计算方法解线性方程组的直接法
解线性方程组的直接方法
![解线性方程组的直接方法](https://img.taocdn.com/s3/m/975e3a251fd9ad51f01dc281e53a580216fc50fa.png)
解线性方程组的直接方法一、高斯消元法高斯消元法是解线性方程组最常用的方法之一、它通过一系列的消元操作,将线性方程组转化为阶梯型方程组,从而求解未知数的值。
1.确定线性方程组的阶数和未知数的个数。
设线性方程组中有n个未知数。
2.将线性方程组写成增广矩阵的形式。
增广矩阵是一个n行n+1列的矩阵,其中前n列是线性方程组的系数矩阵,第n+1列是等号右边的常数。
3.通过初等行变换(交换行、数乘行、行加行)将增广矩阵化为阶梯型矩阵。
具体步骤如下:a.首先,找到第一个非零元素所在的列,将它所在的行视为第一行。
b.将第一行的第一个非零元素(主元)变成1,称为主元素。
c.将主元所在列的其他元素(次元素)变为0,使得主元所在列的其他元素只有主元素是非零的。
d.再找到第一个非零元素所在的列,将它所在的行视为第二行,并重复上述步骤,直到将增广矩阵化为阶梯型矩阵。
4.根据阶梯型矩阵求解未知数的值。
具体步骤如下:a.从最后一行开始,依次求解每个未知数。
首先,将最后一行中非零元素所在的列作为含有该未知数的方程,将该未知数的系数设为1b.将含有该未知数的方程中其他未知数的系数设为0,并对其他方程进行相应的变换,使得该未知数所在列的其他元素都为0。
c.重复上述步骤,直到求解出所有未知数的值。
高斯消元法的优点是简单易懂、容易实现,但当线性方程组的系数矩阵接近奇异矩阵时,计算精度可能会降低。
二、矩阵求逆法矩阵求逆法是解线性方程组的另一种直接方法。
它通过对系数矩阵求逆,然后与常数矩阵相乘,得到未知数的值。
1.确定线性方程组的阶数和未知数的个数。
设线性方程组中有n个未知数。
2.将线性方程组写成矩阵方程的形式,即Ax=b,其中A是一个n阶方阵,x和b分别是n维列向量。
3.求系数矩阵A的逆矩阵A^-1a. 首先,计算系数矩阵A的行列式det(A)。
b. 判断det(A)是否为0,如果det(A)=0,则该线性方程组无解或有无穷多解;如果det(A)≠0,则系数矩阵A可逆。
解线性方程组的直接方法
![解线性方程组的直接方法](https://img.taocdn.com/s3/m/52cd81c2b9f3f90f76c61be1.png)
(1.5)
消去法的回代过程是解上三角形方程组(1.5).我们从方程组(1.5)的第三个方 x3 6 / 6 1 ; 程解得 然后将它代入第二个方程得到
x2 ( 5 x3 ) / 3 2;
最后,将 x3 1, x2 2 代第一个方程得到
x1 (3 2 x2 3 x3 ) / 2 2.
②
(n+1)n/2次运算
i 1 l11 bi lij x j l21 l22 j 1 A xi , i 1, , n lii l l l nn n1 n 2
③
(n+1)n/2次运算
n u11 u12 u1n bi uij x j u22 u2 n j i 1 A x , i n, ,1 i uii u nn
1,2,...,n)
( 1 .2 )
Ax b,
a1n a2 n , ann
§1 1.1 Gauss 消去法 本章主要介绍求解线性方程组(1.1)的直接法。所谓直接法,就是不考虑 计算过程的舍入误差时,经有限次数的运算便可求得方程组准确解的方法.我 们还将在§5中对计算过程中的舍入误差作一些初步分析.
a11 a 21 A, b ... an 2
之间有一对应关系.不难看出:
a12 a22 ... an 2
... ... ... ...
a1n a2 n ... ann
b1 b2 ... bn
(1.3)
(1)交换矩阵(1.3)的第p,q两行(记作 的第p,q两个方程;
(1.8)
(1.9)
(1.9)式是消元过程的一般计算公式.式中作分母的元素
数值分析--解线性方程组的直接方法
![数值分析--解线性方程组的直接方法](https://img.taocdn.com/s3/m/2f4c6226dd36a32d737581fe.png)
值 为A的特征值,x为A对应的特征向量,A的全体特征值
分 析
称为A的谱,计作 ( A),即 ( A) {i ,i 1,2,, n}, 则称
》
( A)
max
1in
|
i
|
为矩阵A的谱 半 径.
三、特殊矩阵
第5章 解线性方程组的直接方法
1) 对角矩阵
2) 三对角矩阵
3) 上三角矩阵
4) 上海森伯(Hessenberg)阵
分 析
1.00x 1.00y 2.00
》 解法1: 1.00105 x 1.00 y 1.00
(1.00 1.00105) y (2.00 1.00105)
1.00105 x 1.00 y 1.00
1.00
105
y
1.00
105
x 0.00,
y 1.00
第5章 解线性方程组的直接方法
1
Ly b y 3,Ux y x 1.
2
1
第5章 解线性方程组的直接方法
§3 高斯主元素消去法
若ak(kk) 0,或ak(kk)很接近于0,会导致其他元素数量级严重 增长和舍入误差的扩散,使得计算结果不可靠.
