湘钢3800mm板材厚度和板形控制的优化

湘钢3800mm板材厚度和板形控制的优化
湘钢3800mm板材厚度和板形控制的优化

湘钢3800mm板材厚度与板形控制的优化

(五米宽厚板厂彭敦向)

概要:本文主要介绍湘钢3800mm宽厚板轧机厚度与板形控制的功能、组成,研究和优化厚度与板形控制的各种数学模型与补偿,以及液压小辊缝控制的研发与使用,为湘钢3800mm宽厚板产品质量和成材率的提升奠定了坚实的基础。

1 前言

本论文属于轧制科学技术领域,是为了保证板材的交货质量,提高成材率而做的探索和改进。07年前,按照宽厚板产品大纲,外方调试完毕的轧机设备轧制的产品基本满足要求,但随着产量的不断提升及产品的不断升级,控制系统必须保证质量的稳定。相对之前主要是探索在提高轧制节奏下板材厚度与板形控制的稳定性,因此对L2模型的再计算功能,精轧机AGC、PFC控制等进行深入了解及优化,同时对轧辊的配辊、辊形进行摸索调整。本论文主要内容是通过自动化手段,实现对板材的厚度和板形的精确控制,以求达到优化产品质量,减少废次品;提高成材率,减少头尾和切边余量。

2、板材厚度和板形控制的探索2.1 厚度控制

厚度控制的不准确不仅仅影响产品质量,同时由于中间坯厚度的不准确直接威胁到轧机的安全。影响厚度的主要原因是辊缝的不准确,所以只有保证辊缝的准确性,才能保证板材厚度的准确和稳定,决定辊缝的因素有:

道次表设定辊缝

●轧机弹性变形补偿

●轧辊热凸度补偿

●轧辊磨损补偿

●油膜补偿

●零点修正补偿

要解决厚度控制不准的问题,首先必须从这几个方面入手

2.1.1道次表设定辊缝

二级道次表计算模型(PSC),是采用的平均压下率进行道次计算的,计算模式有4种,一是预计算,即板坯入炉后通过原始的PDI对板坯进行计算,用以检测可轧性;二是设定计算,板坯入炉后,模型采集加热炉温度模型计算的板坯温度,进行道次表计算;三是再计算,板坯轧过第一道次后的计算称为再计算,模型采集轧制过程中的各种测量值,例如温度、宽度、厚度和轧制力等,利用测量值为下道次进行重新计算;四是事后计算,钢板轧制完后,通过轧后的数据进行重新计算,用于长期自适应。

通过观察和检查二级程序,我们发现板坯经过粗轧轧完后,进入中间辊道,在经过高温计时,模型没有采用该测量值进行重新计算,而是直接使用的是粗轧结束时的道次表,中间坯在中间辊道上的温度损失没有考虑在道次表计算,造成精轧的实际轧制力和期望轧制力偏差较大,使厚度控制发生偏差,更严重的有时可以造成卡钢或断辊事故,对轧辊和主电机造成较大损害。通过修改二级程序(PlateBufferManager),在收到高温计检测到的温度后向模型服务器发送再计算请求事件,待计算完成后再向DataHandler程序发送道次表发送事件,DataHandler程序收到事件后,将计算完的新的道次表发送到TCS 系统中,用于实际轧制。

修改后的程序投入运行后,精轧的第一道次的实际轧制力和期望轧制力较为接近,厚度控制得到改善,卡钢事故的次数明显减少,从以前每月的2-3次,现在基本上杜绝了由于道次表引起的卡钢。

2.1.2轧机弹性变形

轧制时,在轧制压力的作用下,轧机工作基座产生一定量的弹性变形。弹性变形的结果将使实际压下量减小,轧件的出口厚度大于空载时的辊缝。为了获得正确的轧件的厚度,即必须减小空载时的辊缝,用以补偿由于轧机弹性变形引起的辊缝变化。轧件厚度等于轧机的空载辊缝值加上轧机的弹性变形量,轧机的变形量在

一定范围内正比于轧制力F ,也就是:

M F

S h +

=

h 为轧件出口厚度,

S 为空载辊缝,F 为轧制力。M 为轧机弹性变形系数。

但在实际应用中,在轧制力小的

情况下轧制力与轧机弹跳值并不是线

性关系,辊缝真实零位很难确定,所以一般采用辊缝零调来标定人工零位,再以人工零位为基础进行辊缝控制,就是:

M F F S h 0

-+=

S 为相对人工辊缝零位的辊缝

值,0F 为确定人工辊缝零位时的轧制力。如图1中的A 线。

另一方面,当作用在轧件上的轧制

力变化F ?

时,轧件厚度上将被压下h ?,其关系为:

Q F

h ?-

=?

其中,Q 值称为轧件塑性系数。表现为图1中的B 线。

图1 P-H 图

利用P-H 图可以综合分析轧机与

轧件之间相互作用力与变形关系,如

图1,当来料厚度变化H

?(B

B'

→)时,分析轧制力与辊缝变化趋势,需要如何移动辊缝来消除来料厚度变化引起的轧件厚度变化(A

A'

→);又比如当辊缝变化时,对轧件厚度的影响是多少。

AGC也就是依照P-H图原理调节辊缝,保证轧件出口厚度稳定。要获得正确的补偿量就必须摸清楚轧机的弹性变形曲线,这个曲线揭示了弹性变形对板材厚度的影响。为了获得这样的曲线,一般的方法是采用压靠法获得,我们的轧机同样是采用压靠法用以获得这样的曲线,在轧机的长标定过程中,同过轧辊的在一定轧制力的压靠下,通过HGC的位置传感器获得弹性变形量,然后通过在不同轧制力下的不同变形量,通过一次或2次差分,拟合成轧机的弹性变形曲线。

下面是某次长标定后的轧机测量数据。

拟合成轧机弹性曲线(P-H)如下图

但是上图只是显示了轧制力和轧机弹性之间的简单关系,实际上轧机弹性和轧件的宽度有重要的关系,为了获得准确的补偿值还需要找出弹性变形和宽度之间的关系。在实际轧制中, 轧件宽度不同, 对应相同的轧制力, 轧机弹跳也不同。当轧机中有宽度为B 的轧件时,关系式:

f B ( P) = h - S

式中:f B ( P) 为轧机弹跳; P 为轧制力; h 为轧件厚度; S 为辊缝。

我们的主要任务是找出在不同厚度下的轧机弹跳方程和曲线,以获得正确的轧机厚度补偿。

上图为轧机在各个轧制力情况下,宽度和厚度补偿之间的关系

从上图可以看出轧制力的不同,随着轧件宽度的变化,轧机的弹跳补偿值是不同的,同时轧辊的辊系变化也影响着轧机的弹跳补偿。

2.1.3轧辊热凸度补偿和轧辊磨损补偿

轧辊的磨损和热凸度是无法在实际生产中进行测量的,一般都是采用有限元分析方法,通过模型对轧辊的磨损和热凸度间接模拟计算用以获得磨损和热凸度的值,用以补偿辊缝变化。在实际生产中,发现实际的磨损和热凸度和模型计算出来的存在一定的偏差,特别在轧辊的初期和轧辊末期,人工对厚度的修正往往很大。针对这些现象,首先确认在线使用的所有轧辊材质和类型,以确保输入模型的数据准确。其次检查模型的各种参数,在检查模型参数时发现在模型设定的大量参数中,有许多参数偏离了现场的实际值,例如轧辊的重量,冷却水的温度等,对于这一部分参数我们严格按照现场的实际值进行设定,对于另外一些需要调整的参数,通过摸索和试验,用以确定最优的参数。经过优化后的模型计算输出值和实际接近,操作工无需再频繁的修正。2.1.4油膜厚度补偿

