台、基坑采用拉森钢板桩围护;其余水中墩采用搭设施工平台进行水中桩基钻孔施工后拆除桩位的平台,后采用拉森钢板桩围进行系梁承台施工。

2.施工工艺流程

1)水中钢板桩围堰施工流程

施工准备→测量定位→打设导向桩→安装导向架→打钢板桩→堰内抽水→安装第二层钢板桩内支撑→堰内抽水、水下开挖→浇筑水下封底混凝土→清基堵漏→破桩桩检→浇筑承台砼垫层→系梁(承台)施工及砼养护→浇筑墩身施工砼养护→逐层充水、拆除第二层内撑→拆除第一层内撑→拔桩、撤场。

2)承台施工流程(挂篮)

根据施工图及高程放设钢板桩定位线→表层土下挖0.5m沟槽→根据定位线控设钢板桩导向槽钢→整修平整施工机械行走道路→插打拉森Ⅳ钢板围护桩→将围护桩打设至指定标高→基坑开挖深度达0.5m→依次安装三角支架、围檩及水平内支撑→继续往下挖2m→依次安装三角支架、围檩及水平内支撑→继续开挖至承台底下0.5m→砼浇筑至承台底(四周预留集水沟)→抽水和破除桩头施工→进行承台施工→回填土至承台顶→拆除水平内支撑、围檩、三角撑,拔除钢板桩。

1.3计算依据

1.《钢结构设计规范》(GB 50017-2003)

2.《公路桥涵设计通用规范》(JTG D60-2004)

3.《建筑基坑支护技术规程》(JGJ 120-2012)

4.《深圳市深基坑支护技术规范》(SJG 05-2011)

5.《简明深基坑工程设计施工手册》

6.《简明施工计算手册》

1.4计算参数及材料选择

1.4.1计算参数

1)钢板桩围堰土层参数根据《甬台温高速公路复线-温州灵昆至阁巷段工程

第4合同段施工图设计工程地质勘探报告》选取。

2)根据《浙江省甬台温高速公路复线温州灵昆-阁巷段工程第4标段水中承

台、地系梁承台安全专项施工方案》,现有38处墩位施工需要钢板桩

围堰支护施工,详见表1-1。

1.4.2材料选择

1)本工程选用拉森桩(SKAP-Ⅳ型,日标) 宽40cm,重74kg/m

拉森Ⅳ型钢板桩参数(见下表1-2)

图1-1钢板桩横断面尺寸

表1-2拉森Ⅳ型钢板桩参数表

2)围檩结构采用2HW400×400型钢,转角斜支撑采用2HW400×400型

钢,中间主支撑采用2HW400×400;

3)强度检算控制指标:

拉森桩SKAP-Ⅳ型钢板桩强度控制值:[σ]=210MPa;

Q235 钢材强度控制值:[σ]=170Mpa;

1.5计算方法

根据《简明施工计算手册》和《深圳市深基坑支护技术规范》,对于多层支撑板桩墙的简化计算,一般可采用盾恩近似法和等值梁法计算。

1. 盾恩近似法

图2-1-1 盾恩近似法计算简图

假定作用在板桩EF 段上的荷载EGNF ,一半传至F 点上,一半由坑底土压力承受,由图所示几何关系可得:

''21111

()()22

a i p a HK h t K K t γγ+=- 2. 等值梁法

多支撑支护下端为弹性嵌固时,其弯矩图如图2-1所示,若在得出此弯矩图前己知弯矩零点位置,并于弯矩零点处将梁(即桩)断开以简支计算,则不难看出所得该段的弯矩图将同整梁计算时一样,此断梁段即称为整梁该段的等值梁。对于下端为弹性支撑的单支撑挡墙其净土压力零点位置与弯矩零点位置很接近,因此可在压力零点处将板桩划开作为两个相联的简支梁来计算。这种简化计算法就称为等值梁法。为简化计算,常用土压力等于零点的位置来代替正负弯矩转折点的位置。计算土压力强度时,应考虑板桩墙与土的摩擦作用,将板桩墙前和墙后的被动土压力分别乘以修正系数(为安全起见,对主动土压力则不予折减)。

图2-1-2 等值梁法计算简图

本文计算作出如下假设:

1. 假设计算时取1m 宽单位宽度钢板桩。

2.因土处于饱和水状态,为简化计算且偏安全考虑,不考虑土的粘聚力。

3.弯矩为零的位置约束设置为铰接,故等值梁相当于一个简支梁,方便计

算。

土压力计算采用不考虑水渗流效应的水土分算法,即钢板桩承受孔隙

水压力、有效主动土压力及有效被动土压力。

相关声明

1、甬台温高速公路复线-温州灵昆至阁巷段工程建设本身须符合其行业设计规范的要求和相关建设程序;

2、本计算书中计算结果是依据委托方提供的资料进行分析计算所得;对所提供基础资料的准确性或调整等其他因素造成的变化不承担责任。

二、钢板桩围堰支护计算分析

2.1 #81墩钢板桩支护验算

2.1.1悬臂端允许最大跨度

按照等弯矩布置确定各层支撑的间距,根据拉森Ⅳ型钢板桩承受的最大弯矩确定板桩顶悬臂端的最大允许跨度:

h 267cm 2.67m == 实际悬臂长度h 0

根据钢板桩入土的深度,按浅埋板桩墙原理计算,作用在桩后为主动土压力,作用在桩前为被动土压力,为简化计算,土压力参数均采用加权平均值计算。

根据肯朗土压力理论,主动土压力系数为:2tan (45)2a K φ

=-o ,围堰开挖

范围内的土质为淤泥质土,根据地勘报告,为简化计算,土压力参数均采用加权平均值计算。主动土内摩擦角取值为6.6°,被动土内摩擦角取值为5.3°,重度1γ=17.05kN/m 2,粘聚力c=6.6kPa 。

则2

2 5.3tan (45)tan (45)0.7922

a p K K φ

==-=-

=o

o

o

。 主动土压力为:'1a a P K H γ=。

被动土压力系数:22 6.6

tan (45)tan (45) 1.2022

p K φ=+=+

=o o 分别采用盾恩近似法和等值梁法计算。

1. 盾恩近似法

''21111

()()22

a i p a HK h t K K t γγ+=-

即:()0p a a a i K K t HK t HK h ---=

2(1.200.79) 4.70.79 4.70.79 3.50t t --??-??=

解得入土深度t=11.75m

故钢板桩的总长度至少为L=4.7+11.75=16.45m 。 2. 等值梁法

1)计算反弯点位置,即利用钢板桩上土压力等于零的点作为反弯点位置,计算其离基坑底面的距离y ,在y 处钢板桩主动土压力强度等于被动土压力强度,即p a P P =

主动土压力:'1()a a P K h y γ=+ 被动土压力:'1p p P KK y γ=

''11()p a KK y K h y γγ=+

0.79 4.7

5.711.2 1.200.79

a p a K h y m KK K ?=

==-?-

式中K-被动土压力修正系数,取1.2 偏安全考虑,主动土压力常数项忽略不计。

2)根据等值梁法计算原理,土压力零点处的支撑反力与该点以下钢板桩土压力对桩底的力矩平衡,假设土压力零点以下钢板桩零点以下钢板桩埋深为x ,建平衡方程。

1288.4236476.4b Q kN T kN T kN ===,,

由等值梁法可求算钢板桩的最小入土深度,设桩的反转点以下x 为最小入土深度所在高程,则0t y x =+,取0M ∑=

2

p a x

6b KK K Q =

γ(-)

6.92x m =

=

0故钢板桩的总长度至少为L=12.63+4.7=17.33m 。 综上,建议采用18m 钢板桩。 2.1.3基底抗隆起验算

在基坑开挖时,由于坑内土体挖出后,使地基的应力场和变形场发生变化,可能导致地基的失稳,例如地基的滑坡、坑底隆起及涌砂等。所以在进行支护设计时,需要验算基坑稳定性,必要时应采取一定的防范措施使地基的稳定性具有一定的安全度。基坑的稳定性验算主要包括边坡的稳定性验算、基坑的抗渗流验算、基坑抗承压水验算和基坑抗隆起验算。

本次验算采用Caguot 验算基坑稳定公式计算。Caguot 等人认为坑底土沿支护结构底水平面以下的曲线滑动,致使基底隆起。如以支护结构底的水平面为

基准面,非开挖侧面上的竖向应力1q h t q γ=++(),开挖侧面上的竖向应力2q t γ=,根据滑动线理论,可推得:

?πγγtg p e tK q t h =++)(

由此可得入土深度t 的计算公式为:

γ

γγ?

