电磁感应中的动力学问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应中的动力学问题
【动力学问题的规律】
1. 动态分析:求解电磁感应中的力学问题时,要抓好受力
分析和运动情况的动态分析,导体在拉力作用下运动,切割磁感线产生感应电动势→感应电流→通电导体受安
培力→合外力变化→加速度变化→速度变化,周而复始地循环,当循环结束时,加速度等于零,导体达到稳定运动
状态。
2. 两种状态的处理:
当导体处于平衡态——静止状态或匀速直线运动状态时,处理的途径是:根据合外力等于零分析。
当导体处于非平衡态——变速运动时,处理的途径是:根据牛顿第二定律进行动态分析,或者结合动量的观点分
析.
3. 常见的力学模型分析:
,质量m,电阻R;导轨光滑,电阻不计棒ab长为L,质量m,电阻R,导轨光滑,电阻不
计
BLE BLE
4. 解决电磁感应中的动力学问题的一般思路是
“先电后力”,即:先做“源”的分析——分离出电路中由电磁感应所产生的电源,求出电源参数E和r;
再进行“路”的分析——分析电路结构,弄清串、并联关系,求出相应部分的电流大小,以便求解安培力;
然后是“力”的分析——分析研究对象(常是金属杆、导体线圈等)的受力情况,尤其注意其所受的安培力;
最后进行“运动”状态的分析——根据力和运动的关系,判断出正确的运动模型.
【例1】如图所示,MN、PQ为足够长的平行金属导轨,间距L=0.50 m,导轨平面与水平面间夹角θ=37°,N、
Q间连接一个电阻R=5.0 Ω,匀强磁场垂直于导轨平面向上,磁感应强度B=1.0 T.将一根质量为m=0.050 kg的金属棒放在导轨的ab位置,金属棒及导轨的电阻不计.现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与导轨垂直,且与导轨接触良好.已知金属棒与导轨间的动摩擦因数μ=0.50,当金属棒滑行至cd处时,其速度大小开始保持不变,位置cd与ab之间的距离s=2.0 m.已知g=10 m/s2,sin 37°=0.60,cos 37°=0.80.求:
(1)金属棒沿导轨开始下滑时的加速度大小; (2)金属棒到达cd 处的速度大小;
(3)金属棒由位置ab 运动到cd 的过程中,电阻R 产生的热量.
突破训练1 如图所示,相距为L 的两条足够长的平行金属导轨,与水平面的夹角为θ,导轨上固定有质量为m 、电阻为R 的两根相同的导体棒,导体棒MN 上方轨道粗糙、下方轨道光滑,整个空间存在垂直于导轨平面的匀强磁场,磁感应强度为B .将两根导体棒同时释放后,观察到导体棒MN 下滑而EF 保持静止,当MN 下滑速度最大时,EF 与轨道间的摩擦力刚好达到最大静摩擦力,下列叙述正确的是
( )
A .导体棒MN 的最大速度为2mgR sin θ
B 2L 2
B .导体棒EF 与轨道之间的最大静摩擦力为mg sin θ
C .导体棒MN 受到的最大安培力为mg sin θ
D .导体棒MN 所受重力的最大功率为m 2g 2R sin 2 θ
B 2L 2
【例2】 如图所示,在倾角θ=37°的光滑斜面上存在一垂直斜面向上的匀强磁场区域MNPQ ,
磁感应强度B 的大小为5 T ,磁场宽度d =0.55 m ,有一边长L =0.4 m 、质量m 1=0.6 kg 、电阻R =2 Ω的正方形均匀导体线框abcd 通过一轻质细线跨过光滑的定滑轮与一质量为m 2=0.4 kg 的物体相连,物体与水平面间的动摩擦因数μ=0.4,将线框从图示位置由静止释放,物体到定滑轮的距离足够长.(取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:
(1)线框abcd 还未进入磁场的运动过程中,细线中的拉力为多少?
(2)当ab 边刚进入磁场时,线框恰好做匀速直线运动,求线框刚释放时ab 边距磁场MN 边界的距离x 多大? (3)在(2)问中的条件下,若cd 边恰离开磁场边界PQ 时,速度大小为2 m/s ,求整个运动过程中ab 边产生的热量为多少?
审题指导 1.线框abcd 未进入磁场时,线框沿斜面向下加速,m 2沿水平面向左加速,属连接体问题. 2.ab 边刚进入磁场时做匀速直线运动,可利用平衡条件求速度.
3.线框从开始运动到离开磁场的过程中,线框和物体组成的系统减少的机械能转化为线框的焦耳热. 解析
突破训练2如图所示,光滑斜面的倾角为θ,斜面上放置一矩形导体线框abcd ,ab 边的边长为l 1,bc 边的边长为l 2,线框的质量为m ,电阻为R ,线框通过绝缘细线绕过光滑的定滑轮与一重物相连,重物质量为M .斜面上ef 线(ef 平行底边)的右方有垂直斜面向上的匀强磁场,磁感应强度为B ,如果线框从静止开始运动,进入磁场的最初一段时间是做匀速运动的,且线框的ab 边始终平行于底边,则下列说法正确的是
( )
A .线框进入磁场前运动的加速度为Mg -mg sin θ
m
B .线框进入磁场时匀速运动的速度为
Mg -mg sin θR
Bl 1
C .线框做匀速运动的总时间为B 2l 21
Mg -mgR sin θ
D .该匀速运动过程产生的焦耳热为(Mg -mg sin θ)l 2
突破训练3 如图所示,平行金属导轨与水平面间的倾角为θ,导轨电阻不计,与阻值为R 的定值电阻相连,匀强磁场垂直穿过导轨平面,磁感应强度为B .有一质量为m 、长为l 的导体棒从ab 位置获得平行于斜面、大小为v 的初速度向上运动,最远到达a ′b ′位置,滑行的距离为s ,导体棒的电阻也为R , 与导轨之间的动摩擦因数为μ.则
( )
A .上滑过程中导体棒受到的最大安培力为
B 2l 2v
R
B .上滑过程中电流做功发出的热量为1
2mv 2-mgs (sin θ+μcos θ)
C .上滑过程中导体棒克服安培力做的功为1
2mv 2
D .上滑过程中导体棒损失的机械能为1
2
mv 2-mgs sin θ
【例3】 如图所示,足够长的金属导轨MN 、PQ 平行放置,间距为L ,与水平面成θ角,导轨与定值电阻R 1和R 2相连,且R 1=R 2=R ,R 1支路串联开关S ,原来S 闭合.匀强磁场垂直导轨平面向上,有一质量为m 、有效电阻也为R 的导体棒ab 与导轨垂直放置,它与导轨粗糙接触且始终接触良好.现将导体棒ab 从静止释放,沿导轨下滑,当导体棒运动达到稳定状态时速率为v ,此时整个电路消耗的电功率为重力功率的3
4.已知重力加速度为g ,导轨电阻
不计,求:
(1)匀强磁场的磁感应强度B 的大小和达到稳定状态后导体棒ab 中的电流强度I ;
(2)如果导体棒ab 从静止释放沿导轨下滑x 距离后达到稳定状态,这一过程回路中产生的电热是多少?
(3)导体棒ab 达到稳定状态后,断开开关S ,从这时开始导体棒ab 下滑一段距离后,通过导体棒ab 横截面的电荷量为q ,求这段距离是多少?