如下图,显示的是油膜厚度和速度之间的关系

轧制过程中,当轧线升速,支撑辊中的油膜分布产生变化,其作用体现在辊缝变小,而在轧制力大的情况下,油膜变化程度相对较小。所以,油膜补偿量是由轧机转速和轧制力共同决定的。通过实验测得油膜量、轧制力以及转速的关系曲线如上图。

2.1.5零点修正

虽然弹跳模型的计算精度较高,弥补了对辊系弹性变形考虑不足的缺点,但是轧辊磨损和热凸度的变化很难用数学模型精确地计算出来,而且还可能存在某些不确定的因素影响着轧机弹跳的计算。常见的而且是有效的方法是在轧机弹跳方程上附加零点漂移的处理方法。

零点修正实际上是一个长期自适应的过程,它通过比较实测的轧件厚度(主要是通过测厚仪)和AGC的辊缝进行比较,通过自适应的算法,为下一道次或者是下一个轧件的出口辊缝进行修正,以达到厚度的精确控制的目的,一般算法如下:

Δ0 ( n) = (1 - α)Δ0 ( n - 1) +α( h′n - 1 - hn - 1) ) (0 <α< 1)

式中, h′n - 1 是上一块钢实测的出口厚度, hn - 1 是上一块钢的软测量的出口厚度,Δ0 ( n - 1) 是上一块钢的零点漂移修正量,Δ0 ( n) 是本块钢板的零点漂移修正量。

因此通过优化测厚仪的测量反馈值,使其测量值接近或者等于轧件实际厚度值,以保证测量值的准确,同

时修正自适应系数,并对零点修正的值作限幅处理,使其在一个合理的范围内进行修正,目前限幅在-0.3mm和+0.3mm之间。

2.2 板形控制

板形是钢板几何形状的描述,包括横截面形状(Profile)和平直度(Flatness)两项内容。横截面形状主要由凸度,楔形度等参数表示,其中凸度(截面中点厚度与边部标志点处厚度之差)为最常见的表示参数;平直度用相对延伸差(长短纤维长度差/纤维长度)或翘曲度(浪高/浪长)表示,平常所说的板形从直观上来说就是指钢板的平直度,即是指钢板的浪形,瓢曲或镰刀弯的有无及程度而言

平直度缺陷主要分为下面2类:

●板面瓢曲,包括长度方向瓢曲

和宽度方向瓢曲

●形状不良,包括中间波浪,边

部波浪,镰刀弯2.2.1 镰刀弯的控制

镰刀弯形成的主要原因:

●机械压下行程或HGC行程原

因造成两边有辊缝差

●轧辊附加水冷却不均造成轧

辊热凸度形成不当

●钢板沿横向温度不均,造成两

侧轧制力差从而两侧轧辊的

弹性压扁值不同

●轧件未能完全对中,咬入时偏

离中心线

针对成因主要优化了机械压下和HGC的控制程序,减小两边辊缝差,以实现消除镰刀弯。

2.2.1.1 精轧机机械压下系统优化

空载时辊缝的调整是通过压下丝杆(D)来实现的,压下丝杆(D)通过三相变频电机(A)和蜗轮蜗杆副(C)来传动。在轧制过程中和急停时通过气动抱闸将机械压下系统锁紧在设定的位置。在压下丝杆下部,是上支撑

辊平衡系统,以确保在轧制过程中使压下丝杆和上支撑辊轴承座之间产生持续的压紧力,空载时使上支撑辊压靠在压头上,消除压头与上支撑辊轴承座之间的间隙,在压下丝杆动作时,支撑辊平衡压力必须降低,使得辊系

跟随丝杆动作

压下装置示意图

机械压下系统由以下几个部分组成:

A、交流电机

B、气动抱闸

C、涡轮蜗杆副

D、压下丝杆

E、压头

F、紧急回松装置

生产过程中轧制的镰刀弯,通过分析是由于辊缝动作后支撑辊平衡力没有消除压下蜗轮蜗杆的间隙,在位置传感器检测位置到达后,平衡压力调节到240bar,此压力充分消除了各间隙,由于两侧间隙不一致,造成1~3mm的偏差,由于此误差在PLC的允许范围内,但轧制时便出现镰刀弯。为解决此问题,必须合理设定压下动作时的平衡力,综合以下因数考虑:

●上支撑辊重129t,上工作辊重

34t,上辊系总重约224t

●压下系统调节速度0-

32mm/s,

●消除丝杆的间隙

●避免平衡力过大造成压下不

动作或蜗轮蜗杆过度磨损将压下下降时平衡力设为180bar,上升时设为185bar ,通过跟踪两侧偏差在0.01mm,满足生产要求,并过度无磨损。

2.2.1.2 HGC辊缝控制(薄板轧制时由液压压下进行小辊缝调节)

以前宽厚板轧制时辊缝调节的两种形式:

●辊缝大于30mm时机械压下

与液压压下同时动作

●辊缝小于30mm时机械压下

先动作,液压压下后动作

机械压下:电机速度600rpm,0-32mm/sec,减速比18.5,允许偏差2秒8mm

液压压下:调节行程80mm,位置精度±10um,响应时间40um,速度15mm/s

可见在小辊缝时用液压调节的响应时间和精确性要比机械调节效果好。针对于20mm以下的薄板,对辊缝定位要求高精度、短时间。既提高轧制节奏又保证板型。所以为了提高轧制节奏和保证在轧制薄板时对单边值的控制,决定开发辊缝调节的又一功能即关于小辊缝轧制中只用HGC 调节。

对于小辊缝轧制中的辊缝调节的改进增加HGC单动调整辊缝步骤

在接收到新的设定辊缝小于

20mm时将需要调整的辊缝直接分配给HGC,辊缝调节动作由全部HGC 完成,而EMP继续保留上一道次辊缝时分配的行程确保EMP不动作而单独动作HGC。

单动HGC的条件:须建立一使能模块确保辊缝在小于20mm压下量小于3mm时HGC动作,而EMP不动作。

技术改进

极限值的设定:根据辊系、阶梯板、

阶梯块、HGC行程的极限值、EMP

行程极限值及轧制中心线的设定结合

牌坊、轴承座的机械位置计算出,

0.5<(hgcworkingpos+fenstec/2)<13.

0,否则就会造成贴辊等现象。

增加小辊缝时单动HGC调节,

大大提高了定位的速度和精确性,从

而提高了轧制节奏和板型的质量

3.结束语

通过逐步改进和优化,功能的逐

步投入,厚度和板形的控制取得了明

显的改善,厚度控制精度提高,操作

工人工干预厚度的现象明显减少,减

轻了操作工的强度,成品厚度的合格

率明显提高。在板形控制上,由于立

辊的投入,头尾切废的长度大量减少,

金属收得率提高,镰刀弯得到了有效

的控制,由于镰刀弯影响造成的切边

不净和非计划剪切造成的废次品及现

货明显减少。并成功轧制出6mm厚

的钢板,拓宽产品。

热轧普通板带

学习情景1:热轧普通板带 任务说明书

1. 了解我国目前普通板带钢轧制的一些情况。 2. 掌握各种热轧带钢大致的生产流程 教学方法:讲授、讨论 1.1 概述 目前我国钢铁企业能生产的热轧带钢厚度范围为0.8~25.4mm,最大宽度 可达1900mm,最大轧制速度为25.1m/s,最大卷重为43.6t,热轧带钢车间年产量最高为400万t/a。 一般热轧带钢车间生产的钢种有普碳钢、优质钢、低合金钢等,代表我国常规工艺最先进水平、1997年投产的1580mm热连轧生产线主要产品钢种有:冷轧用热轧卷SPCC、SPCD、SPCE,镀锡板用热轧卷T1~T5,热轧卷SPHC、SPHD、SPHZ,一般结构用钢SS330、SS440、SS490、SS540,焊接用钢SM400A、SM520B,焊管用钢SPHT1、SPHT2,机械结构用钢S20C、S36C,汽车结构钢 SAPH310~SAPH440,耐大气钢NAW400~NAW490,冷轧取向硅钢Z8H~Z12,冷轧无取向硅钢S5~S60等;生产中执行的标准有JIS G3101、G3114、G3131、GB709-88、GB710-88、GB711-88、GB712-88、GB2517-81、GB4171-84等。 目前我国热连轧带钢生产线既有二代到五代的常规热连轧生产线,也有代表当今世界热轧带钢生产工艺最先进水平的的薄板坯连铸连轧生产线(短流程工