π-+=

tg p e K q

h t 式中:t ——使坑底不隆起失稳需要的支护结构入土深度(m );

γ——非开挖侧土的重度、开挖侧基坑底以下土的重度(kN/m 3); h ——基坑开挖深度(m );

q ——地面均布荷载(kN/m 2),取q=20kN/m 2; φ——基坑地基土内摩擦角(°); K p ——被动土压力系数。

将数据代入计算公式得:

5.317.05 4.7209.6917.05 1.2017.05

tg tg p h q t m K e e

πφπγγγ

+?+=

=

=-?-o

板桩的实际入土深度0t t ≥,满足要求。 2.1.4钢板桩及内支撑结构验算

1) 钢板桩验算

的最大弯矩:max 340.5M kN m =g

[]6

3

340.510167.2203710

M MPa W σσ?===

根据等值梁法,选取最不利工况下,第二层围檩处支撑反力

T 2=476.4kN/m ,即为作用在围檩上的均布荷载,横向围檩建模平面如下:

图2-2-4 围檩及内支撑模型图

得到弯矩图、应力图如下

图2-2-5 弯矩图

图2-2-6 应力图

[]192.5M

MPa W

σσ=

=< 故围檩及内撑需采用采用2HW400×400,满足受力要求。

2.2 #54墩钢板桩支护验算

水中基坑支护选取最不利的#54墩进行计算,示意图如下。

表2-2-1 土层参数表

2.2.1悬臂端允许最大跨度

按照等弯矩布置确定各层支撑的间距,根据拉森Ⅳ型钢板桩承受的最大弯矩确定板桩顶悬臂端的最大允许跨度:

h 295cm 2.95m == 实际悬臂长度h 0

结构所受的侧面压力,在河床以上的范围内为静水压力,在河床以下至封底混凝土底面以上的范围内为静水压力以及主动土压力之和。

其中静水压力为三角形荷载:1a P gH ρ=,1H 为距离水面的高度; 根据《甬台温高速公路复线-温州灵昆至阁巷段工程第4合同段施工图设计

根据肯朗土压力理论,主动土压力系数为:2tan (45)2a K φ

=-o ,围堰开挖

范围内的土质为淤泥质土,根据地勘报告,内摩擦角加权平均后,取值为3.3°。

则2

3.3tan (45)0.8912

a K =-=o

o

。 主动土压力为:'1a a P K H γ=。

土的饱和容重为:'3117.64/KN m γ=。

被动土压力系数:22 3.3

tan (45)tan (45) 1.1222

p K φ=+=+

=o o 表2-1 #

1. 盾恩近似法

'2111

()()22

w i p a H h t K K t γγ+=- 即:'21()0p a w w i K K t Ht Hh γγγ---=

217.64(1.120.891)10 3.810 3.8 1.30t t ?--??-??=

解得入土深度t=10.56m

故钢板桩的总长度至少为L=10.56+3.8=14.36m 。 2. 等值梁法

1)计算反弯点位置,即利用钢板桩上土压力等于零的点作为反弯点位置,计算其离基坑底面的距离y ,在y 处钢板桩主动土压力强度等于被动土压力强度,即p a w P P P =+:

水压力:w w P H γ=? 主动土压力:'1a a P K y γ= 被动土压力:'1p p P KK y γ=

'2'2211111

222

p a w KK y K y H γγγ=+?

式中K-被动土压力修正系数,取1.2 偏安全考虑,主动土压力常数项忽略不计。

'2117.64 1.2 1.11 3.9592.81/p p P KK y kN m γ==???= 1

183.302

p Ep P y kN =?= '2117.640.901 3.9562.78/a a P K y kN m γ==??=

1

123.992a Ea P y kN =?=

()11121

72.22Ew Pw h h kN =?+=

2221

3.22Ew Pw h kN =?=

0M ∑=

图2-2-3 等值梁法计算简图

37.3b Q kN =,1 5.0T kN =,245.2T kN =

2)由等值梁法可求算钢板桩的最小入土深度,设桩的反转点以下x 为最小入土深度所在高程,则0t y x =+,如桩端为一般的土质条件,应乘以系数:1~1.2即:112)(.t y x =+~,取0M ∑=

2

p a x

6b KK K Q =γ(-)

5.42x =

=

0 3.95 1.2 5.4310.47t m =+?=

故钢板桩的总长度至少为L=10.47+3.8=14.27m 。 综上,建议采用15m 钢板桩。 2.2.3基底抗隆起验算

在基坑开挖时,由于坑内土体挖出后,使地基的应力场和变形场发生变化,可能导致地基的失稳,例如地基的滑坡、坑底隆起及涌砂等。所以在进行

定性具有一定的安全度。

本次验算采用Caguot 验算基坑稳定公式计算。Caguot 等人认为坑底土沿支护结构底水平面以下的曲线滑动,致使基底隆起。如以支护结构底的水平面为

基准面,非开挖侧面上的竖向应力1q h t q γ=++(),开挖侧面上的竖向应力2q t γ=,根据滑动线理论,可推得:

?πγγtg p e tK q t h =++)(

由此可得入土深度t 的计算公式为:

γ

γγ?

π-+=

tg p e K q

h t 式中:t ——使坑底不隆起失稳需要的支护结构入土深度(m );

γ——非开挖侧土的重度、开挖侧基坑底以下土的重度(kN/m 3); h ——基坑开挖深度(m );

q ——地面均布荷载(kN/m 2),取q=20kN/m 2; φ——基坑地基土内摩擦角(°); K p ——被动土压力系数。

将数据代入计算公式得:

3.310

1.8417.64 1.1117.64

tg tg p h q t m

K e e

πφπγγγ

+=

=

=-?-o

板桩的实际入土深度0t t ≥,满足要求。 2.2.4抗管涌验算

根据不发生管涌条件:

'K j γ≥?

