6-圆锥曲线中的轨迹方程(带答案)

6-圆锥曲线中的轨迹方程(带答案)
6-圆锥曲线中的轨迹方程(带答案)

6-圆锥曲线中的轨迹方程(带答案)

第六讲 求轨迹方程的六种常用技法

1.直接法

根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。

例1.已知线段6=AB ,直线BM AM ,相交于M ,且它们

的斜率之积是4

9,求点M 的轨迹方程。

练习:

1.平面内动点P 到点(10,0)F 的距离与到直线4x =的距离之比为2,则点P 的轨迹方程是 。

2l x 2

2

24x y +=交于A 、

B 两点,P 是l 上满足1PA PB ?=u u u r u u u r

的点,

求点P 的轨迹方程。

3. 到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是 ( )

A .直线

B .椭圆

C .抛物线

D .双

曲线 2.定义法

通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。

例2.若(8,0),(8,0)B C -为ABC ?的两顶点,AC 和AB 两边上的

中线长之和是30,则ABC ?的重心轨迹方程是_______________。

练习:

4

.方程|2|x y ++表示的曲线是 ( ) A .双曲线 C .线段

D .抛物线

3.点差法

圆锥曲线中与弦的中点有关的问题可用点差法,其基本方法是把弦的两端点1

1

2

2

(,),(,)A x y B x y 的坐标代入圆锥曲

线方程,然而相减,利用平方差公式可得1

2

x x +,

1

2

y y +,1

2

x x -,1

2

y y -等关系式,由于弦AB 的中点(,)P x y 的坐标满足1

2

2x x x =+,

1

2

2y y y =+且直线AB 的斜率为21

2

1

y y

x x

--,由此可求得弦AB 中点的轨迹方程。

例3.椭圆

22

142

x y +=中,过(1,1)P 的弦恰被P 点平分,则该

弦所在直线方程为_________________。

练习:

5.已知以(2,2)P 为圆心的圆与椭圆2

2

2x y m +=交于A 、B 两点,求弦AB 的中点M 的轨迹方程。

6.已知双曲线

2

2

1

2

y x -=,过点(1,1)P 能否作一条直线l 与

双曲线交于,A B 两点,使P 为线段AB 的中点?

4.转移法

转移法求曲线方程时一般有两个动点,一个是主动的,另一个是次动的。

当题目中的条件同时具有以下特征时,一般可以用转移法求其轨迹方程:

①某个动点P 在已知方程的曲线上移动; ②另一个动点M 随P 的变化而变化;

③在变化过程中P 和M 满足一定的规律。

例4. 已知P 是以1

2

,F F 为焦点的双曲线

22

1169

x y -=上的动

点,求12

F F P ?的重心

G 的轨迹方程。

练习:

7.已知(1,0),(1,4)A B -,在平面上动点Q 满足4QA QB ?=u u u r u u u r

,点P

是点Q 关于直线2(4)y x =-的对称点,求动点P 的轨迹方程。

5.参数法

求曲线的轨迹方程是解析几何的两个基本问题之一,求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,通过“坐标互化”将其转化为寻

求变量间的关系。在确定了轨迹方程之后,有时题目会就方程中的参数进行讨论;参数取值的变化使方程表示不同的曲线;参数取值的不同使其与其他曲线的位置关系不同;参数取值的变化引起另外某些变量的取值范围的变化等等。

例6.过点(2,0)M -作直线l 交双曲线2

2

1x y -=于A 、B 两点,已知OP OA OB =+u u u r u u u r u u u r

(1)求点P 的轨迹方程,并说明轨迹是什么曲线;

(2)是否存在这样的直线l ,使OAPB 矩形?若

存在,求出l 的方程;若不存在,说明理由。

练习:

8.设椭圆方程为

1

4

2

2

=+y x ,过点(0,1)M 的直线l 交椭圆于

点A 、B ,O 是坐标原点,点P 满足)(21

OB OA OP +=,点N 的坐标为)2

1,21(,当l 绕点M 旋转时,求: (1)动点P 的轨迹方程; (2)||NP 的最小值与最大值。 9.设点A 和B 为抛物线2

4(0)y px p =>上原点O 以外的两个动点,且OA OB ⊥,过O 作OM AB ⊥于M ,求点M 的轨迹方程。

6.交轨法

若动点是两曲线的交点,可以通过这两曲线的方程直接求出交点的方程,也可以解方程组先求出交点的参数方程,再化为普通方程。

例7.已知MN 是椭圆

122

22=+b

y a x 中垂直于长轴的动弦,A 、

B

是椭圆长轴的两个端点,求直线MA 和NB 的

交点P 的轨迹方程。

练习:

10.两条直线01=++y ax 和)1(01±≠=--a ay x 的交点的轨迹方程是___ ______。

总结归纳

1.要注意有的轨迹问题包含一定隐含条件,也就是曲线上点的坐标的取值范围.由曲线和方程的概念可知,在求曲线方程时一定要注意它的“完备性”和“纯粹性”,即轨迹若是曲线的一部分,应对方程注明x 的取值范围,或同时注明,x y 的取值范围。

2.“轨迹”与“轨迹方程”既有区别又有联系,求“轨迹”时首先要求出“轨迹方程”,然后再说明方程的轨迹图形,最后“补漏”和“去掉增多”的点,若轨迹有不同的情况,应分别讨论,以保证它的完整性。

练习参考答案

1.

22

(2)11648

x y --=

2.解:设P 点的坐标为(,)x y ,则由方程2

2

24

x

y +=,得

2

42

x y -=±

由于直线l 与椭圆交于两点A 、B ,故22x -<< 即A 、B 两点的坐标分别为22

44(,),(,)

22

x x A x B x ---

22

44(0,),(0,)

22

x x PA y PB y --=-=--u u u r u u u r

由题知1

PA PB ?=u u u r u u u r 即

22

44(0,)(0,)1

22

x x y y ---?--=

2

2

41

2

x y --=即2226

x y +=所以点

P

的轨迹方程为

22

1(22)63

x y x +=-<<

3.D 【解析】在长方体11

1

1

ABCD A B C D -中建立如图所示的空间直角坐标系,易知直线AD 与1

1D C 是异面垂直的两条直线,过直线AD 与1

1

D C 平行的平面是面ABCD ,设在平面ABCD 内动点(,)M x y 满足到直线AD 与1

1

D C 的距离相等,作1

MM MP =于1

M ,MN CD ⊥于N ,1

1

NP D C ⊥于P ,连结MP ,易知MN ⊥平面

1

1

1

,CDD C MP D C ⊥,则有1

MM MP =,2

2

2

||y x a =+(其中a 是异面直线AD 与1

1

D C 间的距离),即有2

2

2

y x a -=,因此动点M 的轨迹是双曲线,选D.