《例3’采用3位十进制,用消元法求解
数 值
1.00105 x 1.00y 1.00
L21L1 U2U11
L21L1
U
U 1
21
I
(因为上式右边为上三角矩阵,左边为单位下三角矩阵
从而上式两边都必须等于单位矩阵)
《 数
L1 L2 , U1 U2
1 1 1
值分例2
析
.例1中,A
0
4
-1,将A作LU分解。
计算方法2线性方程组直接法
![计算方法2线性方程组直接法](https://img.taocdn.com/s3/m/65c0d0b0710abb68a98271fe910ef12d2bf9a95e.png)
04
矩阵的三角分解法
LU分解法
定义:将系数矩阵A分解为一个下三角 矩阵L和一个上三角矩阵U的乘积,即 A=LU。
适用范围:适用于所有可逆矩阵,特别 适用于中小型稠密矩阵。
迭代法收敛性判断
在迭代法求解方程组时,可以通过观察迭代过程中解向量的范数的变化情况来判断迭代法 是否收敛。如果解向量的范数逐渐减小并趋于零,则表明迭代法收敛。
方程组性态分析
方程组的性态是指方程组解的存在性、唯一性和稳定性等方面的性质。通过分析方程组的 系数矩阵的范数,可以对方程组的性态进行初步的判断。例如,如果系数矩阵的谱半径( 即最大特征值的模)较小,则方程组往往具有较好的性态。
03
线性方程组在科学研究、工程技术和经济管理等领域具有广 泛的应用。
直接法的定义与分类
1
直接法是一种通过有限步四则运算求解线性方程 组的方法,具有计算精度高、稳定性好的特点。
2
直接法可分为高斯消元法、列主元消元法、全主 元消元法等多种方法,其中高斯消元法是最基本 的方法。
3
各种直接法的主要区别在于选主元和消元的过程 中采用不同的策略,以达到提高计算精度和稳定 性的目的。
对系数矩阵A进行Crout分解,得到下三角矩阵L和单位 上三角矩阵U。
利用后向代入法求解Ux=y,得到向量x。
求解步骤
利用前向代入法求解Ly=b,得到向量y。
适用范围:适用于所有可逆矩阵,特别适用于中小型稠 密矩阵。与LU分解法和Doolittle分解法相比,Crout 分解法在某些情况下具有更高的计算效率。
性质
计算方法第三章 解线性代数方程组的直接法
![计算方法第三章 解线性代数方程组的直接法](https://img.taocdn.com/s3/m/fce6bd62680203d8ce2f24e9.png)
再由回代过程可得
x3 2, x2 8, x1 -13.
2021年7月16日星期五
精选课件
14
3.1.2 主元消去法 顺序消去法的缺陷
在进行第k步消元时,一定要假设主元ak(kk) 0,否则 在消元过程中就会出现“主元素”ak(kk) 0的情形,这时 消元过程将无法进行下去。另外,尽管det( A) 0, 但如果 “主元素”ak(kk ) 很小,由于计算机字长有限,必然有舍入 误差等因素的影响,其本身常常有较大的相对误差,用 它做除数就会导致其它元素舍入误差的扩散,这样就使 解极不准确,甚至可能产生溢出停机。
103 (0.20)
a122 101(0.10) 103 (0.20) 101(0.10) 103 (0.20) a123 101(0.10) 103 (0.20) 100 (0.50) 103 (0.10) 于是我们得到系数矩阵为上三角形的方程组
10(2 00.50)
110( 01(300.1.20) 0)
a1n a2n ,
an1 an2 ann
x1
x
x2
xn
,
b1
b
b2
bn
.
当方程组(3.1)的系数矩阵的行列式不等于零时,方程组有唯一解:x A1b
而且这个方程组的解可用克莱姆(Cramer )规则表示为:
xi
Ai A
,
i 1,2,, n.
其中记号 A 为矩阵A的行列式,Ai 表示把行列式 A中的第i列元素换成右端项b后,
所得到的n阶行列式。
2021年7月16日星期五
精选课件
2
2021年7月16日星期五
精选课件
3
§3.1 高斯(Gauss)消去法
第5章 解线性方程组的直接方法
![第5章 解线性方程组的直接方法](https://img.taocdn.com/s3/m/dfdd6a1c866fb84ae45c8db1.png)
a1,k 1
( ak kk)1 , ( ) ak k 1,k 1
( ankk) ,
( ankk)1 ,
在第k步消去前, 在系数矩阵右下角的n-k+1阶 主子阵中,选绝对值最大的元素作为主元素。
| a pq | max | aij | 0
k i , j n
k
k
需 n k 次乘法、1 次除法, n k 次加减法。
9
数值分析
第5章 解线性方程组的直接方法
总的运算次数为:
乘 除 法
n k n k 2 n k n k 1 1 k 1 j 2 3 j 1 1
证明: 归纳法证明(对k归纳)
11
0, i 1, 2, , k ( n)
数值分析
第5章 解线性方程组的直接方法
设直到k-1成立,只要证明
D1 , D2 , , Dk 1非零时,
Dk非零的充要条件是 a
(k ) kk
0 即可。
在归纳假设下,Gauss消去法可进行到第k-1步
D1 a
数值分析
Numerical Analysis
李小林
重庆师范大学数学学院
数值分析
第5章 解线性方程组的直接方法
第五章 线性方程组的直接解法
/*Direct Method for Solving Linear Systems*/
求解 A x b, A R
Cramer法则:
n n
det( A) 0
在第k 步消元前,在系数矩阵第k 列的对角线以下的元素 中找出绝对值最大的元。
| a | max | aik | 0 pk
第5章_解线性方程组的直接方法
![第5章_解线性方程组的直接方法](https://img.taocdn.com/s3/m/e9cdca2769eae009591bec27.png)
但可在见 n较其大xi时在,d理de在ett论 ((实AAi)际 上) 计是算(绝i中对确 1, 2实正, 不确,可n)行的
需要计算
n 1个n阶行列式 并作 n次除法
而每个n阶行列式计算需作(n 1)n!次乘法
如n 30,需2.381035次乘法 计算量十分惊人
解线性方程组的两类方法:
a1n xn b1 a2n xn b2
ann xn bn
简记作 AX B (| A | 0)
a11 a12
其中
A
a21
a22
an1
an2
a1n
x1 b1
a2n
,
X
x2
,B
b2
.