式中:w h 2t

w h j i γ'

?'?γ+==

K-抗管涌安全系数,取K =2.0

'γ-土的浮容重,'7.64/w kN m γγγ=-=17.64-10= j-最大渗流力(动水压力) i-水头梯度 t-排桩的入土深度

计算得: 3.8

10 1.57h 2t 3.8+10.52

w w j i h γγ'?=?='??==

+, 'K j γ≥?=3.14,故满足要求。

2.2.5 C30水下砼灌注厚度验算

根据计算建议现场采用15m 拉森钢板桩,为确保基坑内施工作业安全及工程质量,拟采用多层支撑及灌注C30水下砼加固措施来实现基坑稳定。

C30水下砼采用的物理性质指标为: 内摩擦角45φ=?,重度323.0kN m γ=。

计算水下砼灌注厚度仍采用“Caguot 验算基坑稳定公式”,即要求:

()tg p tK e h t q πφγγ≥++主被 由于此计算比较复杂,为方便计算,采用试算法。假设水下砼灌注厚度为d=0.5m ,则计算如下:

将数据代入计算公式得:

5.7

2

2

17.6410.2 1.12275.7/190/tg tg p tK e e kN m t q kN m

πφπγγ=??=+=被主>

式中φ为基坑支护墙底处的地基土内摩擦角。 则水下砼灌注厚度为d=0.5m 时,满足要求。 2.2.6钢板桩及内支撑结构验算

3) 钢板桩验算

假设板桩的最大弯矩截面在基坑底深度y=3.44m 处,求得每延米宽板桩墙的最大弯矩:max 52.86M kN m =g

[]6

3

52.861025.99203710

M MPa W σσ?===

根据等值梁法,选取最不利工况下,第二层围檩处支撑反力T 2=45.2kN/m ,即为作用在围檩上的均布荷载,横向围檩建模平面如下:

图2-2-4 围檩模型图

得到剪力、弯矩图如下

图2-2-5 剪力图

图2-2-6 弯矩图

图2-2-7 反力图

围檩弯矩M max =37.9k N?m ,剪力V max =134.6kN ;同时求得斜撑和对撑的支反力R 1=129.97KN ,R 2=262.5KN 。

[]38.1M

MPa W

σσ=

=< []28.1W

VS

MPa It ττ=

=< 故围檩采用HW400×400,满足受力要求。

斜撑和对撑轴力分别为R 1=129.97KN ,R 2=262.5KN ,

[]3

2

262.51011.96219.510

N MPa A σσ?===

钢板桩围堰计算书新(优质特享)

徒骇河大桥钢板桩围堰计算书 一、工程概况及围堰布置 本钢板桩围堰用于济石高铁禹齐徒骇河大桥水中墩的施工,徒骇河水流平缓的, 水深4米左右。河床为粉质粘土,承台基本标高和河床标高基本一致,施工时开挖至承台下1米,再进行1米的混凝土封底。钢板桩采用拉森IV型,钢板桩长15米。整个围堰采用三层围囹,围囹用八字型结构。型钢全采用140工字钢。按照从上至下抽水进行围囹的安装。围囹结构图如下: 胡板粧同務第一至三忌结构平面酌 二、基本参数 1、根据图纸提供的地质资料,河床以下土层为2.4m的粉土层,2.2m左右的粉质黏土层,3.2m左右的粉土层,6.3m的粉土。钢板桩入土到第四层的粉土层。根据规范,估取内摩擦角为25。,容重为18.5kN/m3,土层粘聚力C=15^,主动土压力系

n 数:32丿 ,被动土压力系数:P2) 二、钢板桩围堰受力验算 1.钢板桩计算: 1)I韦I堰结构:钢板桩桩顶设计标咼为+17.60米,钢板桩长度为15.0米,钢|韦| 堰平而尺寸为17.6X17.6米。围囹和支撐设置三道,自上而下进行安装。第一道围囹和支撑安装位于+14.90米,第二道围囹和支撑安装位于+11.9米,第三道围囹和支撑安装 位于8.9米,承台底标高+15.43米。(详见钢围堰平而图)钢板桩入河床10米左右。承台下进行1米的混凝土封底。 2)基本参数:动水压力计算: 每延米板桩截而而积A(cm2) 236.00 每延米板桩壁惯性矩I(cm4) 39600.00 每延米板桩抗弯模量W(cm3) 2037.00 p=K*H*V*EW2g2式中:p■每延米板壁上的动水压力总值,KN; H冰深,M; v-水 流平均速度,m/s;凸重力加速度(9.8m/s); b-板桩宽度(取1米);丫?水的容重,kn/m; k-系数(1.820)。 p= 1.9*4*0.5*1 * 11/2*9.82 =0.2 0.2KN动水压力可假设为作用在水面下1/3水深处的集中力,由于动水压力很小在计算过程中忽略不计。

钢板桩围堰设计计算书

钢板桩围堰设计计算书 1 工程概况 本方案陆地承台基坑开挖深度在3.0-5.0米之间,基坑开挖支护结构受力计算选择基坑最深、地质条件最差的最不利工况条件下进行受力计算。 本线路沿线地层以冲积、洪积、海积及海陆交互相沉积的粘性土、粉土、各类砂、软土为主,局部夹淤泥。 土层分层计算土压力,粘性土和粉土采用总应力法,即水土合算,强度指标采用快剪试验指标;对中、粗砂、碎石土,则应采用水土分算。 承台开挖高程范围内主要为人工填土、黏土、粉土,局部夹有淤泥质黏土,各土层已知条件:(1)人工填土:内摩擦角7?=?,粘聚力8kPa c =;(2)粘土:内摩擦角14?=?,粘聚力25kPa c =;(3)粉土:内摩擦角22?=?,粘聚力12kPa c =;(4)砂土:内摩擦角32?=?,粘聚力0kPa c =。土的天然重度γ取3 19kN/m 。非承压地下水位在地面下0.2~5.5处(承压水位不明)。 2 钢板桩围堰支撑结构受力计算 2.1钢板桩围堰 钢板桩围堰基坑开挖最大深度为5.0米,此类基坑承台最大高度为4.0米,设一道内支撑位于基坑底面以上3米,计算钢板桩围堰受力情况。 结合现场现有材料,拟采用WRU12a 钢板桩,其技术指标为:

单根钢板桩宽B=600mm,高H=360mm,厚t=9mm,每米截面积A=147.3cm2,单根钢板桩每米的重量69.5kg,每延米墙身每米的重量115.8kg,每延米墙身钢板桩惯性矩Ix=22213cm4,每延米的截面模量(抵抗矩)Wx=1234cm3,取钢板桩的允许拉应力σ=140Mpa,允许剪应力τ=80 Mpa。钢板桩长12m。由于钢板桩刚度较小,需加强内支撑。拟设置一道水平钢支撑,在距承台底面3.0m处设置,不设竖向支撑。水平钢支撑采用I40b型工字钢,沿钢板桩内壁设置长方形围檩,并在四角设置加强斜撑。 考虑施工堆载,假设基坑顶部(地面)作用有无限均布荷载q1=10kN/m2;在桩顶平台距离钢板桩桩顶2.0m处的坑外作用有宽度为0.6m的局部荷载(汽车荷载及其它荷载总和)q2=80kN/m2。 2.2计算作用于板桩上的土压力强度 依据《建筑基坑支护技术规程》(JGJ 120—99)第3.4~3.5节,计算土压力(水 平荷载及水平抗力)分布。土压力由四部 分组成:(1) 桩顶平台以下土自重引起; (2) 局部荷载(汽车荷载)q2=80kN/m2 引起;(3) 均布荷载q1=10kN/m2引起。 对人工填土、黏土及粉土地层,采 用水土和算法进行计算,在桩顶下2.0m 处设置一道内支撑,计算可得土压力分 布如右图所示。

钢板桩基坑支护计算书

钢板桩基坑支护计算书

一、结构计算依据 1、国家现行的建筑结构设计规范、规程行业标准以及广东省建筑行 业强制性标准规范、规程。

2、提供的地质勘察报告。 3、工程性质为管线构筑物,管道埋深4.8~4.7米。 4、本工程设计,抗震设防烈度为六度。 5、管顶地面荷载取值为:城-A级。 6、本工程地下水位最小埋深为2.0m。 7、本工程基坑计算采用理正深基坑支护结构计算软件。

二、基槽支护内支撑计算 (1)内支撑计算 内支撑采用25H 型钢 A=92.18cm 2 i x =10.8cm i y =6.29cm Ix=10800cm 4 Iy=3650cm 4 Wx=864cm 3 ] [126.11529 .6725][13.678 .10725λλλλ===<=== y y x i l i l x 查得 464 .0768 .0==y x ?? 内支撑N=468.80kN ,考虑自重作用,M x =8.04N ·m MPa f A N fy y 215][6.1091018.92464.01080.4682 3 =<=???=?=? MPa f Wx Mx A N fx x 215][05.5810 7.1361004.810117768.01080.4684 6 23=<=??+???=+?=?