4.A

5.解 设(,)M x y ,1

1

2

2

(,),(,)A x y B x y

则1

2

122,2x x

x y y y

+=+=,由

y x =+21221两式相减并同除以12

()x x -得

12121

2121122y y x x x

x x y y y -+=-=--+ , 而AB

k =

2

2

PM y k x -=

-, 又因为PM AB ⊥所以1

AB

PM k

k ?=-

12

122

x y y x --

?=-- 化简得点M 的轨迹方程240xy x y +-=

6.先用点差法求出210x y --=,但此时直线与双曲线并无交点,所以这样的直线不存在。中点弦问题,注意双曲线与椭圆的不同之处,椭圆不须对判别式进行检验,而双曲线必须进行检验。 7.解:设(,)Q x y ,则(1,),(1,4)QA x y QB x y =---=--u u u r u u u r 由4(1,)(1,4)4(1)(1)()(4)4QA QB x y x y x x y y ?=?---?--=?---+--=u u u r u u u r

即2

2

2

(2)3x y +-=

所以点Q 的轨迹是以(0,2)C 为圆心,以3为半径的圆。 ∵点P 是点Q 关于直线2(4)y x =-的对称点。 ∴动点P 的轨迹是一个以0

(,)C x y 为圆心,半径为3的圆,其中0

(,)C x y 是点(0,2)C 关于直线2(4)y x =-的对称点,即直线2(4)y x =-过0

CC 的中点,且与0

CC

垂直,于是有

00002

21020

2422

y x y x -??=-?-??

?++=?-??即

0000002408

21802

y x x y x y +-==??????

?-+==-????

故动点P 的轨迹方程为2

2

(8)(2)9x y -++=。

8.解:(1)解法一:直线l 过点(0,1)M ,设其斜率为k ,则l 的方程为1y kx =+

记),(1

1

y x A 、),,(2

2

y x B 由题设可得点A 、B 的坐标),(1

1

y x 、

),(2

2

y x 是方程组

??

?

??=++=1412

2y x kx y 的解 将

①代入②并化简得,0

32)4(22

=-++kx x k

,所以???

???

?

+=++-=+.48,42221221k y y k k x x 于是 ).44

,4()2,

2

(

)(2122212

1

k k k y y x

x ++-=++=+=

设点P 的坐标为),,(y x 则???

???

?+=+-=.44,422k y k k x 消去参数k 得0

422

=-+y y x

当k 不存在时, A 、B 中点为坐标原点(0,0),也满足方程③,所以点P 的轨迹方程为2

2

40x y y +-=

解法二:设点P 的坐标为),(y x ,因),(11y x A 、),(2

2y x B 在椭圆上,所以

,

14

2

121

=+y x ④

.

1422

22

=+y x ⑤

④—

)(4

12

2212221=-+-y y x x ,

.

0))((4

1

))((21212121=+-++-y y y y x x x x

当2

1

x x

≠时,有.0)(41

2

1212

121=--?+++x x y y y y x x

并且

???

?

??

?

?

?--=-+=+=.

1,2,22121212

1x x y y x y y y y x x x ⑦ 将⑦代入⑥并整理得

.

0422=-+y y x ⑧

当2

1

x x =时,点A 、B 的坐标为(0,2),(0,2)-,这时点P 的坐标为(0,0)

① ②

也满足⑧,所以点P 的轨迹方程为2

2

1()2111164

y x -+=

(2)解:由点P 的轨迹方程知2

116x

,即11

44

x -≤≤所以 12

7

)61(3441)21()21()21(||222222+

+-=-+-=-+-=x x x y x NP

故当41=x ,||NP 取得最小值,最小值为6

1

;41-=x 当时,||NP 取得最大值,

9.解法1 :(常规设参)设(,)M x y ,1

1

2

2

(,),(,)A x y B x y ,则

?????-=+-=??????????

??-=?---=?==x py

y y p y y x

y x x y y x y x y px

y px

y 42

12162

112121

1221124221421 (※)由

,,A M B

共线得

)

421(2141p y x y y p

y y -+=- 则2

12

12

1

4y y y y x y

y p y ++

+=把(※)代入上式得

y

px

y x y 42+

-=化简得M 的轨迹方程为2

240(0)

x

y px x +-=≠)

解法2: (变换方向) 设OA 的方程为(0)y kx k =≠,则OB

的方程为1y x k

=- 由

???==px

y kx

y 22

222(,)p p A k k

, 由

??

??

?

=-=px y x

k y 221 得2

(2,2)B pk pk -

所以直线AB 的方程为 2

(2)1k y x p k

=--①

因为OM AB ⊥,所以直线OM 的方程为2

1k y x

k

-=- ②

①×②即得M 的轨迹方程: 2

240(0)

x

y px x +-=≠

解法3: (转换观点) 视点M 为定点,令0

(,)M x y ,

由OM AB ⊥可得直线AB 的方程为0

00

()x y y x x y -=-

-, 与抛物线

24y px

=联立消去

y

222

00000

44()0py p y y x y x x +

-+=,设

1122(,),(,)

A x y

B x y ,则22

12

000

4()p y y

x y x =-

+ 又因为OA OB ⊥,所以2

1621p y y -=

故22

2

00

4()16p x

y p x -+=-即2200040

x

y px +-=所以M 点的轨迹方程为

2240(0)

x y px x +-=≠

10.)