ann
xn
bn
如果线性方程组的系数行列式不为零
即det(A) 0, 则该方程组有唯一解
,
(n)
a(n)
nn
b (1)
1
(2)
b
2
(3)
b
3
b (n)
n
计算出 A( n ),b( n ) 的过程称消去过程。
a (1) 11
a (1) 1n
b (1) 1
a(k) kk
a(k) kk 1
a b (k)
(k)
kn
k
0
a (k 1) ij
b(k 1) j
0
k 1 i,j n
二 n 2 (n-1)*( n2 )
总计 ∑n ( k 2 k) n ( n2 1)
k 1
3
除法
∑n1 k n(n 1 )
k 1
2
回代总计算量 n(n 1) 2
计算方法-解线性方程组的直接法实验报告
![计算方法-解线性方程组的直接法实验报告](https://img.taocdn.com/s3/m/2810bdbffad6195f302ba68f.png)
cout<<endl;
for(k=i+1;k<m;k++)
{
l[k][i]=a[k][i]/a[i][i];
for(r=i;r<m+1;r++) /*化成三角阵*/
a[k][r]=a[k][r]-l[k][i]*a[i][r];
}
}
x[m-1]=a[m-1][m]/a[m-1][m-1];
{
int i,j;
float t,s1,s2;
float y[100];
for(i=1;i<=n;i++) /*第一次回代过程开始*/
{
s1=0;
for(j=1;j<i;j++)
{
t=-l[i][j];
s1=s1+t*y[j];
}
y[i]=(b[i]+s1)/l[i][i];
}
for(i=n;i>=1;i--) /*第二次回代过程开始*/
s2=s2+l[i][k]*u[k][r];
l[i][r]=(a[i][r]-s2)/u[r][r];
}
}
printf("array L:\n");/*输出矩阵L*/ for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
printf("%7.3f ",l[i][j]);
printf("\n");
{
s2=0;
for(j=n;j>i;j--)
计算方法第六章解线性方程组的直接法
![计算方法第六章解线性方程组的直接法](https://img.taocdn.com/s3/m/d481faa00875f46527d3240c844769eae009a330.png)
未知数
在方程组中需要求解的变量 。
系数
方程中未知数的系数,构成 系数矩阵。
直接法的基本思想
直接法
通过对方程组进行变换,消去未知数,从而求得方程 组的解。
高斯消元法
一种常用的直接法,通过对方程组进行初等行变换, 将系数矩阵变为上三角矩阵,然后回代求解。
列主元消元法
在高斯消元法的基础上,每次消元前选取列主元,避 免计算过程中出现零除问题,提高数值稳定性。
回代过程
从最后一行开始,将已知量代入方程求解, 得到当前未知数的解。然后逐层回代,得到 所有未知数的解。
高斯消元法的应用举例
01
求解二元一次方程 组
通过高斯消元法,可以方便地求 解二元一次方程组,得到未知数 的解。
02
求解三元一次方程 组
对于三元一次方程组,同样可以 通过高斯消元法进行求解,得到 未知数的解。
感谢您的观看
07
总结与展望
直接法的优缺点总结
精确性
直接法通过有限步精确运算可求得方程组的精确解,避免了迭代法可能产生的误差累积。
稳定性
对于适定问题,直接法的数值稳定性较好,不易受到舍入误差的影响。
直接法的优缺点总结
直接法的优缺点总结
计算量
对于大规模问题,直接法的计算 量往往很大,需要消耗大量的计 算资源和时间。
回代
从最后一个方程开始,逐个将已知量代入方程求解未知量,直到求出 所有未知量。
列主元消元法的应用举例
求解线性方程组
列主元消元法可以用于求解各种类型 的线性方程组,包括齐次线性方程组 和非齐次线性方程组。
求解最小二乘问题
列主元消元法可以用于求解最小二乘 问题,通过构造法方程组并应用列主 元消元法,可以得到最小二乘解。
线性方程组的直接解法
![线性方程组的直接解法](https://img.taocdn.com/s3/m/dcd5362adf80d4d8d15abe23482fb4daa58d1dfc.png)
线性方程组的直接解法
线性方程组(linear equation system)是一类几何问题,也是解决线性系统和代数问题的重要方法,线性方程组由多个联立方程组成,这些方程中也可能含有未知量。
直接解法是把数学模型转换为数值模型,并给出实现其解题步骤的算法,它不同于间接求解的方法,既不做任何假设,也不处理不确定性问题,只是简单地直接求解线性方程组。