(2)围檩计算 取第二道围檩计算,按2跨连续梁计算,采用30H 型钢 A=94.5cm 2 i x =13.1cm i y =7.49cm Ix=20500cm 4 Iy=6750cm 4 Wx=1370cm 3 [ 计算结果 ] 挡土侧支座负弯距为:M max =0.85×243.3kN·m=206.8kN·m,跨中弯矩为M max =183.4kN·m 支座处: MPa cm m kN Wx M 9.15013708.206max 13 =?==σ,考虑钢板桩结构自身的抗弯作用,可满足安全要求。 跨中:][87.13313704.183max 23 σσ<=?== MPa cm m kN Wx M 三、基槽支护工程计算书 支护结构受力计算 5.3米深支护计算

大桥钢板桩围堰设计及计算书

***大桥8#、9#墩承台钢板桩围堰设计计算书 1、工程概况 ***资水大桥是***至***公路工程中横跨资水的一座大桥,桥梁上部结构设计采用(6×30m)先简支后连续T梁+(58+95+95+58m)现浇变截面混凝土连续梁+(5×30m)先简支后连续T梁结构;主桥下部结构采用钢筋混凝土矩形门式桥墩,钻孔灌注桩基础,主墩墩身顺桥向宽为2.6m,横桥向为2个2.4m宽的墩柱,主墩承台厚度为3.5m,平面尺寸为11×9m,基桩采用直径Φ2.0m钻孔灌注桩。桥面宽度:2.5 m(人行道)+0.5m(路缘带)+10.75m(车行道)+0.5m(双黄线)+10.75m(车行道)+0.5m(路缘带)+2.5m(人行道)=28m,分两幅修建,桥梁中心桩号K5+873,桥梁全长为644m。 ***资水大桥设计洪水频率1/100,设计水位+179.4m,十年一遇洪水水位+172m,施工常水位+164m,近5年12月至4月最高水位+168m。8#、9#主墩基础位于资水河道内,主墩承台施工采用钢板桩围堰法,围堰考虑能满足在+168m 水位下施工。 2、计算依据 《钢结构设计规范》(GB50017-2014) 《简明深基坑工程设计施工手册》 《简明施工计算手册》 《***资水大桥施工图设计》 《***资水大桥工程地质纵断面》 《***资水大桥钻孔柱状图》 3、***资水大桥8#、9#墩钢板桩围堰检算 3.1围堰结构概况 8#、9#墩单个承台尺寸均为11m(横桥向)×9m(顺桥向)×3.5m(高度),下为4根Φ2.0m钻孔桩,桩基施工采用Φ2.4m钢护筒。承台施工采用钢板桩围堰法,钢板桩采用国产拉森Ⅳ型钢板桩,材质为SY295。 8#墩承台底标高为+161.498,顶标高为+164.998。钢板桩单根长度为9m,围堰平面尺寸为30×12m(考虑围堰四周各有1.5m操作及安装模板空间,双幅桥

拉森钢板桩围堰支护计算说明

拉森钢板桩支护计算单 一、 检算依据: 1、《建筑施工手册》 2、广雅大桥12#、16#墩地质图及广雅大桥钢板桩围堰施工方案 二、已知条件: 承台尺寸为(横桥向)×(纵桥向)× m ,开挖尺寸×,筑岛顶标高:495m ;常水位标高:+;承台顶标高:+;承台底标高:489m ;拟定开挖到基坑底后浇注一层的垫层,基坑底标高:。填土层厚米,下为卵石层。根据地质情况:取填土重度γ=m 3,内摩擦角φ=15o ,卵石重度γ= KN/m 3,内摩擦角φ=36o ,结合地质情况,采用拉森Ⅲ型钢板桩进行围堰施工。 三、计算: 按单层支撑和二层支撑两种情况进行检算 1、单层支护 1)、钢板桩围堰旁边的机械荷载取20KN/m 2, 且距离围堰距离为米。 钢板桩最小嵌入深度t ,由建筑施工手册 在米范围内取γ、φ的加权平均值: γ平均=(*+*)/= KN/m 3 φ平均=(15*+36*)/= 主动土压力系数:K a =-45Tan 2 (φ/2)=; 被动土压力系数:K p =+45Tan 2 ( φ/2)=。 基坑底面以下,支护结构设定弯矩零点位置距基坑底面的距离h :γ(H+h )K a =γKhK p h= K ——为被动土压力的修正系数,取。 2)、计算支点力米处:P 。=

基坑底钢板桩受力米处: 如图: 剪力图 弯矩图 最小嵌入深度t : t=。 t 。= h K -KK P 6a P 0 +?(γ= t=。= 已知外界荷载:q =Ka*30=m 2 求得最大弯矩M max =*m ,拉森Ⅲ型钢板桩截面模量W=1340cm 3,应力σ

=1000*1340=<175 Mpa满足要求。 2、多层支护 多层支护最小嵌入深度h:h=*h o =*n o *H=**= 第一层支撑设在+79m处,第二层支撑设在+处, 已知外界荷载: q=Ka*30=m2。 1)、工况一:当基坑开挖到第一层支撑+79m处时,相当于悬臂式支护结构,钢 板桩最大弯矩M max =*m,满足拉森钢板桩的承载要求,设立第一层支撑结构。2)、工况二:当基坑开挖到第二层支撑+77m处时,相当于单支点支护结构。支 点力T1=,钢板桩最大弯矩M max =*m 剪力图

钢板桩支护计算书

钢板桩支护计算书 以开挖深度3.5米和宽度1.1米为准计算一设计资料 1桩顶高程H: 1.900m 施工水位H2: 1.600m 管道沟槽支护方式二(适用于深度5- 5_ 空吕米) 2 地面标高H): 2.40m 开挖底面标咼H3:-1.100m 开挖深度H: 3.500m 3 土的容重加全平均值丫1:18.3KN/m? 原地面 来 O S AVI -HI V

土浮容重丫’ :10.0KN/m3 内摩擦角加全平均值①:20.10 ° 2 4 均布荷q:20.0KN/m2 5 每段基坑开挖长a=10.0m 基坑开挖宽b=1.1m 二外力计算 1 作用于板桩上的土压力强度及压力分布图 k a二tg2(45 ° - ? /2)=tg 2(45-20.10/2)=0.49 22 k p=tg 2(45° +? /2)=tg 2(45+20.10/2)=2.05 板桩外侧均布荷载换算填土高度h, h=q/r=20.0/18.3=1.09m 桩顶以上土压力强度Pa1 Pa i=r x( h+0.25)Ka=18.3 x (1.09+0.25) x 0.49=12.0KN/m2水位土压力强度Pa2 Pa 2=r x (h+3.5 -3.00 )Ka 2 =18. 3 x(1.09+3.5 -3.00 ) x 0.49=14.3KN/m2 开挖面土压力强度Pa3 Pa 3=[r x (h+3.5 -3.00 )+(r-rw)(3.00 +3.40)}Ka =[18.3 x (1.09+3.6 -3.00 )+(18.3-10) x (3.00 2 +3.40)] x 0.49=40.28KN/m2 三确定内支撑层数及间距 按等弯距布置确定各层支撑的30#B型钢板桩 能承受的最大弯距确定板桩顶悬臂端的最大允许跨度h:

基坑支护(钢板桩)设计及计算书

目录 1 计算依据 (1) 2 工程概况 (1) 3 地质情况 (1) 4 设计施工方案概述 (1) 5 围堰结构计算 (2) 5.1 设计计算参数 (2) 5.1.1材料设计指标 (2) 5.1.2单元内支撑支撑刚度计算 (3) 5.1.3单元内支撑材料抗力计算 (3) 5.1.4 设计安全等级 (4) 5.2 拉森钢板桩封闭支护结构设计分析 (4) 5.2.1 开挖过程结构分析 (4) 5.2.2 拉森钢板桩单元计算分析结果 (4) 5.2.3 内支撑应力和变形计算 (18) 5.2.4支护结构强度验算 (19) 5.2.4 支撑型钢强度、稳定性验算 (23)

基坑拉森钢板桩围堰设计及计算书 1 计算依据 1.2 《特大桥承台基坑拉森钢板桩围堰设计图》; 1.3 《建筑施工计算手册》; 1.4 《钢结构设计规范》(GB500017-2003); 1.5 《理正深基坑软件7.0版》; 1.6 《基坑工程设计规程》(DBJ08-61-97) 1.7 《建筑基坑支护技术规程》(JGJ120-2012) 1.8 《建筑基坑工程技术规范》(YB9258-97) 2 工程概况 桥址处为荒地、民房,地势平坦,交通便利。根据现场调查,特大桥1#承台施工为最不利基坑,承台尺寸为4.85×5.7×2m,开挖后深度4.209m。 3 地质情况 根据工程地质勘测报告,承台处的地质情况如表1。 表3-1 承台地质情况 取样 编号厚度(m)名称 重度 (kN/m3) 粘聚力 (Kpa) 摩擦角(。) 侧摩阻力 (Kpa) 1 1.25 杂填土17.7 11.00 7.20 30.0 2 4.25 淤泥质土17. 3 13.00 6.00 22.0 3 6.20 粉砂18.0 45.00 --- 40.0 4 4.60 粘性土19.8 49.00 --- 65.0 5 21.60 粉砂19. 6 47.00 --- 70.0 4 设计施工方案概述 使用9m拉森Ⅳ钢板桩对基坑进行封闭支护,钢围檩设于承台顶标高以上1.509m,钢板桩顶往下1m处,围檩采用H400×400×13×21mm型钢,围檩长边下方设置不少于3个牛腿,上方采用直径8mm钢丝绳兜吊在拉伸钢板桩上,斜角撑采用H400×400×13×21mm型钢,斜撑两端与围檩型钢焊接牢固。基坑尺寸控制原则为自承台外轮廓外扩1.2m,为保证承台模板与钢筋的顺利施工,围檩斜角撑的位置应避免阻碍模板与钢筋的吊装施工。

钢板桩围堰计算书

津石高速公路(海滨大道-荣乌高速)工程第八标段围堰结构 检算报告 中铁四局集团有限公司设计研究院 2019年4月

津石高速公路(海滨大道-荣乌高速)工程第八标段围堰结构 检算报告 计算: 复核: 审核: 中铁四局集团有限公司设计研究院 建筑行业甲级铁道行业甲(Ⅱ)级市政行业甲级 二〇一九年四月

目录 一、项目概况 (1) 二、水文地质条件 (1) 三、计算依据 (3) 四、材料参数 (4) 五、围堰工况介绍 (4) 六、围堰计算 (5) 1、外侧围堰计算 (5) 2、内侧围堰计算 (12) 七、结论及建议 (18) 1、结论 (18) 2、注意事项 (19)

一、项目概况 津石高速公路是连接南部港区通往石家庄方向的重要通道,路线主线起自滨海新区南港工业区桩号K0+000,接已建的海滨大道及南港工业区港北路,经大港电厂南、东台子,止于西青区小张庄附近,接已建的津石高速和长深高速共线段桩号K36+500,全长约31.3公里。全线在南港工业区、大港油田、东台子、小张庄4处设置互通式立交。 本标段起点桩号为K29+730,路线沿独流减河北堤后侧台布设,跨越长深高速并设置小张庄互通立交,终点桩号为K31+150,路线长1420m。 本互通立交主线设计速度采用100Km/h,A、B、E、F匝道设计速度采用60Km/h,C、D匝道设计速度采用40 Km/h;主线为双向四车道,标准路基宽度27.5m;B、E匝道为单向单车道,标准路基宽度9m;A、C、D、F匝道为单向双车道,标准路基宽度10.5m。 其中A、F匝道位于独流减河河道中,河道水位标高为2.8m,本工程中钢板桩围堰是为了阻隔河水,以进行项目施工。 本工程钢板桩围堰位于独流减河中河水深度1m~5.2m,围堰采用12m双排钢板桩从河岸打设到河中央滩涂位置,上游、下游各打设一道,上、下游距离272m,每道长度360m,每道采用间距为4m的双排钢板桩形式,两排钢板桩中间抽2.5m水,保持内、外侧钢板桩水位差,确保钢板桩稳定。双排钢板桩围堰示意图见图1-1。 河面 内侧外侧 图1-1 双排钢板桩围堰示意图 二、水文地质条件

6m拉森钢板桩计算书2

6m拉森钢板桩支护计算书 ---------------------------------------------------------------------- [ 支护方案 ] ---------------------------------------------------------------------- 排桩支护 ---------------------------------------------------------------------- [ 基本信息 ]

---------------------------------------------------------------------- [ 超载信息 ] ---------------------------------------------------------------------- [ 附加水平力信息 ] ---------------------------------------------------------------------- [ 土层信息 ] ---------------------------------------------------------------------- [ 土层参数 ] ----------------------------------------------------------------------

[ 土压力模型及系数调整 ] ---------------------------------------------------------------------- 弹性法土压力模型: 经典法土压力模型: ---------------------------------------------------------------------- [ 工况信息 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 设计结果 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 结构计算 ] ---------------------------------------------------------------------- 各工况:

拉森钢板桩围堰支护计算说明

拉森钢板桩支护计算单 一、检算依据: 1、《建筑施工手册》 2、广雅大桥12#、16#墩地质图及广雅大桥钢板桩围堰施工方案 二、已知条件: 承台尺寸为(横桥向)×(纵桥向)× m,开挖尺寸×,筑岛顶标高:495m;常水位标高:+;承台顶标高:+;承台底标高:489m;拟定开挖到基坑底后浇注一层的垫层,基坑底标高:。填土层厚米,下为卵石层。根据地质情况:取填土重度γ=m3,内摩擦角φ=15o,卵石重度γ= KN/m3,内摩擦角φ=36o,结合地质情况,采用拉森Ⅲ型钢板桩进行围堰施工。 三、计算: 按单层支撑和二层支撑两种情况进行检算 1、单层支护 1)、钢板桩围堰旁边的机械荷载取20KN/m2, 且距离围堰距离为米。 钢板桩最小嵌入深度t,由建筑施工手册 在米范围内取γ、φ的加权平均值: γ 平均 =(*+*)/= KN/m3 φ 平均=(15*+36*)/=

主动土压力系数:K a =-45Tan 2(φ/2)=; 被动土压力系数:K p =+45Tan 2(φ/2)=。 基坑底面以下,支护结构设定弯矩零点位置距基坑底面的距离h :γ(H+h )K a =γKhK p h= K ——为被动土压力的修正系数,取。 2)、计算支点力米处:P 。= 基坑底钢板桩受力米处: 如图: 剪力图 弯矩图 最小嵌入深度t : t=。 t 。=h K -KK P 6a P 0+?(γ= t=。= 已知外界荷载:q =Ka*30=m2 求得最大弯矩M max =*m ,拉森Ⅲ型钢板桩截面模量W=1340cm 3,应力σ=1000*1340=<175