0,0(022

≠≠=+-+y x y x y x

完整的圆锥曲线轨迹方程求法

圆锥曲线轨迹方程的解法 目录 一题多解 (2) 一.直接法 (3) 二. 相关点法 (6) 三. 几何法 (10) 四. 参数法 (12) 五. 交轨法 (14) 六. 定义法 (16)

一题多解 设圆C :(x -1)2+y 2=1,过原点O 作圆的任意弦OQ ,求所对弦的中点P 的轨迹方程。 一.直接法 设P (x,y ),OQ 是圆C 的一条弦,P 是OQ 的中点,则CP ⊥OQ ,x ≠0,设 OC 中点为M (0,21),则|MP |=21|OC |=21,得(x -21)2+y 2=41 (x ≠0),即点P 的 轨迹方程是(x -21)2+y 2=41 (0<x ≤1)。 二.定义法 ⊥⊥OPC =90°,⊥动点P 在以M (0,2 1 )为圆心,OC 为直径的圆(除去原点 O )上,|OC |=1,故P 点的轨迹方程为(x -21)2+y 2=41 (0<x ≤1) 三.相关点法 设P (x,y ),Q (x 1,y 1),其中x 1≠0, ⊥x 1=2x,y 1=2y ,而(x 1-1)2+y 2=1 ⊥(2x -1)2+2y 2=1,又x 1≠0, ⊥x ≠0,即(x -21)2+y 2=41 (0<x ≤1) 四.参数法 ①设动弦PQ 的方程为y=kx ,代入圆的方程(x -1)2+kx 2=1, 即(1+k 2)x 2-2x =0,⊥.12 221k x x +=+ 设点P (x,y ),则2 2211],1,0(112k k kx y k x x x +==∈+=+= 消去k 得(x - 21)2+y 2=4 1 (0<x ≤1) ②另解 设Q 点(1+cos θ,sin θ),其中cos θ≠-1,P (x,y ), 则,2sin ],1,0(2cos 1θθ=∈+= y x 消去θ得(x -21)2+y 2=4 1 (0<x ≤1)

圆锥曲线大题十个大招——轨迹问题

招式八:轨迹问题 轨迹法:1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法; 例1、已知直角坐标系中,点Q (2,0),圆C 的方程为122=+y x ,动点M 到圆C 的切线长与 MQ 的比等于常数)0(>λλ,求动点M 的轨迹。 【解析】设MN 切圆C 于N ,则2 2 2 ON MO MN -=。设),(y x M ,则 2 222)2(1y x y x +-=-+λ 化简得0)41(4))(1(2 2 2 2 2 =++-+-λλλx y x (1) 当1=λ时,方程为4 5 = x ,表示一条直线。 (2) 当1≠λ时,方程化为2 2 22 222) 1(31)12(-+=+--λλλλy x 表示一个圆。 ◎◎如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN ,(M N ,分别为切点),使得2PM PN =. 试建立适当的坐标系,并求动点P 的轨迹方程. 【解析】以12O O 的中点O 为原点,12O O 所在直线为x 轴,建立如图所示的平面直角坐标系,则 1(20)O -,,2(20)O ,. 由已知2PM PN =,得222PM PN =. 因为两圆半径均为1,所以 22 1212(1)PO PO -=-. 设()P x y , ,则 2222(2)12[(2)1]x y x y ++-=-+-, y x Q M N O

即22(6)33x y -+=.(或221230x y x +-+=) 评析: 1、用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。 2、求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。 2.定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。 例2、已知动圆过定点,02p ?? ??? ,且与直线2p x =-相切,其中0p >.求动圆圆心C 的轨迹的方程; 【解析】如图,设M 为动圆圆心,,02p ?? ??? 为记为F ,过点M 作直线2p x =-的垂线, 垂足为N ,由题意知:MF MN = 即动点M 到定点F 与定直线2 p x =- 的距离相等, 由抛物线的定义知,点M 的轨迹为抛物线,其中,02p F ?? ??? 为焦点, 2 p x =- 为准线,所以轨迹方程为2 2(0)y px P =>; ◎◎ 已知圆O 的方程为 x 2+y 2=100,点A 的坐标为(-6,0),M 为圆O 上任一点,AM 的垂直平分线交OM 于点P ,求点P 的方程。 【解析】由中垂线知,PM PA =故10==+=+OM PO PM PO PA ,即P 点的轨迹为以A 、 O 为焦点的椭圆,中心为(-3,0),故P 点的方程为 12516 25)3(2 2=++y x ,02p ?? ??? 2 p x =-

圆锥曲线之动点轨迹方程

高考数学复习--日期: 圆锥曲线之动点轨迹方程: (1)求轨迹方程的步骤:建系、设点、列式、化简、确定点的范围; (2)求轨迹方程的常用方法: ①直接法:直接利用条件建立,x y 之间的关系(,)0F x y =; 已知动点P 到定点F(1,0)和直线3=x 的距离之和等于4,求P 的轨迹方程。 ②待定系数法:已知所求曲线的类型,求曲线方程――先根据条件设出所求曲线的方程,再由条件确定其待定系数。 线段AB 过x 轴正半轴上一点M (m ,0))0(>m ,端点A 、B 到x 轴距离之积为2m ,以x 轴为对称轴,过A 、O 、B 三点作抛物线,则此抛物线方程为 。 ③定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程; (1) 由动点P 向圆221x y +=作两条切线PA 、PB ,切点分别为A 、B ,∠APB=600,则动点P 的轨迹方程为 。 (2)点M 与点F(4,0)的距离比它到直线05=+x l :的距离小于1,则点M 的轨迹方程是 。 (3) 一动圆与两圆⊙M :122=+y x 和⊙N :012822=+-+x y x 都外切,则动圆圆心的轨迹为 。 ④代入转移法:动点(,)P x y 依赖于另一动点00(,)Q x y 的变化而变化,并且00(,)Q x y 又在某已知曲线上,则可先用,x y 的代数式表示00,x y ,再将00,x y 代入已知曲线得要求的轨迹方程; 动点P 是抛物线122+=x y 上任一点,定点为)1,0(-A ,点M 分?→ ?PA 所成的比为2,则M 的轨迹方程为 。 ⑤参数法:当动点(,)P x y 坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将,x y 均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程)。 (1)AB 是圆O 的直径,且|AB|=2a ,M 为圆上一动点,作MN ⊥AB ,垂足为N ,在OM 上取点P ,使||||OP MN =,求点P 的轨迹。 (2)若点),(11y x P 在圆122=+y x 上运动,则点),(1111y x y x Q +的轨迹方程是 。 (3)过抛物线y x 42=的焦点F 作直线l 交抛物线于A 、B 两点,则弦AB 的中点M 的轨迹方程是 。

圆锥曲线轨迹方程经典例题

轨迹方程经典例题 一、轨迹为圆: 1、 长为2a 的线段的两个端点在x 轴和y 轴上移动,求线段AB 的中点M 的轨迹方程: 已知M 与两个定点(0,0),A (3,0)的距离之比为 2 1 ,求点M 的轨迹方程; 2、 线段AB 的端点B 的坐标是(4,3),端点A 在圆1)1(22=++y x 上运动,求AB 的中点M 的轨迹。 (2013新课标2卷文20)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为32。 (1)求圆心的P 的轨迹方程; (2)若P 点到直线x y =的距离为 2 2 ,求圆P 的方程。 3如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 4在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围. 5(2013陕西卷理20)已知动圆过定点)0,4(A ,且在y 轴上截得弦MN 的长为8. (1) 求动圆圆心的轨迹C 的方程; (2) 已知点)0,1(-B ,设不垂直于x 轴的直线l 与轨迹C 交于不同的两点Q P ,,若x 轴是PBQ ∠的角平分线,证明 直线l 过定点。 二、椭圆类型: 3、 定义法:点M(x ,y )与定点F(2,0)的距离和它到定直线8=x 的距离之比为2 1 ,求点M 的轨迹方程.