解线性方程组的直接解法主要分为三种,分别是高斯消元法、列主元消去法和列坐标变换法。
高斯消元法是一种比较常用的方法,主要是把线性方程组的未知量从左到右一步步求出来,其中用到的主要技术是把矩阵中部分元素消去为零,以便求解不定线性方程组的未知量。
而列主元消去法则是以一列为主元,去消除其他联立方程中出现的此列中的变量,从而最终求出其他未知变量的值。
最后,列坐标变换法是将线性方程组转换为一个更有利于求解的矩阵,其中未知量可以直接求得解答。
除了这三种常见方法外,还有一些更特殊的直接解法,比如要解常微分方程的未知函数,可以用拉格朗日方法和分部积分方法,再比如求解雅各比方程的根,可以通过主副方程互解求解,这种方法也叫作特征根法。
综上,解线性方程组的直接解法有高斯消元法、列主元消去法、列坐标变换法等;特殊问题可以采用拉格朗日方法、分部积
分法和特征根法等。
每种方法都有自己的优势,因此在使用时,可以根据问题的特点,选择适合的方法来解决。
第三章 解线性方程组的直接法
![第三章 解线性方程组的直接法](https://img.taocdn.com/s3/m/01dfe9e258f5f61fb736665f.png)
第三章 解线性方程组的直接法3.1 引言许多科学技术问题要归结为解含有多个未知量x 1, x 2, …, x n 的线性方程组。
例如,用最小二乘法求实验数据的曲线拟合问题,三次样条函数问题,解非线性方程组的问题,用差分法或有限元法解常微分方程、偏微分方程的边值等,最后都归结为求解线性代数方程组。
关于线性方程组的数值解法一般有两类:直接法和迭代法。
1. 直接法直接法就是经过有限步算术运算,可求得线性方程组精确解的方法(假设计算过程中没有舍 入误差)。
但实际计算中由于舍入误差的存在和影响,这种方法也只能求得线性方程组的近似解。
本章将阐述这类算法中最基本的高斯消去法及其某些变形。
2. 迭代法迭代法就是用某种极限过程去逐步逼近线性方程组精确解的方法,迭代法需要的计算机存储 单元少、程序设计简单、原始系数矩阵在计算过程中不变,这些都是迭代法的优点;但是存在收敛性和收敛速度的问题。
迭代法适用于解大型的稀疏矩阵方程组。
为了讨论线性方程组的数值解法,需要复习一些基本的矩阵代数知识。
3.1.1 向量和矩阵 用nm ⨯R表示全部n m ⨯实矩阵的向量空间,nm C⨯表示全部n m ⨯复矩阵的向量空间。
()⎪⎪⎪⎪⎪⎭⎫⎝⎛==⇔∈⨯nn n n n n ij nm a a aa a aa a a a212222111211A R A 此实数排成的矩形表,称为m 行n 列矩阵。
⎪⎪⎪⎪⎪⎭⎫⎝⎛=⇔∈n n x x x 21x R x x 称为n 维列向量矩阵A 也可以写成)(n 21a ,,a ,a A = 其中 a i 为A 的第i 列。
同理⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=T T T n 21b b b A其中T i b 为A 的第i 行。
矩阵的基本运算:(1) 矩阵加法 )( ,n m n m R C ,R B ,R A B A C ⨯⨯⨯∈∈∈+=+=n m ij ij ij b a c . (2) 矩阵与标量的乘法 ij j a ci αα== ,A C (3) 矩阵与矩阵乘法 p nk kjik b acij ⨯⨯⨯=∈∈∈==∑m p n n m R C ,R B ,R A AB C ( ,1(4) 转置矩阵 ji ij T nm a c ==∈⨯ , ,A C RA(5) 单位矩阵 ()n n ⨯∈=R e ,,e ,e I n 21 ,其中 ()Tk e 0,0,1,0,0 = k=1,2,…,n(6) 非奇异矩阵 设nn ⨯∈RA ,nn ⨯∈RB 。
计算方法第三章线性方程组的直接解法
![计算方法第三章线性方程组的直接解法](https://img.taocdn.com/s3/m/12811e80195f312b3169a5f1.png)
5 3
3 1
r3
r1 6
6 1 18 2
1 0
4 5 1 3
3 1
r3 r225
1 0
4 1
5 3
3 1
0 25 48 16
0 0 27 9
林龙
计算方法
6
化原方程组为三角方程组的过程为消元过程. 解三角方程组的过程为回代过程.
也可将上边的增广矩阵进一步化简.
1 4 5 3
1 0 7 1
xi
Di D
(i
1, 2,3,
),由于方程含有n 1个
行列式.如对每个行列式按展开定理来计算.
用克莱姆法则求解,所需要的乘除运算量为
n!(n2 1) n次,若n 20用每秒一千万次的
计算机要三百万年,所以并不是凡直接法都
可以用来做实际运算.