Mpa满足要求。 2、多层支护 多层支护最小嵌入深度h:h=*h o =*n o *H=**= 第一层支撑设在+79m处,第二层支撑设在+处, 已知外界荷载:q=Ka*30=m2。 1)、工况一:当基坑开挖到第一层支撑+79m处时,相当于悬臂式支护结构,钢板桩最大弯 矩M max =*m,满足拉森钢板桩的承载要求,设立第一层支撑结构。 2)、工况二:当基坑开挖到第二层支撑+77m处时,相当于单支点支护结构。支点力T1=, 钢板桩最大弯矩M max =*m 剪力图 弯矩图 满足要求,围檩施工完后可继续开挖。 3)、工况三:当基坑开挖到基坑底时,相当于多层支点支护结构 支点力T1=,T2=,基坑底部钢板桩受力T3=,钢板桩最大弯矩M max =50KN*m 剪力图 弯矩图 如图所示工况三维钢板桩受力最不利时: 钢板桩满足要求,可继续下一道工序。

钢板围堰计算书

目录 1设计资料 (1) 2钢板桩入土深度计算 (1) 2.1力计算 (1) 2.2入土深度计算 (2) 3钢板桩稳定性检算 (3) 3.1管涌检算 (3) 3.2基坑底部隆起验算 (4)

跨宁启特大桥跨高水河连续梁主墩承台 钢板桩围堰施工计算书 1设计资料 (1)钢板桩顶高程H1:8.5m ,汛期施工水位:8.0m 。 (2)河床标高H 0:1.63m ;基坑底标高H3:-7.958m ;开挖深度H :15.46m 。 (3)封底混凝土采用C30混凝土,封底厚度为1m 。 (3)坑、外土的天然容重加权平均值1r 、2r 均为:18.8KN/m 3;摩擦角加 权平均值 20=?;粘聚力C : 33KPa 0 5.02h ===。 (4)钢板桩采用国产拉森钢板桩,选用鞍IV 型(新)(见《施工计算手册》中国建筑工业P290页)钢板桩参数 A=98.70cm 2,W=2043cm 3,[]δ=200Mpa ,桩长21m 。 水压:210 6.3763.7/w w p h kN m γ=?=?= 河床位置处:21263.7217.5/w p p kN m =-=-?= 基坑底部:22117.518.8(1.637.638)191.74/a p p hK kN m γ=+=+?+= (5)围囹采用2I56工字钢,支撑采用Ф630螺旋钢管。 2计算资料 水压:210 6.3763.7/w w p h kN m γ=?=?= 0 5.02h === 河床位置处:21263.7217.5/w p p kN m =-=-?= 基坑底部:22117.518.8(1.637.638)191.74/a p p hK kN m γ=+=+?+=

钢板桩支护计算书

钢板桩支护计算书 Document number:PBGCG-0857-BTDO-0089-PTT1998

目录 1 计算依据 (1) 2 工程概况 (1) 3 结构设计 (1) 总体思路 (1) 钢板桩结构设计 (1) 4 材料主要参数及截面特性 (3) 5 计算结果 (3) 钢板桩计算 (4) 抗隆起验算 (5) 6 结论 (6)

仪征碧桂园地下车库钢板桩支护计算书 1 计算依据 ⑴《建筑施工计算手册》(中国建筑工业出版社) ⑵《土力学》(中国铁道出版社) ⑶《建筑力学》(中国建材工业出版社) 2 工程概况 仪征碧桂园一期工程位于仪征市天宁大道与文兴路交汇处西北隅,一期工程 主要由7栋32F(栋号为1~4#、7#、12#、13#)、5栋18F(栋号为5#、6#、 8#、10#、11#)住宅楼和4栋1~2F商业楼(栋号为8-1#、8-2#、10-1#、11- 1#)及1栋2F综合楼(栋号为9#)组成(栋号均为勘查院编号),其中高层住 宅楼为框架剪力墙结构,综合楼和商业楼为框架结构。在高层住宅楼下部均设一层地下室。场地地面整平标高与场区南侧文兴路大致相平。 地质情况自上而下依次为:①2素填土,②1淤泥质粉质粘土,②4淤泥质粉质粘土夹粉砂,③1含淤泥质粉质粘土夹粉砂,④1强风化泥质粉砂岩,④2中风化泥质粉砂岩。 3 结构设计 总体思路 地下车库基坑开挖采用钢板桩支护,围堰平面设置为单排。靠市政道路侧钢板桩开挖深度为,采用12m/根长拉森Ⅳ型钢板桩,为阻挡围堰外雨水流入,钢板桩顶高出原地面,四周设置高的护栏。 钢板桩结构设计 靠市政道路侧钢板桩平面及立面设计见图、图。

拉森钢板桩支护方案计算书

桂林市西二环路道路建设工程排水管道 深基坑开挖施工方案计算书 一、工程概况 桂林市西二环路二合同段污水管道工程的起点K12+655,终点K17+748,埋设管道为聚氯乙烯双壁波纹管(Ф500)和钢筋砼管(Ф800),基础采用粗砂垫层,基础至管顶上50cm范围为粗砂回填,其上为级配碎石回填至路床;起点管道底部标高为,管道平均埋深为米左右,最深为米,地下水位较高,其中有局部里程段厚土层以下是流沙层,开挖时垮塌较严重,为防止开挖时坍塌事故发生,特制定该方案,施工范围为K12+655~K14+724段左侧污水管。 本段施工段地质为松散耕土、粉质粘土,地下水位高,遇水容易形成流砂。 二、方案计算依据 1、《桂林市西二环路道路建设工程(二期)施工图设计第三册(修改版-B)》(桂林市市政综合设计院)。 2、《市政排水管道工程及附属设施》(06MS201)。 3、《埋地聚乙烯排水管管道工程技术规程》(CECS164:2004)。 4、《钢结构施工计算手册》(中国建筑工业出版社)。 5、《简明施工计算手册》(中国建筑工业出版社)。 三、施工方案简述 1、钢板桩支护布置 钢板桩采用拉森ISP-Ⅳ型钢板桩,其长度为12米/根,每个施工段50m需260根钢板桩。根据施工段一般稳定水位154.0m和目前水位情况,取施工水位为154.00m。根据管沟开挖深度(),钢板桩支护设置1道型钢圈梁和支撑。以K14+100左侧排污管道钢板

桩支护为例,桩顶标高为157.83m,桩底标高为148.83m,依次穿越松散耕土→粉质粘土层。 2、钢板桩结构尺寸及截面参数 拉森ISP-Ⅳ型钢板桩计算参数如下表所示: 四、计算假设 1、根据设计图纸中地勘资料提供的土层描述,本计算中土层参数按经验取值如下(K14+100钢板桩支护处): 则计算取值:γ=18 KN/m3 ,φ=150,c=10 KPa 。 2、支护计算水位按154.00m考虑。 3、计算时按照支护周边均为土体进行计算,不考虑空隙水压力及土体浮容重,同时不扣减由土体粘聚力与钢板桩之间产生的摩擦力。 五、钢板桩围堰计算 1、内力计算