艺)。用薄板坯连铸连轧的一些先进适用的技术来改造常规热连轧带钢生产线已成为一种趋势。本章仅介绍常规工艺。 由于先进的计算机控制技术、CVC轧机、控制轧制、(精轧机组的)无头轧制、在线磨辊、热轧工艺润滑等一系列新技术应用于热轧带钢生产中,使可生产的热轧带钢厚度不断减小,厚度精度、表面质量和组织性能不断提高,生产成本不断降低,导致部分厚规格热轧带钢可以当中厚板用,部分薄规格热轧带钢可以当冷轧带钢用,目前已出现了热轧带钢生产企业争夺冷轧带钢生产企业、中厚板生产企业的市场份额的苗头,特别是具有连铸连轧工艺的热轧带钢生产企业竞争力更强。 1.2 生产流程及车间设备平面布置 常规热轧带钢生产工艺流程如图1-1所示,这种传统工艺具有以下特征:1)原料是厚度较大的连铸板坯,连铸机为厚板坯连铸机,铸速较慢;2)连铸与轧钢分属两个互相独立的车间,它们往往相距较远,没有统一的计划、调度和指挥;3)两个车间都有较大的板坯库用来堆放连铸坯;4)钢水经连铸机变成板坯后,往往要经过冷却、检查、人工离线表面缺陷清理、库内堆放、备料等多个环节;5)由于离开连铸机后,经过了长时间冷却,连铸坯入炉温度基本为室温,虽然有的企业采取了某些抢温保温等措施,实现了一定程度的热送热装,但连铸坯入炉温度一般在A1以下,因此,在轧制前需要在加热炉内进行长时间加热。 图1-1常规热轧带钢工艺的轧制工艺流程 常规热轧带钢工艺的轧制工序由粗轧和精轧组成。图1-1中各个工序的主要作用为: (1)原料准备为加热和热轧准备质量合格的连铸板坯。它一般包括连铸车间对连铸坯检查、表面缺陷清理、堆放,轧钢车间验收、按照轧制计划备料、堆放等环节。 (2)加热提高连铸坯温度,改善其塑性,降低其变形抗力,改善其内部组织和性能,以满足轧制的要求。

轧机厚度自动控制系统设计

轧机厚度自动控制系统设计 摘要:随着社会经济的发展,对板带产品的质量和精度要求越来越高。厚度精度就是板带产品的重要质量指标之一。本文针对轧机AGC技术的现状,以及轧机厚差产生的原因进行了分析。在此基础上,对轧机AGC进行分析,以APC为主要研究对象,选用PLC作为系统的控制器,将位移传感器测得的位移量经A/D转换送给PLC来控制步进电机,从而控制阀,通过轧制力来改变辊缝厚度实现轧机厚度控制。 1 引言 轧机又称轧钢机,轧钢机就是在旋转的轧辊之间对钢件进行轧制的机械,轧钢机一般包括主要设备(主机)和辅助设备(辅机)两大部分。轧钢机按轧辊的数目分为二辊,三辊式,四辊式和多辊式,轧钢机通常简称为轧机。 板带厚度精度是板带材的两大质量指标之一,板带厚度控制是板带轧制领域里的两大关键技术之一。带钢纵向厚度不均是影响产品质量的一大障碍,因此,轧机的一项重要课题就是带钢厚度的自动控制。厚度自动控制系统是通过测厚仪或传感器对带材实际轧出厚度连续进行测量,并根据实测值与给定值比较后的偏差信号,借助于控制回路或计算机的功能程序,改变压下装置、张力或轧制速度,把带材出口厚度控制在允许的偏差范围内。实现厚度自动控制的系统称为“AGC"。 我国近年来从发达国家引进的一些大型的现代化的板带轧机,其关键技术是高精度的板带厚度控制和板形控制。板带厚度精度关系到

金属的节约、构件的重量以及强度等使用性能,为了获得高精度的产品厚度,AGC系统必须具有高精度的压下调节系统及控制系统的支持。 而对于轧机来说产生厚差的原因大致可分为三大类: (1)轧机方面的原因:轧辊热膨胀和磨损、轧辊弯曲、轧辊偏心和支撑辊轴承油膜厚度等都会产生厚度波动。它们都是在液压阀位置不变的情况下,使实际辊缝发生变化,从而导致轧出的带钢厚度产生波动。 (2)轧件方面的原因:厚度偏差会直接受到坯料尺寸变化的影响。它包括来料宽度不均和来料厚度不均的影响。 (3)轧制工艺方面的原因:轧制时前后张力的变化、轧制速度的变化等。 2 系统总体设计 厚度自动控制AGC (Automatic Gauge Control)是指钢板轧机在轧制过程中通过动态微调使钢板纵向厚度均匀的一种控制手段。厚度自动控制系统是通过测厚仪或传感器对带材实际轧出厚度连续进行测量,并根据实测值与给定值比较后的偏差信号,借助于控制回路或计算机的功能程序,改变压下装置、张力或轧制速度,把带材出口厚度控制在允许的偏差范围内。 AGC系统一般包括有: 1)压下位置闭环:为了轧出给定厚度的轧件,首先必须在轧件进入辊缝之前,准确地设定空载辊缝。其次,在轧制过程中,为了使轧后的轧件厚度均匀一致,还必须随着轧制条件的变化及时的调整空

热轧带钢质量控制标准

热轧带钢质量控制标准 1、范围 本标准规定了信钢公司碳素结构钢和低合金结构钢热轧钢带的质量控制标准。 本标准适用于厚度不大于8.0mm、宽度345mm~520mm的碳素结构钢和低合金结构钢热轧钢带。成分、尺寸、外形、力学性能、试验方法等规定 相关内容参考:GB/T 3524-2005 2、连铸坯化学成分范围及质量要求 2.1成分(依据国家标准:GB/T 700-2006、GB/T 1591—2008) Q195带钢一般均需要进一步冷轧,最高冷轧到0.35mm。炼钢工序要求脱氧彻底(小于60ppm),吹氩时间大于7分钟,中包满包浇注,严格控制夹杂物。 对连铸坯出现的凹陷、内裂、气泡、割痕等缺陷,要予挑出降级处理或切割回炉。 3、带钢尺寸、外形、重量及允许偏差

3.1 钢带厚度允许偏差:0~-0.15mm 注:不适用于卷带两端7m之内没有切头尾的钢带; 如果用户有具体要求,按用户要求执行。 3.2钢带宽度允许偏差:(不切边) 宽度<450 0~+3mm 宽度﹥450~520 0~+4mm 注:不适用于卷带两端7m之内没有切头尾的钢带; 特别注意:对于专门做管子的352mm、432mm等钢带,宽度允许偏差要求更严格,务必控制到位。 3.3钢带的厚度应均匀,在同一横截面的中间部分和两边部分测量三点厚度,其最大差值(三点差)要求:0~0.15mm。 3.4供冷轧用的钢带,沿轧制方向的厚度应均匀,在同一直线上任意测定三点厚度,其最大差值(同条差)不大于0.16mm。 3.5钢带应严格控制镰刀弯,每米不大于2mm。 钢带边部不允许有波浪弯出现。 3.6 钢带的一边塔形高度不得超过30mm。 4、力学性能