林龙
计算方法
4
设有
§3.1直接法
a11x1 a12 x2 a21x1 a22 x2
解 : 10
7
0
7
r1 r2
5 1 5 6
林龙
计算方法
16
10 3 5
7 2 1
0 6 5
7 4 6
r2
3 10
r1
r3
5 10
r1
10
0
0
7 0.1 2.5
0 7 6 6.1 5 2.5
r2 r3
r3
1 25
r2
10 7 0 7 x3 1
0
2.5
5
2.5
x2
2.5 5x
nn
a11 a12 .... a1n 1 0 0
a21
a22
第3章 线性方程组求解的直接解法
![第3章 线性方程组求解的直接解法](https://img.taocdn.com/s3/m/52f9da94ad51f01dc281f1e8.png)
线性方程组求解的直接法5.2线性方程组直接解法概述直接解法就是利用一系列公式进行有限步计算,直接得到方程组的精确解的方法.当然,实际计算结果仍有误差,譬如舍入误差,而且舍入误差的积累有时甚至会严重影响解的精度.这是一个众所周知的古老方法,但用在计算机上仍然十分有效.求解线性方程组最基本的一种直接法是消去法.消去法的基本思想是,通过将一个方程乘以或除以某个常数,以及将两个方程相加减这两种手段,逐步减少方程中的变元的数目,最终使每个方程仅含一个变元,从而得出所求的解.高斯(Gauss )消去法是其中广泛应用的方法,其求解过程分为消元过程和回代过程两个环节.消元过程将所给的方程组加工成上三角方程组,所归结的方程组再通过回代过程得出它的解.Gauss 消去法由于添加了回代的过程,算法结构稍复杂,但这种改进的算法明显减少了计算量.直接法比较适用于中小型方程组.对高阶方程组,即使系数矩阵是稀疏的,但在运算中很难保持稀疏性,因而有存储量大,程序复杂等不足.5.3直接解法5.3.1Gauss 消去法Gauss 消去法是一个古老的求解线性方程组的方法,由它改进而来的选主元法是目前计算机上常用的有效的求解低阶稠密矩阵线性方程组的方法.例5.1用Gauss 消去法解方程组1231231232221(5.3.1)1324 (5.3.2)2539(5.3.3)2x x x x x x x x x ⎧++=⎪⎪++=⎨⎪++=⎪⎩解〖JP4〗第1步,式35.3.12⨯-()()加到式(5.3.2)上,式()15.3.1()2⨯-加到式(5.3.3)上,得到等价方程组123232322211(5.4.4)282(5.4.5)x x x x x x x ⎧++=⎪⎪-+=-⎨⎪⎪+=⎩第2步,式()2⨯5.3.4加到式(5.3.5)上得等价的方程组12323322211100(5.3.6)x x x x x x ++=⎧⎪-+=-⎨⎪=⎩第3步,回代法求解方程组(5.3.6),即可求得该方程组的解为32110,1,.2x x x ===-.用矩阵描述其约化过程即为233(2)22221011100100r r r ⨯+⇒⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦→[]122133(1)3()21()222212221,3241/201111395/20282r r r r r r A b ⨯-+⇒⨯-+⇒⎡⎤⎡⎤⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦→.这种求解过程称为具有回代的Gauss 消去法.由此例可见,Gauss 消去法的基本思想是:用矩阵的初等行变换将系数矩阵A 化为具有简单形式的矩阵(如上三角阵、单位矩阵等),而三角形方程组是很容易回代求解的.一般地,设有n 个未知数的线性方程组为11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪++=⎩L L MM M L (5.3.7)1212)(,,)(,,)T T ij n n n n A a X x x x b b b b ⨯===L L (,,,则方程组(5.3.7)化为AX b =.方便起见,记()(1)det 0A AA ==≠,(1)b b =,且()1A的元素记为()()11,ij a b ,的元素记为()1i b ,则消去法的步骤如下:第1步:1110a≠(),,计算(1)11(1)11(2,3,4),i i a m i n a ==L 用()1i m -乘方程组(5.3.7)中的第1个方程加到第i个方程中()2,3,i n =L ,即进行行初等变换()112,3,i i i R m R R i n -⋅→=L ,消去第2个到第n个方程中的未知数1,x ,得等价方程组111121(2)(2)(2)22222(2)(2)(2)2inn n n nn n x a a b x a a b ⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦LMM LM M L (5.3.8)记为(2)(2)A X b =,其中(2)(1)(1)(2)(1)(1)1111(,2,3),2,3,ij ij i j i i i a a m a i j n b b m b i n =-==-=L L ,,第k 步()1,2,1k n =-L:继续上述消元过程.