高中数学圆锥曲线轨迹问题题型分析

有关圆锥曲线轨迹问题 根据动点的运动规律求出动点的轨迹方程,这是解析几何的一大课题:一方面求轨迹方程的实质是将“形”转化为“数”,将“曲线”转化为“方程”,通过对方程的研究来认识曲线的性质;另一方面求轨迹方程是培养学生数形转化的思想、方法以及技巧的极好教材。该内容不仅贯穿于“圆锥曲线”的教学的全过程,而且在建构思想、函数方程思想、化归转化思想等方面均有体现和渗透。 轨迹问题是高考中的一个热点和重点,在历年高考中出现的频率较高,特别是当今高考的改革以考查学生创新意识为突破口,注重考查学生的逻辑思维能力,运算能力,分析问题和解决问题的能力,而轨迹方程这一热点,常涉及函数、三角、向量、几何等知识,能很好地反映学生在这些能力方面的掌握程度。 求轨迹方程的的基本步骤:建设现代化(检验) 建(坐标系)设(动点坐标)现(限制条件,动点、已知点满足的条件)代(动点、已知点坐标代入)化(化简整理)检验(要注意定义域“挖”与“补”) 求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。 1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法; 例1、已知直角坐标系中,点Q (2,0),圆C 的方程为 122=+y x ,动点M 到圆C 的切线长与MQ 的比等于常数 )0(>λλ,求动点M 的轨迹。 【解析】设MN 切圆C 于N ,则2 2 2 ON MO MN -=。设),(y x M ,则 2222)2(1y x y x +-=-+λ 化简得0)41(4))(1(22222=++-+-λλλx y x (1) 当1=λ时,方程为4 5 = x ,表示一条直线。 (2) 当1≠λ时,方程化为2 222 222)1(31)12(-+=+--λλλλy x 表示一个圆。 ◎◎如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN ,(M N ,分别为切点) ,使得PM =. 试建立适当的坐标系,并求动点P 的轨迹方程. 【解析】以12O O 的中点O 为原点,12O O 所在直线为x 轴,建立如图所示的平面直角坐标系,则 1(20)O -,,2(20)O ,.

圆锥曲线 求点的轨迹方程

求点的轨迹问题 一、基础知识: 1、求点轨迹方程的步骤: (1)建立直角坐标系 (2)设点:将所求点坐标设为(),x y ,同时将其他相关点坐标化(未知的暂用参数表示) (3)列式:从已知条件中发掘,x y 的关系,列出方程 (4)化简:将方程进行变形化简,并求出,x y 的范围 2、求点轨迹方程的方法 (1)直接法:从条件中直接寻找到,x y 的关系,列出方程后化简即可 (2)代入法:所求点(),P x y 与某已知曲线()00,0F x y =上一点()00,Q x y 存在某种关系,则可根据条件用,x y 表示出00,x y ,然后代入到Q 所在曲线方程中,即可得到关于,x y 的方程 (3)定义法:从条件中能够判断出点的轨迹为学过的图形,则可先判定轨迹形状,再通过确定相关曲线的要素,求出曲线方程。常见的曲线特征及要素有: ① 圆:平面上到定点的距离等于定长的点的轨迹 直角→圆:若AB AC ⊥,则A 点在以BC 为直径的圆上 确定方程的要素:圆心坐标(),a b ,半径r ② 椭圆:平面上到两个定点的距离之和为常数(常数大于定点距离)的点的轨迹 确定方程的要素:距离和2a ,定点距离2c ③ 双曲线:平面上到两个定点的距离之差的绝对值为常数(小于定点距离)的点的轨迹 注:若只是到两定点的距离差为常数(小于定点距离),则为双曲线的一支 确定方程的要素:距离差的绝对值2a ,定点距离2c ④ 抛物线:平面上到一定点的距离与到一定直线的距离(定点在定直线外)相等的点的轨迹 确定方程的要素:焦准距:p 。若曲线位置位于标准位置(即标准方程的曲线),则通过准线方程或焦点坐标也可确定方程 (4)参数法:从条件中无法直接找到,x y 的联系,但可通过一辅助变量k ,分别找到,x y 与

圆锥曲线轨迹方程经典例题

轨迹方程经典例题 一、轨迹为圆的例题: 1、 必修2课本P 124B 组2:长为2a 的线段的两个端点在x 轴和y 轴上移动,求线段AB 的中点M 的轨迹方程: 必修2课本P 124B 组:已知M 与两个定点(0,0),A (3,0)的距离之比为 2 1 ,求点M 的轨迹方程;(一般地:必修2课本P 144B 组2:已知点M(x ,y )与两个定点21,M M 的距离之比为一个常数m ;讨论点M(x ,y )的轨迹方程(分m =1,与m ≠1进行讨论) 2、 必修2课本P 122例5:线段AB 的端点B 的坐标是(4,3),端点A 在圆 1)1(22=++y x 上运动,求AB 的中点M 的轨迹。 (2013新课标2卷文20)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为32。 (1)求圆心的P 的轨迹方程; (2)若P 点到直线x y =的距离为 2 2 ,求圆P 的方程。 如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1= 2 ,241+= +y y x ,代入方程x 2+y 2-4x -10=0,得24 4)2()24( 22+? -++x y x -10=0整理得:x 2+y 2=56,这就是所求的轨迹方程. 在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围. (2013陕西卷理20)已知动圆过定点)0,4(A ,且在y 轴上截得弦MN 的长为8.