中厚板的发展现状及趋势

中厚板的发展现状及趋势 近些年国内市场对中厚板的需求一直保持增长态势, 尤其是从2000年开始, 这一需求攀升速度急剧加快, 最主要的拉动因素是基础设施建设用钢结构、造船工业、桥梁建设、油气开发及输送等行业的蓬勃发展。中厚板是重要的建筑钢材品种,广泛用于机械制造、桥梁、厂房、电站、城市公共建筑等,由于国民经济的高速发展,拉动了中厚板市场的需求并促进了中厚板行业的快速发展。近3 年,全国新上马宽厚板轧机共29 条,产能达到11 539 万t ,产品结构正向更宽更厚的方向倾斜,且由原始的普碳钢板向高强度品种钢发展。[1] 1 全国中厚板的现状 1.1 近几年中厚板的生产和消耗 由于国民经济强大需求的拉动和综合国力的增强, 中国冶金工业出现了前所未有的发展机遇和发展速度。1987 - 2004 年成品钢材产量、中厚板(卷) 产量及2000 - 2004年中厚板产量见表1。截至2003年底中国已建成的中厚板轧机生产能力1719万吨, 其中宽度4000 mm以上中厚板轧机生产能力320万吨, 3500~3800 mm轧机生产能力305万吨, 2800~3000 mm轧机生产能力360万吨, 2300~2700 mm轧机生产能力734万吨。据不完全统计, 2004 年底投产和在建的中厚板轧机有15套, 生产能力1435万吨。其中2套(宝钢、沙钢) 为5000 mm宽厚板轧机, 生产能力290万吨;3套(南钢、安钢、韶钢) 炉卷轧机, 生产能力310万吨; 3500~3800 mm轧机生产能力880万吨; 2500~2800 mm 轧机生产能力265 万吨。至2004年底中国共有中厚

轧机厚度自动控制AGC系统说明

轧机厚度自动控制AGC系统 使 用 说 明 书 中色科技股份有限公司 装备所自动化室 二零零九年八月二十五日

目 录 第一篇 软件使用说明书 第一章 操作软件功能简介 第二章 操作界面区简介 第三章 操作使用说明 第二篇 硬件使用说明书 第一章 接口板、计算机板跨接配置图 第三篇 维护与检修 第一章 系统维护简介及维护注意事项 第二章 工程师站使用说明 第三章 检测程序的使用 第四章 常见故障判定方法 第四篇 泵站触摸屏操作说明 第五篇 常见故障的判定方法 附录: 第一章 目录 第二章 系统内部接线表 第三章 系统外部接线表 第四章 系统接线原理图 第五章 系统接口电路单元图

第一篇 软 件 说 明 书

第一章 操作软件功能简介 .设定系统轧制参数; .选择系统工作方式; .系统调零; .显示时实参数的棒棒图、馅饼图、动态曲线; .显示系统的工作方式、状态和报警。 以下就各功能进行分述: 1、在轧机靠零前操作手需根据轧制工艺,设定每道次的入口厚度、出口厚度和轧制力等参数。也可以在轧制表里事先输入,换道次时按下道次按钮,再按发送即可。 2、操作手根据不同的轧制出口厚度,设定机架控制器和厚度控制器的工作方式,与轧制参数配合以得到较理想的厚差控制效果。 3、在泄油状态下,操作手通过在规定状态下对调零键的操作,最终实现系统的调零或叫靠零,以便厚调系统正常工作。 4、在轧制过程中,以棒棒图、馅饼图和动态曲线显示厚调系统的轧制速度、轧制压力、开卷张力、卷取张力、操作侧油缸位置、传动侧油缸位置、压力差和厚差等实时值。(注意:轧机压靠前操作侧油缸位置、传动侧油缸位置显示为油缸实际移动位置。轧机压靠后操作侧油缸位置、传动侧油缸位置显示的是辊缝值。)

厚度控制

一、填空题 1、9.5根据轧机弹跳方程测得的厚度和厚度偏差信号进行厚度自动控制的系统称为GM-AGC或称 P-AGC。 2、9.5监控式厚度自动控制的基本原理就是反馈式厚度自动控制的基本原理。 3、9.5中厚板头部厚度补偿做法主要有两种:头部三角形补偿法和冲击补偿法。 4、9.6 20世纪90年代到现在,热轧带钢厚度偏差±40μm,全长命中率99%,宽度偏差+2~6mm, 全长命中率95%。 5、9.6热带厚度精度可分为:一批同规格带钢的厚度异板差和每一条带钢的厚度同板差。为此可将厚度 精度分解为带钢头部厚度命中率和带钢全长厚度偏差。 6、9.6热带头部厚度命中率决定于厚度设定模型的精度。 7、9.6带钢全长厚差则需由AGC根据头部厚度(相对AGC)或根据设定的厚度(绝对AGC)使全长各点厚 度与锁定值或设定值之差小于允许范围,应该说头部精度对AGC工作有明显影响。 8、9.6可将宽度精度分解为带钢头部宽度偏差和带钢全长宽度偏差。 9、9.6头部宽度偏差除了决定于宽度设定模型的精度外,还取决于变形条件及是否采用短行程控制 (SSC)。 10、9.6热带粗轧用立辊时为了克服头尾宽度变窄采用短行程(SSC)控制。 11、9.7热带轧机弹跳量一般可达2~5mm。 12、9.7在现场实际操作中,为了消除弹跳方程曲线段的影响,都采用了所谓人工零位的方法。 13、9.7做试验确定轧机刚度的方法有轧铝板法和自压靠法。 14、9.8带钢尾部补偿可选用的方法为压尾或拉尾。 二、判断题 1、9.5轧件通过轧辊时,由于轧辊及轧机的弹性变形,导致辊缝增大的现象称为“辊跳”。(√) 2、9.5从数据和实验中都获得共识:轧机的弹跳值越大,说明轧机抵抗弹性变形的能力越强。(×) 3、9.5轧机刚度越大,产品厚度精度就越易保证。(√) 4、9.5中厚板轧制时,在咬钢的瞬间,由于头部温度较低,再加上轧制力的冲击作用,辊缝有一个上 升的尖峰。若不进行补偿,使得轧件的头部变厚。(√) 5、9.6头部宽度偏差除了决定于宽度设定模型的精度外,还取决于变形条件及是否采用短行程控制。 (√) 6、9.7轧机机座的弹性变形与压力并非呈线性关系,而是在小压力区为一曲线,当压力大到一定值以 后,压力和变形才近似呈线性关系。(√) 7、9.7轧机压靠时所测的轧机刚度和实际轧制时的轧机刚度一样大。(╳) 8、9.8当轧件温度降低时,轧制压力增大,厚度增大。(√) 9、9.8当轧件温度降低时,轧制压力增大,厚度减小。(╳) 10、9.8只存在轧辊偏心时,轧制压力增大,厚度增大。(╳) 11、9.8只存在轧辊偏心时,轧制压力增大,厚度减小。(√) 12、9.8精轧机组各个机架都要进行尾部补偿。(╳) 13、9.8热带粗轧和精轧机组都需要设置厚度自动控制系统。(╳) 14、9.8当选用绝对AGC时,如设定误差过大,计算机将自动改用相对AGC。(√) 15、9.4宽度控制的任务主要是在热轧的粗轧阶段完成的。(√) 16、9.4随着立辊轧机宽度压下量的增大,在几十米长的带钢上,头尾部产生五到几十毫米的失宽,如 不加以控制,头部轧后宽度沿着轧制方向的变化规律由窄逐渐变宽,尾部是由宽逐渐变窄。(√)三、单选题 1、9.5为消除厚度偏差δh所必需的辊缝调节量?S应是( A )。 A、δS= h K M K m mδ + ;B、δS= h K M K m mδ +;C、δS= h M M K m δ + ;D、δS= h K M M m δ +