第1步到第1k -步计算已完成,且得到与原方程组等价的方程组(1)(1)(1)(1)1112111(2)(2)(2)222223()()()()()()nn k k k kkkn k n k k k nk nn n a a a b x a a b xx aa b x a a b ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦L L LLOM L M MMM L(5.3.9)记为()(()K k A X b =,进行第k 步消元:设()0k kka≠,计算乘数()()(1,)k ikk ik kka m k k n a ==+L ,用ik m -乘方程组(5.3.9)中第k 个方程加到第i 1)i k n =+L (,,,个方程上消去方程组(5.3.9)中第i 1)i k n =+L (,,个方程的未知数k x ,得到与原方程组等价的方程组:(1)()()(1)()()(1)(1)()(,1,)( 1.)k k k ij ij ik kj k k k i i ik k k k k k a a m a i j k n b b m b i k n A A k b b k ++++⎧=-=+⎪=-=+⎨⎪⎩L L ()与前行元素相同,与前个元素相同 (5.3.10) 记为(1)(1)k k A X b ++=其中(1)(1,k k A b ++)中元素计算公式为(1)()()(1)()()(1)(1)()(,1,)( 1.)k k k ij ij ik kj k k k i i ik k k k k k a a m a i j k n b b m b i k n A A k b b k ++++⎧=-=+⎪=-=+⎨⎪⎩L L ()与前行元素相同,与前个元素相同 (5.3.11)重复上述过程,且设()0(1,2,1)k kk a k n ≠=-L ,共完成1n -步消元计算,得到与方程组(5.3.7)等价的三角形方程组1111211(2)(2)(2)22222()()n n n n n nn n x a a b x a b ⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦LMOM M (5.3.12)再用回代法求方程组(5.3.12)的解,计算公式为()()()()1()(),(1,2,1)n n n nn n i i i ij j j i i i ii b x a b a x x i n n a =+⎧=⎪⎪⎨-⎪==--⎪⎩∑L (5.3.13)元素()k kka 称为约化的主元素.将方程组(5.3.7)化为方程组(5.3.12)的过程称为消元过程.方程组(5.3.12)的求解过程(5.3.13)称为回代过程.由消元过程和回代过程求解线性方程组的方法称为Gauss 消去法.定理5.1(Gauss 消去法)设AX b =。
数值计算方法-第5章_解线性方程组的直接法
![数值计算方法-第5章_解线性方程组的直接法](https://img.taocdn.com/s3/m/87565b924431b90d6c85c7d5.png)
本章讲解直接法
5.1 消元法
我们知道,下面有3种方程的解我们可以直接求出:
①
n次运算
A
diag(a11, a22 ,
, ann )
xi
bi aii
,i
1,
,n
②
(n+1)n/2次运算
l11
A
l21 ln1
l22 ln2
(aik
k 1
liklkr ) r 1 lkk
,i k 1, , n
因此不常用
又 l11
1
l11
l21 l22
ln1
ln2
lnn
l '21 l 'n1
1 l'n2
1
l22
lnn
则有
A L~D~D~T L~T LDLT
L~
D~
1
L
l21 ln1
lnn
xi
bi
i 1
lij x j
j 1
lii
,i
1,
,n
③
(n+1)n/2次运算
u11
A
u12 u22
u1n
u2n unn
xi
bi
n
uij x j
j i 1
uii
,i
n,
,1
对方程组,作如下的变换,解不变 ①交换两个方程的次序 ②一个方程的两边同时乘以一个非0的数 ③一个方程的两边同时乘以一个非0数,加到另一个方程
1 ln2
1
d1
D
d2
dn
a11 a12
a21 a22
数值分析第五章解线性方程组的直接法
![数值分析第五章解线性方程组的直接法](https://img.taocdn.com/s3/m/19ef9537f56527d3240c844769eae009581ba217.png)
数值分析第五章解线性方程组的直接法解线性方程组是数值分析中的一个重要问题,对于大规模的线性方程组来说,直接法是一种常用的求解方法。
本文将介绍解线性方程组的直接法,包括高斯消元法和LU分解法,并对其稳定性和计算复杂度进行讨论。
高斯消元法是一种常用的直接法,用于求解非奇异线性方程组。
其基本思想是通过初等行变换将线性方程组转化为上三角方程组,然后通过回代求解得到方程的解。
高斯消元法的步骤如下:1.将线性方程组表示为增广矩阵[A,b],其中A是系数矩阵,b是常数向量。
2.从第一行开始,选择一个非零元素作为主元,通过行变换将主元下方的元素全部消为零。
3.重复第2步,直到矩阵变为上三角矩阵。
4.通过回代求解上三角矩阵,得到方程组的解。
高斯消元法的主要优点是简单直接,容易实现,但存在一些问题。
首先,如果系数矩阵A是奇异矩阵,即行列式为零,那么高斯消元法无法得到方程组的解。
其次,如果系数矩阵A的其中一行或几行接近于线性相关,那么在消元过程中会引入大量的舍入误差,导致计算结果不准确。
这也说明了高斯消元法的稳定性较差。
为了提高稳定性,可以使用LU分解法来解线性方程组。
LU分解法将系数矩阵A分解为两个矩阵L和U的乘积,其中L是下三角矩阵,U是上三角矩阵。
这样,原始的线性方程组可以表示为LUx=b,进而可以通过两个步骤来求解方程组:1.进行LU分解,将系数矩阵A分解为L和U。
2.分别用前代和回代的方法求解方程组Ly=b和Ux=y。
LU分解法相对于高斯消元法的优点是,可以在求解多个右端向量时,避免重复计算LU分解,从而提高计算效率。
同时,LU分解法的稳定性也较高,对于多个右端向量求解时,舍入误差的累积相对较小。
然而,LU分解法也存在一些问题。
首先,LU分解法的计算复杂度较高,需要进行两次矩阵乘法和一次矩阵向量乘法,而且LU分解过程中需要对系数矩阵A进行大量的行变换,增加了计算量。