圆锥曲线中的轨迹问题(含解析)

圆锥曲线中的轨迹问题 一、单选题 1.平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是( ) A .一条直线 B .一个圆 C .一个椭圆 D .曲线的一支 2.棱长为1的正方体1111ABCD A B C D -中,P 为正方体表面上的一个动点,且总有 1PC BD ⊥,则动点P 的轨迹所围成图形的面积为( ) A .3 B .32 C . 32 D .1 3.如图,正方体1111ABCD A B C D -的棱长为1,点M 在棱AB 上,且1 3 AM = ,点P 是平面ABCD 上的动点,且动点P 到直线11A D 的距离与点P 到点M 的距离的平方差为1,则动点P 的轨迹是( ) A .圆 B .抛物线 C .双曲线 D .直线 二、填空题 4.已知分别过点(1,0)A -和点(1,0)B 的两条直线相交于点P ,若直线PA 与PB 的斜率之积为-1,则动点P 的轨迹方程是________. 5.动圆经过点(3,0)A ,且与直线:3l x =-相切,求动圆圆心M 的轨迹方程是____________. 三、解答题 6.圆C 过点()60A , ,()1,5B ,且圆心在直线:2780l x y -+=上. (1)求圆C 的方程;

(2)P 为圆C 上的任意一点,定点()8,0Q ,求线段PQ 中点M 的轨迹方程. 7.若平面内两定点(0,0)O ,(3,0)A ,动点P 满足||1 ||2 PO PA =. (1)求点P 的轨迹方程; 8.点(,)M x y 与定点(3,0)F 的距离和它到直线25:3 l x = 的距离之比是常数3 5,求点 M 的轨迹方程. 9.在圆:C 223x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足,当P 在 圆上运动时,线段PD 上有一点M ,使得DM =, (1)求M 的轨迹的方程; 10.已知点()1,0F ,点P 到点F 的距离比点P 到y 轴的距离多1,且点P 的横坐标非负,点()1,M m (0m <); (1)求点P 的轨迹C 的方程;. (2)过点M 作C 的两条切线,切点为A ,B ,设AB 的中点为N ,求直线MN 的斜率.

圆锥曲线轨迹方程问题

圆锥曲线轨迹方程问题 纵观近几年高考轨迹问题是高考中的一个热点和重点,在历年高考中出现的频率较高, 主要注重考查学生的逻辑思维能力,运算能力,分析问题和解决问题的能力,而轨迹方程这一热点,常涉及函数、三角、向量、几何等知识,能很好地反映学生在这些能力方面的掌握程度.有的学生看到就头疼的题目. 分析原因除了这类题目的入手确实不易之外,主要是学生没 有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理。圆锥曲线问题是 ft东卷高 考压轴大题,解题的关键往往是第一问能否求出轨迹方程。 圆锥曲线问题轨迹方程,解答题中以待定系数法为多,一旦变换考法,往往会造成学生 心理负担,为了更好的解决这一问题,本专题针对轨迹方程的常见考法做出了系统总结。 一、考法解法 命题特点分析 求曲线的轨迹方程是解析几何的基本问题之一,求符合某种条件的动点轨迹方程,其 实质就是利用题设中的已知条件,用“坐标化”将其转化为寻求变量间的关系问题,解决这类 问题不但对圆锥曲线的定义、性质等基础知识要熟练掌握,还要利用各种数学思想方法,同 时具备一定的推理能力和运算能力。 高考考查轨迹问题通常是以下两类:一类是容易题,以定义法、相关点法、待定系数法等为主,另一类是高难度的纯轨迹问题,综合考查各种方法.“轨迹”、“方程”要区分求轨 迹方程,求得方程就可以了;若是求轨迹,求得方程还不够,还应指出方程所表示的曲线类型 (定形、定位、定量).处理轨迹问题成败在于:对各种方法的领悟与解题经验的积累.所以在处 理轨迹问题时,一定要善于根据题目的特点选择恰当的方法,确定轨迹的范围是处理轨迹问 题的难点,也是学生容易出现错误的地方,在确定轨迹范围时,应注意以下几个方面:①准确理 解题意,挖掘隐含条件;②列式不改变题意,并且要全面考虑各种情形;③推理要严密,方程化简要 等价;④消参时要保持范围的等价性;⑤数形结合,查“漏”补“缺”。在处理轨迹问题时,要特别注意运用平面几何知识,其作用主要有:①题中没有给出明显的条件式时,可帮助列式;② 简化条件式; ③转化化归。 解题方法荟萃

2021届高考数学圆锥曲线中必考知识专题9 圆锥曲线中的轨迹问题(解析版)

专题9:圆锥曲线中的轨迹问题(解析版) 一、单选题 1.平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是( ) A .一条直线 B .一个圆 C .一个椭圆 D .曲线的一支 【答案】A 【分析】 先找出定点A 和直线l 确定的一个平面,结合平面相交的特点可得轨迹类型. 【详解】 如图,设l 与l '是其中的两条任意的直线,则这两条直线确定一个平面β,且α的斜线 AB β⊥,由过平面外一点有且只有一个平面与已知直线垂直可知过定点A 与AB 垂直 所有直线都在这个平面内,故动点C 都在平面β与平面α的交线上. 【点睛】 本题主要考查轨迹的类型确定,熟悉平面的基本性质及推论是求解的关键,侧重考查直观想象的核心素养. 2.棱长为1的正方体1111ABCD A B C D -中,P 为正方体表面上的一个动点,且总有 1PC BD ⊥,则动点P 的轨迹所围成图形的面积为( ) A 3 B .32 C 3 D .1 【答案】C 【分析】 本题首先可以根据题意确定当1PC BD ⊥时直线PC 所在平面区域,然后结合图像即可

得出动点P 的轨迹所围成图形为1AB C ,然后求出1AB C 面积即可得出结果. 【详解】 如图,易知直线1BD ⊥平面1ACB , 故动点P 的轨迹所围成图形为1AB C , 因为1AB C 为边长为2的正三角形, 所以其面积() 2 3 32S =?= , 故选:C. 【点睛】 本题考查线面垂直的相关性质,若直线与平面垂直,则直线垂直这个平面内的所有直线,考查推理能力,考查数形结合思想,是中档题. 3.如图,正方体1111ABCD A B C D -的棱长为1,点M 在棱AB 上,且1 3 AM = ,点P 是平面ABCD 上的动点,且动点P 到直线11A D 的距离与点P 到点M 的距离的平方差为1,则动点P 的轨迹是( ) A .圆 B .抛物线 C .双曲线 D .直线 【答案】B 【分析】 作PQ AD ⊥,11QR A D ⊥,PR 即为点P 到直线11A D 的距离,由勾股定理得