桥梁钢板桩围堰专项施工方案(含cad图)-secret

XX大桥钢板桩围堰专项施工方案 因工期需要,本项目主墩承台采用钢板桩围堰,现7#、8#右幅钢板桩围堰已施工完成,左幅采用右幅方式,9#采用左右幅一起围堰,中间分隔。原设计采用钢套箱,其从制作到安装施工周期单个为1个月以上,并且封底较困难,而钢板桩施工周期单个为1周左右,其封底较简单,施工安全保障。围堰尺寸定为:单个主墩为10.5m×10.5m,钢板桩选用德国拉森Ⅳ型,采用长度为12m的钢板桩。 1、桥梁桩基、承台的相关参数: 7#、8#、9#墩共计设计有24根直径为1.8m、桩长为58m的钻孔灌注桩。桩基标高参数为:7#主墩桩顶56.178m、桩底-1.822m,8#主墩桩顶55.905m、-2.095m,9#主墩桩顶56.295m、桩底-1.705m。 7#、8#、9#墩设计承台6个、每个承台基础为4根桩。左右幅承台尺寸为均为7.5m×7.5m×3m。 2、地质资料情况介绍 经勘察查明,桥位区未见威胁桥梁安全的不良地质现象,地势开阔、平坦,地层分布简单,工程地质条件较好(详见地质勘察报告)。 3、钢板桩围堰简介 根据河床地质和水文情况及施工要求,初步确定围堰尺寸为10.5m×10.5m。钢板桩为宽0.4m 的拉森IV型。钢板桩入土部分为粉质粘土层,入土深度为承台设计标高底下5m。其内支撑7#墩-9# 型钢,第2层围囹斜撑均采用2Hw400×400H 墩均设置2道(详见另附图),第1层围囹斜撑均采用2I 40a 型钢支撑,节点采用焊接(施工中严格执行钢结构施工规范)。 4、钢板桩的设计 7#墩-9#墩围堰尺寸相同,且内支撑材料形式一样,受力情况基本一致,均采用砼封底,因8#墩水位较深,故可只分析验算其中受力复杂的8#墩围堰受力情况即可。 (1)、平面几何尺寸的确定 主墩承台的几何尺寸为7.5m×7.5m,左右幅承台间距为4.5m,考虑到施工需要,主要体现在围堰打设方便、承台模板安装的作业空间,以及施工期间围堰内的抽水、集水井设置等因素,最后确定围堰的打设平面几何尺寸为10m×10m。这样,围堰距离承台砼边的距离为1.25m,满足施工需要。 (2)、钢板桩长度、入土深度确定 根据望虞河现场的施工条件,结合水深、水流速度、桥位处地质情况、钢板桩的施工工艺等因素综合考虑、均采用长度为12m的钢板桩。

钢板桩围堰设计

根据钢板桩围堰的实际受力状况建立力学模型。通过理论计算确定钢板桩围堰的实际受力,并通过实际施工情况验证该方法的可行性。比规范中采用的经验算法具有更高的精确性和安全性,能够更好的满足工程施工需要。 关键词:钢板桩围堰;设计;施工 目前,对于钢板桩围堰的设计主要是沿用《公路桥涵施工手册》和教科书中的经验算法。由于经验算法带有很大的近似性,并不一定能够真实反映钢板桩围堰的实际受力状况,有时会出现较大的偏差,给围堰的使用带来很多不安全因素。笔者在洪泽苏北灌溉总渠大桥施工中,为避免出现较大的变形,在对钢板桩围堰设计时采用了理论算法。经实践检验,理论算法能够较为精确的反映围堰的实际受力状况,对于合理设置内支撑和减小封底厚度起到 了重要的保证作用。 下面就钢板桩围堰的设计与施工做详细论述: 1 已知条件 1.1 承台尺寸:10.3m(横桥向)×6.4m(纵桥向) ×2.5m(高度),底部设计有10.7×6.8m×1.0m的封底砼。 1.2 承台及河床高程 承台顶面设计高程为h=5.0m,河床底高程为5.5m,河床淤集深度约为30cm。 1.3 水位情况 正常水位:h常=10.8m(此时水深5.3m),最高水位hmax =11.5m(水深6.0m),围堰设计时按最高水位考虑。 1.4 水流速度 因该桥位于水电站下游,水流较为湍急。设计时速V=1.0 m/s,不考虑流速沿水深方向的变化,则动水压力为: P=10KHV2×B×D/2g=53.2KN 式中:P-每延米板桩壁上的动水压力的总值(KN); H-水深(米); V-水流速度(1.0m/s); g-重力加速度(9.8m/s2); B-钢板桩围堰的计算宽度,B=10m; D-水的密度(10KN/m3); K-系数,(槽形钢板桩围堰K=1.8~2.0,此处取1.8)。(参照《公路施工手册》,假定此力平均作用于钢板桩围堰的迎水面一侧。) 1.5 河床水文地质条件 河床土质良好,多为粘土、亚粘土,局部有亚砂土,承载力较强。围堰基底至河床部分土质为粘土(层厚约2m)、亚砂土(硬塑状态,很湿,层间无承压水,层厚约为1m)。 2 拟定方案 结合河床地质情况及施工要求,拟采用日本产钢板桩进行围堰施工,长度为15m,宽度为40cm,厚度为18cm。 围堰顶面标高拟定为12.5m,高出最高水位1.0m。围堰设计图3,所有内围囹均采用56b工字钢制作,节点采用焊接(施工中严格执行钢结构施工规范)。为确保整个围囹的刚度和稳定性,对每层中间一道工字钢上面加焊型钢并将上下四道工字刚用25#槽钢焊接连接。在施工期间安排专人值班以防吊物 碰撞。

钢板桩围堰设计与计算

船台及驳岸施工围堰设计与计算 1、工程概况 浙江舟山市六横岛位于舟山群岛的南部海域,在虾峙门国际航道 的西南侧,是舟山市的第三大岛,为舟山市重点扶持的三大岛之一, 占地约106。8 平方公里。厂址区域四周由穿山半岛和舟山群岛所环 抱,形成一个近封闭水域。本工程位于厂内八号、九号码头之间。 工程范围: 1. 船台二座:船台长250m,宽45m,水下段长60m,滑道坡度1:20,滑道底标高-3 。00m,顶标高12。40m; 2. 陆域独立吊车道: 600T 龙门起重机轨道一组:2x437m; 150T 门机轨道三组:6x303m; 3. 直立驳岸约230m。 为了确保船台及驳岸的干地施工,须在外海侧顺堤设围堰,从而 确保工程进度。本工程工作量大,施工时间相对较紧,施工工期:2008 年1 月1 日~6 月30 日,共 6 个月。 2、自然条件 2.1 水文资料 设计水位: 设计高水位:2.14m

设计低水位:-2.60m 下水水位:1.50m 2.2 地质资料 场地内地质构造活动较稳定,未见新构造运动及活动断裂,不存 在液化土层,故属基本稳定区。根据工程地质勘察报告,场地地层自 上而下分为:① 1 层杂色填土,为新近人工回填而成;① 2 层淤泥、② 1 层灰色淤泥质粉质粘土、④层粘土为软弱场地土;③1 层暗绿~灰黄色粉质粘土、⑤ 1 浅黄~灰绿色粉质粘土及⑤ 2 层粉质粘土夹砂砾、碎石为中硬场地土,⑥层强风化晶屑凝灰岩、⑦层中等风化晶屑凝灰岩为 坚硬场地土。 由于拟建场地20.0m 深度范围内无饱和砂性土及粉土存在,本场 地为不液化场地。场地内分布有较厚的软弱土。该区域由于拟建场地 周围无污染源存在,对钢结构具中等腐蚀性。 本次设计钢板桩插入② 1 层灰色淤泥质粉质粘土土层中,淤泥质粉质粘土的物力力学性质指标为:含水率42.6%,比重 2.74,重度3,固快粘聚力13.34kPa、内摩察角 12.5。17.4kN/m 其余参数详见地质勘探报告。 3、围堰方案比选 围堰是用于围护水工建筑施工场地的临时挡水建筑物。围堰具有不同于一般建筑物的施工和运行特点。其合理的结构应是断面简单、构筑和拆除方便,满足稳定、防冲蚀、防渗漏的要求。既不可以永久建筑物对待,又不可掉以轻心、马虎从事。