国内主要宽厚板生产企业概况

国内主要宽厚板生产企业简况 有句话是这么说的:战争年代,工业的发展速度和创新水平都能得到很大的提高。宽厚板的发展也是如此,最初由于战舰、航空母舰等武器装备的发展,对于钢板的质量、强度以及厚度等要求越来越高,宽厚板轧机在这期间得到了很大发展。 和平年代,应大型桥梁,核电站,大型水坝,油田钻井平台,大型机械等领域的需要,宽厚板得到了更广泛的应用,这也促进了宽厚板行业的迅猛发展。厚钢板产量从2004年的821.26万吨发展到2009年的1874.86万吨,增长了128.3%,而今年也继续保持增长趋势,前10个月的产量就已经达到1860.9万吨。特厚板的产量增长速度也比较快,从2004年的180.01万吨增至2009年的474.56万吨,增长幅度达163.6%,今天1-10月份的产量达393.1万吨。而在2000年的时候,我国特厚板产量仅为71.43万吨,从2003年以后,随着我国经济的高速发展,国内也相继投产了一批具有世界先进水平的特宽厚板轧机,之后一直到2007年我国特厚板的产量也以每年百分之三十几的速度增长。 从地区来看,我国目前特厚板产量最大的省份是河南省,今年1-10月份特厚板产量已经达到109.2万吨了,其中贡献最大的是舞阳钢铁,现在已经成为我国宽厚板生产基地。其次是湖南省,随着华菱湘钢2006年8月建成投产目前国内配置水平最高、最大的常化热处理炉,产量迅速从2005年的4.33万吨跃升到2006

年的37.77万吨。河北省也在特厚板市场上占有较大份额,今年前10个月的特厚板产量已经达到43.3万吨。而近两年产量增长最快的要数江苏省,迅速崛起的民营钢企沙钢、长达、益成等宽厚板生产企业也渐渐在市场上占据了一席之地。 从我国厚板分省市产量统计表可以看到,我国厚板产量最高的是民营中厚板生产企业集中的江苏地区,在2009年以262.39万吨的产量占据我国厚板产量第一的位置,今年1-10月份的产量就以达到229.2万吨。其次是河北省,凭借良好的原料采购优势和价格优势,唐山中厚板公司,邯钢等企业的厚板产品如今已是遍布全国。

楼板厚度控制措施

钢都花园二期1#楼工程 楼 板 厚 度 控 制 措 施 编制人: 审核人: 审批人: 湖南涟钢建设有限公司 二0一四年十月

钢都花园1号楼楼板厚度控制措施 一、工程概况 工程基本情况 各责任主体名称 二、楼板厚度控制措施 为保证楼板厚度,特编制此措施,从测量、模板支设及混凝土浇筑等方面对楼板厚度进行控制,具体措施如下:

2.1测量工程控制措施 控制板厚必须从源头控制开始,必须保证测量组所提供的水平控制线绝对准确 1、因浇筑前用以控制浇筑顶面高度的水平控制点在模板上测设,因模板和排架相对不稳定,正常情况下会导致测设在钢筋上的控制点偏差较大,因此在板面浇筑完成后必须对钢筋上的控制点与原始控制线进行复核。 2、一般情况下,在排架搭设过程中应将已复核过的钢筋上的水平控制点在剪力墙没有封模之前引测到排架立杆上。以便木工的板顶水平标高控制。 3、在浇筑前,以原始水平控制线为基准,将标高引测到待浇筑面,以便混凝土浇筑时的顶面控制,在水平点引测到竖向钢筋上以后,应对离水平仪较远的点进行复核。(与模板下水平控制点的闭合) 4、复核无误后交下道工序使用 2.2楼板模板工程控制措施 (1)支设楼板模板时,要控制好标高,先在竖向结构构件上抄好标高,根据楼板厚度、模板厚度、木方厚度调整好搁放木方的水平钢管,然后铺模板。 (2)严格控制梁板模板的起拱率,框架梁L≥4m板,支模时跨中起拱1L/1000。 (3)模板接缝要求加工严密,表面错缝平整。 (4)模板安装允许偏差和检验方法见下表

2.3、质检员把关 1、质检员对整个项目的过程质量进行全面控制。 2、在板厚质量控制方面首先对水平控制线进行检查,水平控制点是否水平,上下层之间的水平控制点、线是否闭合。 3、根据水平控制线认真检查模板顶面标高是否符合规范要求。对超出允许偏差范围的成型模板及时通报栋号长及相关班组,并督促整改。 4、混凝土浇筑前调查混凝土工对板厚控制方法的掌握情况,浇筑过程中检查工人对板厚的实际控制情况,观察、认证班组对板厚控制所使用的其他方法是否具有可行性。 2.4、栋号长负责制 1、根据本项目的管理体制模式,栋号长为所辖楼号的安全、质量、进度的第一责任人。

冷轧轧机TDC控制系统de

目录 冷轧轧机TDC控制系统 一.硬件和组态 二.系统软件 1.处理器功能简介 https://www.360docs.net/doc/b711327797.html,MON FUNCTIONS 通用功能 3.MASTER FUNCTIONS 主令功能: 4.STAND1-STAND5 机架控制系统1-5 冷轧轧机TDC控制系统 一.硬件和组态 TDC工业控制系统西门子公司SIMADYN D的升级换代产品,也 是一种多处理器并行远行的控制系统。典型的TDC控制系统的配置是 由电源框架、处理器摸板、I/O摸板和通讯摸板搭建构成。 电源框架含21个插槽,最多允许20个处理器同时运行。框架上 方的电源可单独拆卸,模板不可带电插拔。 CPU551是TDC控制系统的中央处理器,带有一个4M记忆卡, 程序存储在记忆卡内,电源启动时被读入CPU551中执行。可通过在线 功能对处理器和存储卡中的程序作同步修改。 SM500是数字量/模拟量输入/输出模板,更换时注意跳线. CP50MO是MPI/PROFIBUS通讯摸板,更换时需要使用 COM-PROFIBUS软件对其进行组态的软件下装。 CP5100是工业以态网的通讯摸板,更换时注意插槽跳线。 CP52A0是GDM通讯模板。GDM是不同框架的TDC之间进行数 据交换的特有通讯方式,不同框架的TDC通过光缆汇总到GDM内, 点对点之间的通讯更加直接,传输速度更快。 TDC控制系统的硬件需要在软件程序中进行组态和编译,然后下 装到CPU中。 二.系统软件 包钢薄板厂冷轧轧机区域TDC控制系统按框架分为以下三个功能 12 酸轧电气控制 冷轧酸轧电气篇C S P B T