“圆锥曲线平行弦中点轨迹问题”说题

圆锥曲线平行弦中点轨迹问题”说题 说题”是近年来涌现出的一种新型教学研究模式 简单地讲:说题是执教者或受教育者在精心做题的基础上,阐述对习题解答时所采用的思维方式,解题策略及依据,进而总结出经验性解题规律. “说题”使教研活动更入微了,可以说是教研活动的一次创新 般说来,说题应从以下几个方面进行分析:数学思想 与数学方法,命题变化的自然思维,小结、归纳与应用,题多解、发散思维,常规变式,多种变式、融会贯通,从特殊到一般寻找规律.要求数学教师不但对题目进行深层次的 挖掘,说出题目的本质、新意、特色,还要说出题目的编制、演变过程以及该题目的潜在价值 面是本人的一次说题研究,在此抛砖引玉供各位参考、说问题 背景 问题来源于2005 年上海市普通高等学校春季招生考试 数学试卷第22 题: 1)求右焦点坐标是(2,0),且经过点(-2,-2)的 椭圆的标准方程; (2)已知椭圆C的方程是x2a2+y2b2=1 (a>b>0), 设 斜率为k的直线I,交椭圆C于A、B两点,AB的中点为M.证

明:当直线l 平行移动时,动点M 在一条过原点的定直线上; 3)利用(2)所揭示的椭圆几何性质,用作图方法找 出下面给定椭圆的中心,简要写出作图步骤,并在图中标出椭圆的中心. 二、说问题立意 1.考查椭圆的标准方程和性质;中心对称等; 2.考查数 学思想有:从特殊到一般思想;数形结合思想;分类讨论思 想;数学方法:判别式法;函数与方程转化等;引导将双 曲线问题与相应的椭圆问题开展类比研究的思想方法.3.通 过研究椭圆的平行弦的中点轨迹,对直线与曲线位置关系研究方法有更深刻的理解;这是将知识、方法、思想、能力素质融于一体的命题,也看出高校选拔人才对学生的直觉思维能力、逻辑推理能力、运算能力和自主探索能力等提出了较高的要求. 、说问题解法 解法1(1)略(2)设直线I的方程为y=kx+m,与椭圆C的交点A(x1, y1 )、B (x2, y2),则有y=kx+m, x2a2+y2b2=1,解得( b2+a2k2)x2+2a2kmx+a2m2-a2b2=0. ???△ >0,二m2vb2+a2k2,即-b2+a2k2vmvb2+a2k2.则 x1+x2=-2a2kmb2+a2k2,y1+y2=kx1+m+kx2+m=2b2mb2+a2k2. ??? AB 中点M 的坐标为(-a2kmb2+a2k2 , b2mb2+a2k2 ).

圆锥曲线的综合问题-分题型整理

圆锥曲线的综合问题 ★知识梳理★ 1.直线与圆锥曲线C 的位置关系 将直线l 的方程代入曲线C 的方程,消去y 或者消去x ,得到一个关于x (或y )的方程20ax bx c ++= (1)交点个数 ①当 a=0或a ≠0,⊿=0 时,曲线和直线只有一个交点; ②当 a ≠0,⊿>0时,曲线和直线有两个交点; ③ 当⊿<0 时,曲线和直线没有交点; (2) 弦长公式: 2.对称问题: 曲线上存在两点关于已知直线对称的条件:①曲线上两点所在的直线与已知直线垂直(得出斜率)②曲线上两点所在的直线与曲线有两个公共点(⊿>0)③曲线上两点的中点在对称直线上 3.求动点轨迹方程 ①轨迹类型已确定的,一般用待定系数法 ②动点满足的条件在题目中有明确的表述且轨迹类型未知的,一般用直接法 ③一动点随另一动点的变化而变化,一般用代入转移法 ★重难点突破★ 重点:掌握直线与圆锥曲线的位置关系的判断方法及弦长公式;掌握弦中点轨迹的求法; 理解和掌握求曲线方程的方法与步骤,能利用方程求圆锥曲线的有关范围与最值 难点:轨迹方程的求法及圆锥曲线的有关范围与最值问题 重难点:综合运用方程、函数、不等式、轨迹等方面的知识解决相关问题 1.体会“设而不求”在解题中的简化运算功能 ①求弦长时用韦达定理设而不求 ②弦中点问题用“点差法”设而不求 2.体会数学思想方法(以方程思想、转化思想、数形结合思想为主)在解题中运用 问题1:已知点1F 为椭圆22195 x y +=的左焦点,点()1,1A ,动点P 在椭圆上,则1PA PF +的最 小值为 点拨:设2F 为椭圆的右焦点,利用定义将1PF 转化为2PF ,在结合图形,用平面几何的知识解决。 126PA PF PA PF +=+-,当2,,P A F 共线时最小,最小值为62- ★热点考点题型探析★ 考点1 直线与圆锥曲线的位置关系 题型1:交点个数问题 [例1 ] 设抛物线28y x =的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 4)(1 ||1||212212122x x x x k x x k AB ?-+?+=-?+=

圆锥曲线轨迹方程的常用方法

圆锥曲线轨迹方程的求法 知识归纳 求轨迹方程的常用方法: ⒈直接法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直接法。 ⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。 ⒊相关点法:用动点M 的坐标x ,y 表示相关点P 的坐标(X o 、Y o ),然后代入点P 的坐标(X o 、Y o )所满足的曲线方程,整理化简便得到动点Q 轨迹方程,这种求轨迹方程的方法叫做相关点法。(用未知表示已知,带入已知求未知) ⒋参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一变数t 的关系,得再消去参变数t ,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。 ⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。 类型一 直接法求轨迹方程 【例1】已知两点M (-2,0),N (2,0),点P 为坐标平面内的动点,满足|MN ??????? |?|MP ?????? |+MN ??????? ?NP ?????? =0 ,则动点P (x ,y )的轨迹方程为 。 【解析】设P (x ,y ),x >0,y >0,M (﹣2,0),N (2,0),|MN → |=4, 则MP → =(x +2,y),NP → =(x ?2,y)由|MN → |?|MP → |+MN → ?NP → =0, 则4√(x +2)2+y 2+4(x ?2)=0,化简整理得y 2=﹣8x . 【点评】直接法求曲线方程时最关键的就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价性.通常将步骤简记为建系设点、列式、代换、化简这四个步骤,如果给出了直角坐标系则可省去建系这一步,求出曲线的方程后还需注意检验方程。 【变式训练】 1.已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.