钢板桩支护计算书(00002)

钢板桩支护计算书

1#~10#雨水检查井钢板桩支护 设计计算书

\ 1#~10#雨水检查井钢板桩支护 设计计算书 计算: 复核: 审核:

审定: 目录 1.计算说明 (1) 1.1 概况 (1) 1.2 计算内容 (1) 2.计算依据 (1) 3.参数选取及荷载计算 (1)

3.1 支护平面布置 (1) 3.2 板桩、圈梁截面 (1) 3.3 计算荷载参数 (2) 3.4 材料容许用力值 (3) 4.主要结构计算及结果 (4) 4.1 计算模型 (4) 4.2 计算工况说明 (4) 4.3 钢板桩的计算及结果 (4) 4.4 圈梁的计算及结果 (7) 5.结论及建议 (9)

1.计算说明 1.1 概况 陇海快速路―中州大道互通式立交上跨陇海铁路立交桥工程位于河南省郑州市中州大道与陇海铁路交汇处,桥位处既有5+2×16+5m四孔分离式箱桥,与陇海铁路下行线交叉点里程:K561+246,在既有箱桥两侧新建中州大道互通式立交上跨陇海铁路立交桥,本桥为双幅桥,主线桥桥面宽26.75m。根据总体布置,原下穿立交雨水泵房和检查井受新设桥墩影响,需要拆除迁建。 1#-4#为矩形混凝土雨水检查井,最大平面尺寸为2.1×1.9m,5#-10#为圆形混凝土雨水检查井,平面尺寸为φ2.2m,所有检查井最大深度h=4.2m,井内壁均需做防水处理。检查井开挖范围内,土层以细砂、粉土为主,拟采用钢板桩支护辅助施工。钢板桩使用SKSP-Ⅳ型板桩,长度为9m,支护设置一层圈梁。 1.2 计算内容 采用容许应力法和有限元法对支护施工过程中的各工况进行计算,计算内容包括钢板桩、圈梁等的强度、刚度。 2.计算依据 《钢结构设计规范》(GB 50017-2003) 《公路桥涵地基与基础设计规范》(JTG D63-2007) 《建筑基坑工程监测技术规范》(GB 50497-2009) 《基坑工程手册》中国建筑出版社刘国斌王卫东主编 《陇海快速路-中州大道互通式立交上跨陇海铁路立交桥工程第四册给排水工程》(中铁工程设计咨询集团有限公司) 《陇海快速路-中州大道互通式立交上跨陇海铁路立交桥工程岩土工程勘察报告》 项目部提供的地质等相关资料 3.参数选取及荷载计算

钢板桩围堰计算单..

桂林南洲大桥P2主墩钢板桩围堰计算单 计算: 复核: 项目负责: 总工程师: 中铁大桥局集团二公司设计部 二〇〇五年一月

一、概况 桂林市南洲大桥位于桂林市叠彩区大沙乡境内,全长320m 。跨径组合为(50+87+144+39)m ,其中87m 和144m 为曲塔双索面斜拉桥,斜拉桥东西两侧各接50m 辅道孔和39m 过渡孔。斜拉桥采用塔梁固接扇形双索面结构形式,主跨采用钢砼叠合梁,边跨采用预应力砼梁。主墩下设两个相对独立的直径D=21m 的圆形承台,每个厚度为5m 。承台布置24根φ1.5m 钻孔桩和6根备用桩。承台底标高+141.0m ,顶标高+146.0m ,常水位+146.65m ,筑岛顶+147.8m 。 从技术、经济两方面考虑,P2主墩的承台施工采用SP-U400型钢板桩,其规格为: 宽度b=400mm ,高度h=1600mm ,腹板厚16.0mm ; 重量76.1kg/m ,每米惯性距34400cm 4,每米截面模量2150cm 3 二、设计计算 1、封底厚度(根据《简明施工计算手册》P339计算) 封底砼采用C20,设封底厚度为h 静水压力对封底砼形成的荷载 h h h p w 145.5624)0.14165.146(-=-+-=γ 按简支双向板进行计算m l 6.61=,m l 647.62=,99.0/21=l l 查表得0429.0=?, 21pl M ?=, h h M M 16.266.1056.6)145.56(0429.02max -=?-?== D bf KM h ct += 5.3 65.2=K , m D 35.0=,m b 1=, 2/1.1mm N f ct = m h 148.1= 取封底厚度为1.2m 。 基坑除土完毕后须检查坑底各处标高均不大于+139.8m ,各处封底砼均应保证1.2m 厚。 2、各工况钢板桩埋深及强度计算(根据《深基坑工程设计施工手册》计算)

水中墩承台钢板桩围堰计算书

南昌市绕城高速公路南外环A2标水中墩承台钢板桩围堰 (K16+609~K21+380) 计算书 中国建筑股份有限公司 南昌市绕城高速公路南外环A2标项目经理部 2014年10月

水中墩承台钢板桩围堰计算书 一、围堰布置及计算说明 1、水中墩承台施工采用筑岛开挖钢板桩围堰支护方案,水位标高为+18.0m,岛面标高为+18.5m 。 2、土层主要为淤泥和细砂,均为微透水层,采用水土合算。 3、地面荷载施工机具距离钢板桩边1.5-3.5m 时,按20KN/m 计算。 4、本钢板桩桩采用拉森Ⅳ型, 取1m 钢板桩宽度进行检算,截面模量为2200cm 3 ,容许弯曲应力采用210MPa 。 5、内支撑支锚刚度及材料抗力计算 内支撑采用工50b 型钢进行计算 2129,19.4,210000x A cm i cm E MPa === 支撑松弛系数取0.8 470/19.424.20.957λ?===, 材料抗力60.9570.012917010241974024197T N KN =????== 支锚刚度220.80.0129210000/4.71844/T K MN m =????= 6、钢板桩围堰布置图如下:

二、支护方案及基本信息 2.1、连续墙支护

2.2、基本信息 内力计算方法增量法 规范与规程《建筑基坑支护技术规程》 JGJ 120-99 基坑等级二级 基坑侧壁重要性系数 1.00 基坑深度H(m) 5.200 嵌固深度(m) 6.300 墙顶标高(m) 0.000 连续墙类型钢板桩 236.00 ├每延米板桩截面 面积A(cm2) ├每延米板桩壁惯 39600.00 性矩I(cm4) 400.00 └每延米板桩抗弯 模量W(cm3) 有无冠梁无 放坡级数0 超载个数 1 支护结构上的水平集 中力 2.3、超载信息 超载类型超载值作用深度作用宽度距坑边距形式长度 序号(kPa,kN/m) (m) (m) (m) (m) 1 20.000 --- --- --- --- --- 2.4、附加水平力信息 水平力作用类型水平力值作用深度是否参与是否参与 序号(kN) (m) 倾覆稳定整体稳定 2.5、土层信息 土层数 3 坑内加固土否 内侧降水最终深度(m) 5.200 外侧水位深度(m) 0.500 内侧水位是否随开挖过程变化是内侧水位距开挖面距离(m) 0.000 弹性计算方法按土层指定ㄨ弹性法计算方法m法2.6、土层参数 层号土类名称层厚重度浮重度粘聚力内摩擦角 (m) (kN/m3) (kN/m3) (kPa) (度) 1 淤泥质土 5.50 16.9 6.9 9.00 6.20 2 细砂 5.00 19.0 9.0 --- --- 3 砾砂10.00 19.0 9.0 --- ---

相关文档
最新文档