2.1 处理器功能简介 1.COMMON FUNCTIONS 通用功能: 处理器1:SIL: 模拟功能 SDH: 轧制参数管理 IVI: 人机画面 处理器2:MTR: 物料跟踪系统 WDG: 楔形调整功能 处理器3: ADP: 实际值管理 2.MASTER FUNCTIONS 主令功能: 处理器1: MRG-GT: 轧机区域速度主令 处理器2: THC-TH: 轧机厚度控制入口区域 处理器3: THC-TX: 轧机厚度控制出口区域 处理器4: SLC: 轧机滑差计算 ITG: 张力计接口 处理器5: LCO-LT: 轧机区域生产线协调 3.STAND1-STAND5 机架控制系统1-5 处理器1: CAL: 机架标定 SCO: 通讯接口 MAI: 手动干涉 ITC: 机架间张力控制 处理器2: SDS: 机架压下系统 处理器3: RBS: 机架弯辊系统 12 酸轧电气控制 冷轧酸轧电气篇C S P B T

沙钢宽厚板5000工艺技术

沙钢宽厚板工艺技术 沈文荣邱松年钱洪建 (江苏沙钢集团有限公司) 摘要沙钢集团于2006年建成当今中国最现代化宽厚板生产工艺线.采用带工作辊弯辊的Φ1210×5050mm工作辊、带油膜轴承Φ2300×4900mm 支承辊,最大轧制力100MN,最大切断力矩2×4,925kNm,高刚度、液压AGC工作辊弯辊装置轧机及MULPIC 装置满足高强焊接宽厚板高品质和板型要求.亚稳态奥氏体区热机轧制实现晶粒细化,靠中间坯待温时间及未再结晶区γ/α相变较低终轧温度抑制新晶粒成长。MULPIC装置中加速冷却或直接淬火钢板。终轧通过MULPIC装置加速冷却使固溶体内保持大量Nb、V、Ti、Mo微合金元素粒子有利γ/α相变、铁素体与贝氏体内沉淀而改善组织性能。终轧温度低及增加冷却速率有增加沉淀强化和位错密度高强效果。转变温度取决微合金设计、终轧温度及加速冷却。精整工序热矫、冷却、切边定尺剪切及冷矫钢板,某些钢板350~400℃间出现剪口应力断裂要堆垛缓冷。 关键词宽厚板轧热机轧制多功能冷却装置相变 UOE板 SIS′Wide Heavy Ptate Process Technology Shen Wenrong Qiu Songnian Qian Hongjian (Shagang Iron & Steel Group ,Suzhou,215625,Jiangsu P.R.C) Abstract In Dec.2006,by S hagang Iron & Steel Group company. Ltd.,SIS,was build latest modernization wide heavy plate operation line. The wide heavy mill is the largest plate mill in China. Main date of the heavy plate mill equipment including Φ1210×5050mm Work roll,Φ2300×4900mm back-up roll, back-up roll oil film bearings and HAGC,10,0000kN maximum rolling force, 2×4925kNm cut-out torque. Work roll bending system ,hydraulic AGC and high elasticity module of mill have to meet plate high quality and shape basic requirement. TMCP, a minimum degree of deformation is carried out in the temperature range of the metal stable austenite, whereby no re-crystallization takes place before the γ/α-transformation, so that the new grain formation is taken over by the transformation reaction. The necessary low finish rolling temperature,require relatively long waiting times before final deformation. For the plate,accelerated cooling or direct hardening velocity controlled by MULPIC equipment. Key W ords heavy plate mill,thermo-mechanical rolling, MULPIC,transformation,UOE 1.概况 我国目前≤3500mm中板轧机多达30余套,≥3800宽厚板轧机仅宝钢、沙钢、鞍钢、浦钢、舞阳、湘钢及新余7套。全球16家≥5000mm宽厚板厂,法国1套,中国、美国和德国各2套,俄罗斯4套,日本5套。沙钢集团于2006年建成5m现代宽厚板生产工艺线如图1所示,辊系采用带WRB的Φ1210×5050mm 工作辊和带油膜轴承Φ2300×4900mm 支承辊,最大轧制力100MN,最大切断力矩2×4925kNm,高刚度、液压AGC工作辊弯辊装置轧机及MULPIC装置。沙钢建成现代化5m宽厚板厂(表1),提升我国高端特宽厚板生产能力。满足5~150×900~4900×6000~27000mm高强船板、管线、桥梁、海洋、建筑国民经济 单位:m m 图1 沙钢宽厚钢板厂平面工艺简图 1—步进梁加热炉;2—18MPa除鳞箱; 3—5m宽厚板轧机; 4—立辊轧机; 5—MULPIC装置; 6—9辊热矫;7—2号冷床; 8—1号检验台;9—UST装置;10—切头剪;11—双边剪;12—定尺剪;13—喷号机;14—2号检验台;15—钢板堆垛装置;16—11辊冷矫机;17—3号冷床。 2.工艺布置 江苏沙钢集团5m宽厚板厂位于江苏扬子江国际冶金工业园区内,主厂房总长1356m,宽度方向最宽246m,总面积200610m2。由板坯库、上料跨、加热炉跨、主轧跨、剪切跨、厚板处理中转跨、成品库、磨辊间、主电室组成,预留热处理跨、涂漆线跨。产品规格5~150×900~4800×~25000mm,最大重量32300kg。常规轧制、控制轧制及热处理钢板比5:3:2,生产碳素、低合金结构、船板、管线、桥梁、海洋、建筑、锅炉压力容器及机械工程用板,设计年产量180万t/a。采用5m高刚度轧机、大功率主电机和MULPIC加速冷却装置并扩大精整能力,辊系带HAGC和WRB装置沙钢宽厚板轧机单位轧制力20KN/mm及单位轧制功率4KW/mm,用自动测压、测厚测宽测长仪及板型仪确保自动轧制钢板板型和平直度。及在线钢板

板带材纵向厚度精度控制

1.变形抗力及其影响因素 1.1变形抗力是指材料在一定温度、速度和变形程度条件下,保持原有状态而抵抗塑性变形的能力。变形抗力的大小与材料、变形程度、变形温度、变形速度、应力状态有关,而实际变形抗力还与接触界面条件有关。 1.2化学成分的影响 化学成分对变形抗力的影响非常复杂。一般情况下,对于各种纯金属,因原子间相互作用不同,变形抗力也不同。同一种金属,纯度越高,变形抗力越小。组织状态不同,抗力值也有差异,如退火态与加工态,抗力明显不同。 合金元素对变形抗力的影响,主要取决与合金元素的原子与基体原子间相互作用特性、原子体积的大小以及合金原子在基体中的分布情况。合金元素引起基体点阵畸变程度越大,变形抗力也越大。 1.3组织结构的影响 结构变化。金属与合金的性质取决与结构,即取决与原子间的结合方式和原子在空间排布情况。当原子的排列方式发生变化时,即发生了相变,则抗力也会发生一定的变化。 单组织和多组织。当合金为单相组织时,单相固溶体中合金元素的含量愈高,变形抗力则愈高,这是晶格畸变的结果。当合金为多相组织时,第二相的性质、大小、形状、数量与分布状况对变形抗力都有影响。一般而言,硬而脆的第二相在基体相晶粒内呈颗粒状弥散分布,合金的抗力就高。 晶粒大小。金属和合金的晶粒越细,同一体积内的晶界越多,金属和合金的变形抗力就越高。 1.4变形温度的影响 由于温度升高,金属原子间的结合力降低了,金属滑移的临界切应力降低,几乎所有金属与合金的变形抗力都随温度升高而降低。但对于那些随着温度变化产生物理化学变化和相变的金属与合金,则存在例外。 1.5变形速度的影响 变形速度的提高,单位时间内的发热率增加,有利于软化的产生,使变形抗力降低。另一方面,提高变形速度缩短了变形时间,塑性变形时位错运动的发生与发展不足,使变形抗力增加。一般情况下,冷变形时,变形速度的提高,使抗力有所增加,而在热变形时,变形速度的提高,会引起抗力明显增大。 1.6变形程度的影响