其次,当系数矩阵A的一些元素非常小或非常大时,LU分解法容易出现数值不稳定的情况,即舍入误差的累积较大,导致计算结果不准确。
解线性方程组的直接方法
![解线性方程组的直接方法](https://img.taocdn.com/s3/m/14fd9f53fd4ffe4733687e21af45b307e871f9b3.png)
解线性方程组的直接方法一、高斯消元法高斯消元法是解线性方程组的一种常用且直接的方法。
它的基本思想是通过一系列的代数运算,将方程组化为一个三角方程组,然后从最后一行开始,逐步回代求解未知数。
下面以一个二元一次方程组为例,说明高斯消元法的具体步骤:例如,给定方程组:a₁₁x₁+a₁₂x₂=b₁a₂₁x₁+a₂₂x₂=b₂其中,a₁₁,a₁₂,a₂₁,a₂₂,b₁,b₂为已知系数。
1.检查a₁₁的值是否为0,若为0则交换第一行与非零行。
2.将第一行的每个元素除以a₁₁,使a₁₁成为13.将第一行乘以(-a₂₁)并加到第二行上,使第二行的第一个元素变为0。
4.引入一个新的未知数y₂=a₂₁x₁+a₂₂x₂,并代入第二行,化简方程组。
5.使用回代法求解方程组。
高斯消元法的优势在于其直接的解题思路和较高的计算精度,但是其缺点是计算复杂度较高,对于大规模的方程组不太适用。
二、逆矩阵法逆矩阵法是解线性方程组的另一种直接方法,它通过求解方程组的系数矩阵的逆矩阵,并将其与方程组的常数向量相乘,得到方程组的解向量。
下面以一个三元一次方程组为例,说明逆矩阵法的具体步骤:例如,给定方程组:a₁₁x₁+a₁₂x₂+a₁₃x₃=b₁a₂₁x₁+a₂₂x₂+a₂₃x₃=b₂a₃₁x₁+a₃₂x₂+a₃₃x₃=b₃其中,a₁₁,a₁₂,a₁₃,a₂₁,a₂₂,a₂₃,a₃₁,a₃₂,a₃₃,b₁,b₂,b₃为已知系数。
1.计算系数矩阵A的行列式D=,A。
2. 求解系数矩阵A的伴随矩阵Adj(A)。
3. 计算逆矩阵A⁻¹=Adj(A)/D。
4.将常数向量b用列向量表示。
5.计算解向量x=A⁻¹b。
逆矩阵法的优势在于其求解过程相对简单,计算量较小,并且不需要对系数矩阵进行消元操作。
但是逆矩阵法的限制在于当系数矩阵不可逆时无法使用。
三、克莱姆法则克莱姆法则是解线性方程组的另一种直接方法,它通过定义克莱姆行列式和克莱姆向量,利用行列式的性质求解方程组的解向量。
计算方法实验:解线性方程组的直接法
![计算方法实验:解线性方程组的直接法](https://img.taocdn.com/s3/m/278c3a8b3b3567ec112d8a9b.png)
实验二解线性方程组的直接法一、实验目的用列主元素高斯消去法和三角分解法解线性方程组Ax=b。
式中,A为n阶非奇异方阵,x,b是n阶列向量,并分析选主元素的重要性。
二、实验方法(1)列主元素高斯消去法通过变换,将系数矩阵换成等价的上三角矩阵,在每步消元过程中,选列主元素。
对k=1,2,……n-1,逐次计算l ik=a ik(k-1)/a kk(k-1) (i=k+1,k+2,……,n)a ij(k)=a ij(k-1)-l ik a kj(k-1) (i,j=k+1,k+2,……,n)b i(k)=b i(k-1)-l ik b k(k-1) (i=k+1,k+2,……,n)逐步回代气的原方程组的解X n=b i(n-1)/a nn(n-1)X k=(b k(k-1)_a kj(k-1)x j)/a kk(k-1) (k=n-1,n-2, (1)(2)直接三角分解法由于两个矩阵相等就是它们的对应元素相等,因此通过比较A与LU的对应元素,即可得到直接计算L,U的元素的公式。
设A=L×U,其中U的第一行、L的第一列的元素分别为对(依次:U的第二行,L的第二列,U的第三行,L的第三列……),有由上述两种方法得到矩阵A的LU分解后,求解Ly=b与Ux=y的计算公式为∑+=n1kj三、实验内容解下列方程组·=四、实验程序(1)列主元素高斯消去法(2)直接三角分解法0147.06721.109998.42371.13142.17643.89217.44129.35435.15330.27875.15301.04017.31651.18326.31348.14321xxxx9237.164231.183941.65342.9五、实验结果(仅供参考)精确解为:(1,1,1,1)T六、结果分析实验的数学原理很容易理解,也容易上手。
把运算的结果带入原方程组,可以发现符合的还是比较好。
这说明列主元消去法计算这类方程的有效性。
第5章 解线性方程组的直接方法
![第5章 解线性方程组的直接方法](https://img.taocdn.com/s3/m/5c7870d17f1922791688e86e.png)
第5章
解线性方程组的直接方法
定理3 若A∈Rnⅹn 为对称矩阵.如果det(Ak) >0(k=1,2,…,n),
或A得特征值λi>0(i=1,2, …,n ).则A为对称正定矩阵。
《 数 值 分 析 》
有重特征值的矩阵不一定相似于对角矩阵,那么一般n阶 矩阵A在相似变换下能简化到什么形状?
定理4(若尔当(Jordan)标准型) 设A为n阶矩阵,则 存在一个非奇异矩阵P使得
a1(1) x1 b1(1) n ( 2) ( 2) a2 n x2 b2 ( k ) . (2.8) (k ) akn xk bk (k ) (k ) ann xn bn
(2.12 )
(2.7)
简记为
A(2)X=b(2) ,
( ( ( aij2) aij1) mi1 a11) , j
其中A(2),b(2)的元素计算公式为
(i, j 2,3,, n),
bi( 2) bi(1) mi1 b1(1) , (i 2,3,, n).
第k步:若
(k akk ) 0,
a11 ... ... Ak ak1 ... ... , akk
《 数 值 分 析 》
a
1k
k 1,2, n.