最新圆锥曲线轨迹问题(教师版)

第四讲 有关圆锥曲线轨迹问题(教师版) 根据动点的运动规律求出动点的轨迹方程,这是解析几何的一大课题:一方面求轨迹方程的实质是将“形”转化为“数”,将“曲线”转化为“方程”,通过对方程的研究来认识曲线的性质;另一方面求轨迹方程是培养学生数形转化的思想、方法以及技巧的极好教材。该内容不仅贯穿于“圆锥曲线”的教学的全过程,而且在建构思想、函数方程思想、化归转化思想等方面均有体现和渗透。 求轨迹方程的的基本步骤:建设现代化(检验) 建(坐标系)设(动点坐标)限(限制条件,动点、已知点满足的条件)代(动点、已知点坐标代入)化(化简整理)检验(要注意定义域“挖”与“补”) 求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。 1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这 种方法称之为直接法; 例1、已知直角坐标系,点Q (2,0),圆C 方程为 12 2=+y x ,动点M 到圆C 的切线长与 MQ 的比等于常数)0(>λλ,求动点M 的轨迹。 【解析】设MN 切圆C 于N ,则 2 22ON MO MN -=。),(y x M ,则 2 222)2(1y x y x +-=-+λ化简得 0)41(4))(1(2 2222=++-+-λλλx y x 当1=λ时,方程为54x =,表示一条直线。 当1≠λ时,方程化为2 2 22 222)1(31)12(-+=+--λλλλy x 表示一个圆。 【练习】如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN , (M N ,分别为切点),使得2PM PN =. 试建立适当的坐标系,并求动点P 的轨迹方程. 【解析】以12O O 的中点O 为原点,12O O 所在直线为x 轴,建立如图所示的平面直角坐标系,则1(20)O -, ,2(20)O ,. 由已知2PM PN =,得222PM PN =. 因为两圆半径均为1,所以 22 1212(1)PO PO -=-. 设()P x y ,,则2222(2)12[(2)1]x y x y ++-=-+-, 即22(6)33x y -+=.(或221230x y x +-+=) y x Q M N O

圆锥曲线之轨迹问题例题习题(精品)

x 专题:圆锥曲线之轨迹问题 一、 临阵磨枪 1?直接法(五部法):如果动点满足的几何条件本身就是一些几何量的等量关系,或这些 几何条件简单明了且易于表达,我们只须把这种关系“翻译”成含 x,y 的等式就得到曲线 的轨迹方程。这种求轨迹的方法称之为直接法。 2?定义法:若动点轨迹的条件符合某一基本轨迹的定义(如圆、椭圆、双曲线、抛物线 的定义),则可根据定义直接求出动点的轨迹方程。 3?坐标转移法(代入法):有些问题中,其动点满足的条件不便于等式列出,但动点是随 着另一动点(称之为相关点)而运动的,如果相关点所满足的条件是明显的, 或是可分析的, 这时我们可以用动点坐标表示相关点坐标, 根据相关点所满足的方程即可求得动点的轨迹方 程,这种求轨迹的方法坐标转移法,也称相关点法或代入法。 4. 参数法:有时求动点应满足的几何条件不易求出,也无明显的相关点,但却较易发现 (或经分析可发现)这个动点的运动常常受到另一个变量(角度、斜率、比值、截距或时间 等)的制约,即动点坐标(x, y )中的x, y 分别随另一变量的变化而变化, 我们可以把这个变 量设为参数,建立轨迹的参数方程,这种方法叫做参数法,如果需要得到轨迹的普通方程, 只要消去参变量即可。 5. 交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题常可 通过解方程组得出交点含参数的坐标, 再消去参数得出所求轨迹方程,此种方法称为交轨法。 二、 小试牛刀 1. _________________________________________________________________________ 已知M (-3,0),N ( 3,0) PM PN 6,则动点P 的轨迹方程为 ______________________________ 析:Q MN PM PN ???点P 的轨迹一定是线段 MN 的延长线。 故所求轨迹方程是 y 0(x 3) 圆所引的切线长相等,则动点 P 的轨迹方程为 __________________________ 析:???圆O 与圆o 外切于点M (2,0) ?两圆的内公切线上的点向两圆所引的切线长都相等, 故动点P 的轨迹就是两圆的内公切线,其方程为 x 2 2 2 x y 一 3.已知椭圆 — 亍1(a b 0) ,M 是椭圆上一动点,F i 为椭圆的左焦点,贝U 线段MF i a b 的中点P 的轨迹方程为 _____________________________ 析:设P (x, y ) M (x °,y °)又F , ( c,0)由中点坐标公式可得: 2 2.已知圆0的方程为x 2 2 y 2,圆0的方程为x 2 y 8x 10 0 ,由动点P 向两

圆锥曲线之轨迹方程的求法

圆锥曲线之轨迹方程的求法(一) (制卷:周芳明) 【复习目标】 □1. 了解曲线与方程的对应关系,掌握求曲线方程的一般步骤; □2. 会用直接法、定义法、相关点法(坐标代换法)求方程。 【基础练习】 1.到两坐标轴的距离相等的动点的轨迹方程是( ) A .y x = B .||y x = C .22y x = D .220x y += 2.已知点(,)P x y 4,则动点P 的轨迹是 ( ) A .椭圆 B .双曲线 C .两条射线 D .以上都不对 3.设定点1(0,3)F -、2(0,3)F ,动点P 满足条件129(0)PF PF a a a +=+>,则点P 的轨迹( ) A .椭圆 B .线段 C. 不存在 D .椭圆或线段 4.动点P 与定点(1,0)A -、(1,0)B 的连线的斜率之积为1-,则P 点的轨迹方程为______________. 【例题精选】 一、直接法求曲线方程 根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式(两点距离公式、点到直线距离公式、夹角公式等)进行整理、化简。即把这种关系“翻译”成含x ,y 的等式就得到曲线的轨迹方程了。 例1.已知ABC ?中,2,AB BC m AC ==,试求A 点的轨迹方程,并说明轨迹是什么图形. 练习:已知两点M (-1,0)、N (1,0),且点P 使MP MN ,PM PN ,NM NP 成公差小于零的等差数列。点P 的轨迹是什么曲线?