板形控制

板形控制作业实现板形控制的主要方法及原理 李艳威机电研一班s2*******

实现板形控制的主要方法及原理 李艳威1, (1. 太原科技大学研1201班太原) 摘要:介绍了六种类型的实现板形控制方法,包括热轧过程中对板形的控制;采用液压AGC系统控制板厚及板形;通过轧辊有载辊缝的控制,进行板形控制;通过选择机型实现板形控制;采用板形控制新技术以及控制策略和控制系统的结构对板形控制的影响。每个类型的方法中列举了具体实现的技术,并简要介绍了该技术的基本原理。 关键词:板形控制方法原理 The Method of Achieving Plate-shaped Control and Principle LI Yanwei1 (1. Taiyuan University Of Science And Technology,The graduate class of 1201,Taiyuan) Abstract:Introduced six types of shape control method , Including the plate-shaped control in the hot rolling process;Adopt Hydraulic AGC System to control the shape of plate;Through the roll-load roll gap control the shape of plate;By selecting models to achieve plate-shaped control;Adopt new technologies plate-shaped control. Listed for each type of method to achieve technical, and briefly describes the basic principles of the technology. Keyword: plate-shaped control method principles 0 前言 为了说明金属纵向变形不均的程度,引入了板形(Shape)这个概念。板形是板带的重要指标,包括板带的平直度、横截面凸度(板凸度)、边部减薄三项内容。直观说来,所谓板形是指板材的翘曲程度;就其实质而言,是指带钢内部残余应力的分布。作为带材重要的质量指标之一,板形已越来越受到生产厂商与用户的重视,其好坏直接影响到带材对市场的占有率。下面介绍几种常见的板形控制技术及其简单原理。 热轧过程中带钢的板形及带钢性能在 宽度方向上和轧制方向上的控制、酸洗的拉矫过程、冷轧过程的板形控制、连续退火时温度和张力的控制、乎整机的板形控制及涂层前的拉矫等构成了一个全过程的复杂的 冷轧板形控制系统.在这个系统中,前一个工序的出口板形影响后一个工序的板形.所以,带钢的最终板形不可能单独由系统中的某一个工序或某一设备所决定,而由整个系统决定。 1 热轧过程中对板形的控制 热轧过程中,根据钢种不同,设定热轧目标终轧温度.必要时还要提高钢坯的出炉温度,确保热轧带钢的边部终轧温度控制晶粒均匀成长,尽量消除硬度沟的影响,为冷轧提供较为合适的板形.尤其是热轧后部设立平整机,通过在热状态下,平整机的拉伸矫平,消化板形缺陷。 2 采用液压AGC系统 为了实现轧件的自动测厚控制(简称AGC),使得纵向板形得以实现平直度,在现代板带轧机上一般装有液压压下装置.采用液压压下的自动厚度控制系统,通常称为液压AGC.AGC系统包括:(1)测厚部分,

板带材高精度轧制和板形控制

板带材高精度轧制和板形控制 板带轧制产生两个过程:轧件塑性变形过程和轧机弹性变形(弹跳)过程。 轧机弹跳方程h=s o’+p/k h- ----轧出带材厚;s o’:理论空载辊缝;p:轧制力;k:轧机刚度 直线A线,又称轧机弹性变形线,斜率k为轧机的刚度 零位调整后的弹跳方程 厚控方程h =s。+(p-p。)/k s。----考虑预压变形的相当空载辊缝 轧件塑性变形过程: 当来料厚度一定,由一定h值对应一 定p值可得近似直线B线,又称轧件 塑性变形线(斜率M为轧件塑性刚度 系数)。与A线相交纵坐标为轧制力p, 横坐标为板带实际厚度h C线:该线为等厚轧制线 厚度控制实质:不管轧制条 件如何变化,总要使A,B两线 交于C线,即可得到恒定厚度(高 精度)的板带材。 板带厚度变化的原因和特点(影响出 口厚度的因素) S。----由轧辊的偏心运转、磨损与热膨胀及轧辊轴承油膜厚度的变化所决定。它们都是在压下螺丝定位时使实际辊缝发生变化的 K ----在既定轧机轧制一定宽度的产品时,认为不变 P -----主要因素:故可影响到轧制力的因素必会影响到板带的厚度精度(使B线发生偏移)(1)轧件温度、成分和组织性能的不均对温度的影响具有重发性,温差会多次出现。故只在热轧精轧道次对厚度控制才有意义 (2)坯料原始厚度的不均可改变B线的位置和斜率,使压下量变化,引起压力和弹跳的变化。必须选择高精度的原料 (3)张力的变化通过影响应力状态及变形抗力而起作用;还引起宽度的改变。故热连轧采用不大的恒张力,冷连轧采用大张力。调节张力为厚控的重要手段 (4)轧制速度的变化影响摩擦系数(冷轧影响大)和变形抗力(热轧影响大),乃至影响轴承油膜厚度来改变轧制压力。对冷轧影响大。 板带厚度控制方法1)调压下改变A(2)调张力改变B 3)调轧制速度 最主要、最基本、最常用的还是调压下的方法。 调压下适用于下图16-2 a b两情况 调压下(改变原始辊缝,即改变A线): 用于消除轧制力p引起的厚度差(即B线偏移)

国内主要宽厚板生产企业概况[1]

国内主要宽厚板生产企业概况 有句话是这么说的:战争年代,工业的发展速度和创新水平都能得到很大的提高。宽厚板的发展也是如此,最初由于战舰、航空母舰等武器装备的发展,对于钢板的质量、强度以及厚度等要求越来越高,宽厚板轧机在这期间得到了很大发展。 和平年代,应大型桥梁,核电站,大型水坝,油田钻井平台,大型机械等领域的需要,宽厚板得到了更广泛的应用,这也促进了宽厚板行业的迅猛发展。厚钢板产量从2004年的821.26万吨发展到2009年的1874.86万吨,增长了128.3%,而今年也继续保持增长趋势,前10个月的产量就已经达到1860.9万吨。特厚板的产量增长速度也比较快,从2004年的180.01万吨增至2009年的474.56万吨,增长幅度达163.6%,今天1-10月份的产量达393.1万吨。而在2000年的时候,我国特厚板产量仅为71.43万吨,从2003年以后,随着我国经济的高速发展,国内也相继投产了一批具有世界先进水平的特宽厚板轧机,之后一直到2007年我国特厚板的产量也以每年百分之三十几的速度增长。 从地区来看,我国目前特厚板产量最大的省份是河南省,今年1-10月份特厚板产量已经达到109.2万吨了,其中贡献最大的是舞阳钢铁,现在已经成为我国宽厚板生产基地。其次是湖南省,随着华菱湘钢2006年8月建成投产目前国内配置水平最高、最大的常化热处理炉,产量迅速从2005年的4.33万吨跃升

到2006年的37.77万吨。河北省也在特厚板市场上占有较大份额,今年前10个月的特厚板产量已经达到43.3万吨。而近两年产量增长最快的要数江苏省,迅速崛起的民营钢企沙钢、长达、益成等宽厚板生产企业也渐渐在市场上占据了一席之地。 从我国厚板分省市产量统计表可以看到,我国厚板产量最高的是民营中厚板生产企业集中的江苏地区,在2009年以262.39万吨的产量占据我国厚板产量第一的位置,今年1-10月份的产量就以达到229.2万吨。其次是河北省,凭借良好的原料采购优势和价格优势,唐山中厚板公司,邯钢等企业的厚板产品如今已是遍布全国。