(3)A的特征值λi>0(i=1,2, …,n ). (4)A的顺序主子式都大于零,即det(Ak) >0(k=1,2,…,n)
(1))=(a
), b(1)=b. ij
第5章 解线性方程组的直接方法 (1)消元过程 1 (1 第1步:设 a (1) 0,首先计算乘数 mi1 ai(1 ) / a11) , i 2,3n, 11 用-mi1乘(2.1)的第1个方程组,加到第i个中,消去方程组(2.1)的从 第2个方程到第n个方程中的未知数X1,得到与方程组(2.1)等价的线性方 程组 《 数 值 分 析 》
线性代数方程组求解直接方法
![线性代数方程组求解直接方法](https://img.taocdn.com/s3/m/7a62e28a5ebfc77da26925c52cc58bd631869388.png)
LU分解法
将系数矩阵分解为一个下三角矩阵L和 一个上三角矩阵U的乘积,然后通过求 解LY=b和UX=Y两个三角形方程组得到 原方程组的解。LU分解法具有较高的数 值稳定性,适用于中小型方程组。
根据系数矩阵的第一行和最后一行元素, 计算出初始参数。
2. 追赶过程
3. 回代过程
从第二行开始,逐行进行消元,将系数矩 阵转化为上双对角矩阵。
从最后一行开始,逐行回代求解,得到方程 组的解。
平方根法的基本原理与计算步骤
基本原理
1. Cholesky分解
2. 前代过程
3. 回代过程
平方根法是一种适用于对称正 定矩阵线性方程组的求解方法 ,通过Cholesky分解将系数矩 阵分解为下三角矩阵和其转置 的乘积,进而简化计算。
收敛速度
在适当的条件下,雅可比迭代法的收敛速度可能比一般的 迭代法更快。
计算复杂度
雅可比迭代法需要计算雅可比矩阵及其逆矩阵,因此计算 量相对较大;而一般的迭代法只需要进行矩阵与向量的乘 法运算,计算量相对较小。
稳定性
雅可比迭代法的稳定性较好,对初始近似解的要求较低; 而一般的迭代法可能对初始近似解的要求较高,否则可能 导致迭代序列发散。
对系数矩阵进行Cholesky分解 ,得到下三角矩阵L。
通过下三角矩阵L,求解出中间 向量y。
利用中间向量y和下三角矩阵L 的转置,求解出方程组的解。
追赶法与平方根法的比较
适用范围
追赶法适用于三对角矩阵线性方程组, 而平方根法适用于对称正定矩阵线性方
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其增广矩阵为
2 4 2 6 ( A, b) 1 1 5 0 4 1 2 2
5
计算方法 第一章解线性方程组的直接法 第一步消元过程相当于用矩阵G1左乘增广矩阵,即
2 4 2 6 G1 ( A, b) 0 3 6 3 0 7 2 10 1 0 0 0 0 1 1 1 G1 1 0 I (1, 0, 0) I 1 (1, 0, 0) 2 2 2 4 2 0 1 2
T G1 I 1a1e1
G1a1 G1 (a11, a21, an1 )T (a11,0, 0)T
a1n
(2) a2 n
从而G1(A,b)具有下列形式,
(2) a 其中 ij
a11 a12 0 a (2) 22 ( A(2) , b(2) ) G1 ( A, b) (2) 0 an 2 aij li1a1 j , bi(2) bi li1b1
计算方法 第一章解线性方程组的直接法
第一章 解线性方程组的直接法
1
计算方法 第一章解线性方程组的直接法
求解Ax=b
直接法是指在无舍入误差存在的情况下,经 过有限步运算即可求得精确解的算法,因此 又称精确法. 因为舍入误差的存在,精确解也是不精确的. 直接法的典型代表是Gauss消元法
2
计算方法 第一章解线性方程组的直接法
li1 ai1 , a11 i, j 2, , n.
(2) ann
b1 (2) b2 (2) bn
8
计算方法 第一章解线性方程组的直接法
一般地,如果已经利用Gauss矩阵G1, …,Gk-1得到
( A( k ) , b( k ) ) Gk 1
G1 ( A, b) a1n (2) a2 n
2 x1 4 x2 2 x3 6 x1 x2 5 x3 0 4 x x 2 x 2 2 3 1
2 x1 4 x2 2 x3 6 行 1行1 / 2 2 0 x1 3 x2 6 x3 3 3行 1行 2 0 x 7 x 2 x 10 2 3 1
(k ) (k ) lik aik / akk ,
a1k
(2) a2 k
a1,k 1
(2) a2, k 1
a1n
(2) a2 n
(k ) akk
同样,若取Gauss矩阵为
0 1 G2 I 0 (0,1, 0) 3 7
2 4 2 6 G2G1 ( A, b) 0 3 6 3 0 0 12 3
则有
从上述讨论看出,消元过程等价于将方程组的增广矩阵依 次左乘相应的Gauss矩阵,将其化为上三角形式
回代过程 3
计算方法 第一章解线性方程组的直接法
按照矩阵变换的观点来描绘消元的过程
Rn x | x ( x1, x2 ,, xn ), xi为实数(i 1,2,, n)
C n x | x ( x1, x2 ,, xn ), xi为复数(i 1,2,, n)
分别表示n维实和复向量空间,用R n×n 表示n×n阶实矩阵 空间 考虑线性方程组 Ax=b 其中
7
计算方法 第一章解线性方程组的直接法 下面,按照上述思想推导消元法的一般算式 对于一般的矩阵A=[aij],设a11≠0,令
1 1/ a11 a1 (a11 , a21 ,
构造Gauss矩阵
用G1左乘a1得
, an1 )T a1 (0, a21,
, an1 )T e1 (1,0, 0)T
1 T G1 I e1 2 T 其中 0,1, 4 是将A中的第一列中的元素a11换成0而得到的列向量, T e1 1, 0, 0 是单位矩阵I的第一列所形成的列向量,1/2是a11的倒数。 这种形式的矩阵称为Gauss矩阵。
它可以记为
6
计算方法 第一章解线性方程组的直接法
2 x1 4 x2 2 x3 6 行 2 行7 / 3 3 0 x1 3 x2 6 x3 3 0 x 0 x 12x 3 2 3 1
消元过程
由( 3)式得x3 1 / 4
代入( 2)式得x2 3 / 2
再将x3和x2代入( 1 )式得x1 1/ 4
A [aij ] Rnn , b (b1, b2 ,, bn )T Rn
4
计算方法 第一章解线性方程组的直接法
2 x1 4 x2 2 x3 6 x1 x2 5 x3 0 4 x x 2 x 2 2 3 1
矩阵形式为
2 4 2 x1 6 x 0 b Ax 1 1 5 2 4 1 2 x3 2
(k ) T ank ),
(k ) k 1/ akk
9
计算方法 第一章解线性方程组的直接法
( A( k 1) , b( k 1) ) Gk ( A( k ) , b( k ) ) a11 (2) a 22 = 0
(k ) akk (k ) akn
a11 a12 (2) a 22 = 0
则当 akk 0 时,取
(k )
(k ) ank
(k ) ann
b1 (2) b2 bk( k ) (k ) bn
T Gk I k ak ek