二定义法 若动点轨迹满足已知曲线的定义,可先设定方程,再确定其中的基本量,求出动点的轨迹方程。 例1.⊙C :22(3)16x y ++=内部一点(3,0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于P ,求点P 的轨迹方程. 例2.设动点(,)(0)P x y x ≥到定点1(,0)2F 的距离比它到y 轴的距离大12 。记点P 的轨迹为 曲线C 求点P 的轨迹方程; 练习.若动圆与圆1)2(:2 21=++y x C 相外切,且与直线1=x 相切,则动圆圆心轨迹方程是 . 三代入法 有些问题中,其动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的。如果相关点所满足的条件是明显的,或是可分析,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程,这种求轨迹的方法叫做相关点法。这种方法是一种极常用的方法,连续好几年高考都考查。 例1、已知定点A ( 3, 0 ),P 是圆x 2 + y 2 = 1上的动点,∠AOP 的平分线交AP 于M , 求M 点的轨迹。

圆锥曲线轨迹

圆锥曲线-----轨迹 一 基础热身 1.点M 与点(4,0)F 的距离比它到直线:50l x +=的距离小1,则点M 的轨迹方程是______________. 2.一动圆与圆2 2 1x y +=外切,而与圆2 2 680x y x +-+=内切,则动圆圆心的轨迹方程是 _______ 3.已知椭圆13 42 2=+y x 的两个焦点分别是F 1, F 2,P 是这个椭圆上的一个动点,延长F 1P 到Q ,使得|PQ |=|F 2P |,求Q 的轨迹方程是. 4.倾斜角为4 π 的直线交椭圆1422=+y x 于B A ,两点,则线段AB 中点的轨迹方程是 _______. 5.平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足OC OA OB αβ=+,其中,R αβ∈,且1αβ+=,则点C 的轨迹方程为____________________. 二 典例回放 1.⊙C :16)3(22=++y x 内部一点A (3,0)与圆周上动点Q 连线AQ 的中垂线交CQ 于P ,求点P 的轨迹方程. 2.一条曲线在x 轴上方,它上面的每一个点到点(0,2)A 的距离减去它到x 轴的距离的差都是2,求这条曲线的方 程。 3.△ABC 中,B (-3,8)、C (-1,-6),另一个顶点A 在抛物线y 2 =4x 上移动,求此三角形重心G 的轨迹方程. 4.抛物线 y 2=2px(p>0),O 为坐标原点,A 、B 在抛物线上,且OA ⊥OB ,求弦AB 中点M的轨迹方程.

三 水平测试 1.与两点)0,3(),0,3(-距离的平方和等于38的点的轨迹方程是( ) ()A 1022=-y x ()B 1022=+y x ()C 3822=+y x ()D 3822=-y x 2.过椭圆4x 2 +9y 2 =36内一点P(1,0)引动弦AB,则AB 的中点M 的轨迹方程是() (A)4x 2+9y 2-4x=0 (B)4x 2+9y 2+4x=0 (C)4x 2+9y 2-4y=0 (D)4x 2+9y 2 +4y=0 3.若 ()()031322=+---++y x y x ,则点()y x M ,的轨迹是( ) (A)圆 (B)椭圆 (C)双曲线 (D)抛物线 4.已知M (-2,0),N (2,0),|PM|-|PN|=4,则动点P 的轨迹是:() ()A 双曲线 ()B 双曲线左支 ()C 一条射线 ()D 双曲线右支 5.已知三角形ABC 中,2, 2,AB BC AC ==则点A 的轨迹是________________.6.抛物线y=x 2+2mx+m 2+1-m 的顶点的轨迹方程为_________________________. 7.线段AB 的两端点分别在两互相垂直的直线上滑动,且||2AB a =,求AB 的中点P 的轨迹方程。 8.已知两点M (-1,0)、N (1,0),且点P 使MP MN ,PM PN ,NM NP 成公差小于零的等差数列。 (1)、点P 的轨迹是什么曲线? (2)、若点P 坐标为00(,)x y ,记θ为PM 与PN 的夹角,求tan θ。 答案:一 基础热身

2021高考数学圆锥曲线轨迹方程问题解法指导

2021高考数学圆锥曲线轨迹方程问题解法指导 纵观近几年高考轨迹问题是高考中的一个热点和重点,在历年高考中出现的频率较高,主要注重考查学生的逻辑思维能力,运算能力,分析问题和解决问题的能力,而轨迹方程这一热点,常涉及函数、三角、向量、几何等知识,能很好地反映学生在这些能力方面的掌握程度.有的学生看到就头疼的题目.分析原因除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理。圆锥曲线问题是山东卷高考压轴大题,解题的关键往往是第一问能否求出轨迹方程。 圆锥曲线问题轨迹方程,解答题中以待定系数法为多,一旦变换考法,往往会造成学生心理负担,为了更好的解决这一问题,本专题针对轨迹方程的常见考法做出了系统总结。 一、考法解法 命题特点分析 求曲线的轨迹方程是解析几何的基本问题之一,求符合某种条件的动点轨迹方程,其实质就是利用题设中的已知条件,用“坐标化”将其转化为寻求变量间的关系问题,解决这类问题不但对圆锥曲线的定义、性质等基础知识要熟练掌握,还要利用各种数学思想方法,同时具备一定的推理能力和运算能力。 高考考查轨迹问题通常是以下两类:一类是容易题,以定义法、相关点法、待定系数法等为主,另一类是高难度的纯轨迹问题,综合考查各种方法.“轨迹”、“方程”要区分求轨迹方程,求得方程就可

以了;若是求轨迹,求得方程还不够,还应指出方程所表示的曲线类型(定形、定位、定量).处理轨迹问题成败在于:对各种方法的领悟与解题经验的积累.所以在处理轨迹问题时,一定要善于根据题目的特点选择恰当的方法,确定轨迹的范围是处理轨迹问题的难点,也是学生容易出现错误的地方,在确定轨迹范围时,应注意以下几个方面:①准确理解题意,挖掘隐含条件;②列式不改变题意,并且要全面考虑各种情形;③推理要严密,方程化简要等价;④消参时要保持范围的等价性;⑤数形结合,查“漏”补“缺”。在处理轨迹问题时,要特别注意运用平面几何知识,其作用主要有:①题中没有给出明显的条件式时,可帮助列式;②简化条件式;③转化化归。 解题方法荟萃 1.直接法:根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式(如两点间距离公式、点到直线距离公式、夹角公式等)进行整理、化简。这种求轨迹方程的过程不需要特殊的技巧,它是求轨迹方程的基本方法。 直接法一般有下列几种情况: 1)代入题设中的已知等量关系:若动点的规律由题设中的已知等量关系明显给出,则采用直接将数量关系代数化的方法求其轨迹。2)列出符合题设条件的等式:有时题中无坐标系,需选定适当位置的坐标系,再根据题设条件列出等式,得出其轨迹方程。 3)运用有关公式:有时要运用符合题设的有关公式,使其公式中含有动点坐标,并作相应的恒等变换即得其轨迹方程。

相关文档
最新文档