厚度自动控制系统

板带箔轧制的厚度自动控制系统 金属加工产品广泛应用于建筑业、容器包装业、交通运输业、电气电子工业、机械制造业、航空航天和石油化工等各工业民用部门,其生产和消费水平已成为衡量一个国家工业发达程度的重要标志之一。 作为有色金属加工行业的设计研究单位,洛阳有色金属加工设计研究院早在1989年就自行设计研制出1400mm、1200mm、1300mm、1450mm、800mm 等各型全液压不可逆铝带箔冷轧机,1300mm 可逆铝带坯热轧机,560mm、850mm 全液压可逆铜带冷轧机,以及可逆钢带冷轧机的自动厚度控制配套系统,并积极开展铝板带箔厚度自动控制系统的开发研制工作,在吸收消化国外同类产品先进技术的基础上,先后开发出AGC-Ⅲ型到AGC-Ⅶ型厚度自动控制系统,厚控精度高,系统稳定。广泛用于铝、铜加工及钢铁加工行业的各类板带箔轧机上,深得用户好评(参见厚控系统用户表)。 板带材在轧制过程中的厚度变化,既与轧件的塑性变形抗力、厚度等因素有关,也与轧制工艺规程及轧机机架的刚度有关,下面对板带材轧制厚度自动控制原理作一简述。 1.弹跳方程和P-H 图 板带轧制过程中轧件作用于轧辊辊系的反作用力使机架发生弹性变形,遵循弹跳方程的规律: K P S h 0+= 式中: h — 轧件出口厚度,mm 0S — 原始辊缝,mm P — 轧制压力,t K — 轧机刚性系数,t/mm 作用于轧件的轧制力,使轧件发生塑性变形,轧件的塑性曲线虽然实际上不是直线,但在板带材轧制过程中塑性曲线处在微量变化情况下,可视为直线,轧件的塑性系数M 则可表示为: M=ΔP/Δh 式中: M — 轧件塑性系数 ΔP — 轧制力变化量 Δh — 轧件的厚度变化 利用弹性变形曲线和塑性变形曲线所构成的P-H图(图1-1),可以很方便地用来分析轧件厚度变化原因。

轧机AGC培训资料.

轧机培训教程

1450液压AGC控制系统概述 一:厚度自动控制原理 AGC控制的目的,是借助于辊缝、张力、速度等可调参数,把轧制过程参数(如原料厚度、硬度、摩擦系数、变形抗力等)波动的影响消除,使其达到预期的目标厚度。而辊缝、张力等参数的调节又是以轧机的弹性曲线和轧件的塑性曲线以及弹塑曲线即P-H图为依据的。 板带轧制过程既是轧件在轧制压力P的作用下产生塑性变形的过程,又是轧机在轧制压力P的作用下产生弹性变形(即所谓弹跳)的过程,二者同时发生,其作用力和反作用力相等而相互平衡。由于轧机的弹跳,使轧出的带材厚度(h)等于轧辊的理论空载辊缝(So’)再加上轧机的弹跳值。按照虎克定律,轧机弹性变形与应力成正比,则弹跳值应为P/K,此时 h= So’+ P/ K 式中:P——轧制力,t; K——轧机的刚度(t/mm),即弹跳一毫米所需轧制力的大小。 上式为轧机的弹跳方程,据此绘成曲线A称为轧机相关性变形式,如图,它近似一条直线,其斜率就是轧机的刚度。但实际上在压力小时弹跳和压力的关系并非线性,且压力越小,所引起的变形也越难确定,亦即辊缝的实际零位很难确定。为了消除这一非线性区段的影响,实际操作中可将轧辊预先压靠到一定程度,即压到一定的压力P。然后将此时的辊缝批示定

为零位,这就是所谓“零位调整”。 由图可看出:h= S0+(P-P0)/K 式中S0——考虑预压变形的相当空载辊缝 另一方面,给轧件一定的压下量(h0-h),就产生一定的压力(P),当料厚(h0)一定,h越小即是压下量越大,则轧制压力也越大,通过实测或计算可以求出对应于一定h值的P 值,在图上绘成曲线B,称为轧件塑性变形线。B线与A线交点的纵坐标即为轧制力P,横坐标即为板带实际厚度h。由P-H图可以看出,如果B线发生变形(变为B’),则为了保持厚度h不变,就必须移动压下位置,使A线移到A’,使A’和B’的交点的横坐标不变,亦即须使A线与B线的交点始终在一条垂直线C上。因此,板带厚度控制实质就是不管轧制条件如何变化,总要使A线和B线交到C线上,这样就可得到恒定厚度的板带材,由此可见,P-h图的运用实际上是板带厚度控制的基础。 二. AGC的控制系统 AGC的目的是消除厚差,则首先必须检测到轧制过程中的带钢的厚差时,然后再采取措施消除这一厚差。因此,归纳为两个基本构成: a.厚度偏差的检测,目的是掌握轧制过程中,每时每刻带钢的厚度偏差的大小。 b.厚度偏差的消除:根据厚度偏差的大小,计算出调节量,输出控制信号,然后根据控制信号,调节机构动作,完成调节过程,见下图 1.测量方式 在厚度偏差检测当中,有直接测厚和间接测厚两种方式。 直接测量法的主要缺点是存在时间滞后问题。为解决此问题,采用间接测厚法。其间接测厚方式有压力测厚、张力测厚等。间接测量的方法虽然精度较低,但传递时差小,设备简单,便于维修,故被广泛采用。 2.控制手段

800mm电子铝箔轧机板形自动控制系统

800mm电子铝箔轧机板形自动控制系统 (洛阳有色金属加工设计研究院黄利斌河南洛阳471039) 摘要:本文介绍我院自主开发设计的800mm电子铝箔轧机板形自动控制系统的性能、组成及功能。 关键词:电子铝箔,板形仪,板形自动控制系统,分段冷却控制,板形目标曲线 1.前言 随着加工工业逐步采用高速自动作业线,特别是电子铝箔对板厚板形精度要求日益严格。目前,板厚自动控制技术(AGC,Automatic Gauge Control)已日益成熟,厚度控制精度得到了解决。而板形自动控制(AFC,Automatic Flatness Control),由于影响因素极其复杂,给板形控制带来很大困难,板形控制已成为国内外轧机界研究热点之一。国外这几年也先后有多家公司和研究机构推出了不同种类的板形自动控制系统,实践生产效果不错,但由于价格非常昂贵,国内目前引进的很少。1999年,我院成立新技术开发中心,把板形自动控制系统作为重点开发项目,通过近3年多努力终于取得成功,该系统借鉴了国外同类产品的先进经验、控制方法和模型,适用于冷轧铝薄带材板形自动控制的计算机自动控制系统。2002年12月板形自动控制系统在由我院总包的新疆众和股份有限公司800mm电子铝箔轧机上成功运行,各项指标达到设计要求,控制精度接近国际水平,受到用户好评。目前,应用于河南顺源铝业有限公司的1850mm铝箔轧机板形自动控制系统已安装就绪,进入最后的调试阶段。本文仅对800mm电子铝箔轧机自动控制系统的性能、组成及功能作些介绍,以供读者参考。 2.轧机参数及控制精度 新疆众和股份有限公司800mm电子铝箔轧机的主要参数如下: 轧机形式:四辊不可逆铝箔冷轧机 轧机尺寸:ф200mm/ф480mm ×800mm 最大轧制力: 2600KN 最大轧制速度:1200m/min 来料宽度:420—640mm 来料厚度: 0.6mm 开卷张力:180—5700N 卷取张力:80—4300N 通过有关技术人员的共同努力,经过现场调试实验,在投入板形自动控制系统且正常稳定轧制条件下达到以下控制效果: 厚度范围:0.32mm—0.017mm 最大轧制速度:900m/min 板形控制精度: 0.1mm: ±15I 0.065mm: ±20I 3.系统组成

相关文档
最新文档