硅压阻式微传感器的制造工艺研究

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

硅压阻式压力微传感器的设计与制

造工艺研究

指导老师:来五星

作者:勇杰挺周晶晶渝

佳易伟铭昆

硅压阻式压力微传感器的设计与制造工艺

研究

摘要:硅压阻式压力传感器是最早开始研究并实用化的微传感器之一,它结构简单、体积小、成本低、应用围广,且已经实现大批量生产,在某些领域已经取代传统传感器。进一步研制小体积高精度的微传感器,扩大其适用围是未来的趋势。本文首先叙述了压阻式压力微传感器的原理和设计方法,然后针对硅压阻式压力微传感器的制造,给出了两种不同的制造工艺流程,并接着对其优缺点进行了横向比较,以期优化该种传感器的工艺。

关键词:微传感器;压阻式;制造工艺;设计

一、引言

压力传感器是用来测量流体或气体压力,大规模生产的计量或传感单元。传统的压力传感器体积大、笨重、输出信号弱、灵敏度低。应用微电子技术,在单晶硅片的特定晶向上,制成应变电阻构成的惠施顿电桥,同时利用半导体材料的压阻效应和硅的弹性力学特性,用集成电路工艺和微机械加工技术研制固态压阻压力传感器,它们具有体积小、灵敏度高、动态特性好、耐腐蚀和灵敏度系数好等优点。

二、压阻式压力微传感器原理

图2-1 硅杯式压力传感器原理结构

由图2-1可知,当压力作用于微型硅膜片上时,硅膜片将发生弯曲和应变(应力)。基于硅的压阻效应,当其应变化时,必将引起相应的电阻变化。当压力P 按图示方向作用在膜片上,桥路上的压敏电阻R1和R3的值增加,R2和R4的值将下降。 若桥路由恒压压源V8供电时,其输出电压V0可用下式表示,即:

0p s V S pV ∆=∆ (2-1)

或写成: 01

p s

V S p V ∆=∆ (2-2) 式中,p S 称为压力灵敏度。

式(2-2)表明,输出电压与被测压力成正比,测量0V ∆,即

可得被测的对应压力p ∆。因为电阻变化通常在0.01%~0.1%量级,故电桥输出电压很小,需要配置放大电路。

图2-2给出测量3种压力的原理方案:图(a )是测量绝对压力的;图(b )是测量差压的;图(c )是测量表压的。

图2-2 硅压阻式压力微传感器测量原理方案

三、压阻式压力微传感器的设计

压力传感器的设计,就是为得到线性度好、灵敏度高、输出稳定性好的传感器而进行力学结构的选择、晶向和晶面的选择,掩模版图的设计和工艺参数的设计等。

1、材料的选择

压力传感器硅杯材料的选择是极为重要的,它是决定传感器灵敏度的因素之一。为了提高满量程

输出,减小零点温度漂移及提高线性度,膜片上的电阻连成应变全桥电路。硅杯上电阻变化率由下式表示

l l t t R R πσπσ∆=+ (3-1)

其中:l σ,t σ分别为纵向应力和横向应力;

π,tπ分别为纵向压阻系数和横向压阻系数。

l

由式1知电阻变化与应力和压阻系数有关。在相同表面浓度下,P型硅的压阻系数比N型的高,而温度系数比N 型的小,所以选用; 型硅作为力敏电阻有利于提高灵敏度和减少温度影响。考虑到硅杯制作工艺,N型硅在碱性溶液(如KOH)具有各向异性腐蚀的特性,可利用终点腐蚀技术控制硅膜片的厚度,所以硅杯材料选用N型(100)晶面或(110)晶面,在其上扩散; 型杂质,形成电阻条,电阻与衬底以PN结隔离。

2、掩膜版的设计

传感器设计的重要一步为掩膜版的设计,传感器上的各种图形都是掩膜版图形的转印,所以传感器性能的好坏,很大程度上取决于掩膜版的设计。掩膜版的设计是保证传感器灵敏度及线性度的重要因素之一。本工作主要讨论掩膜版设计中的重要问题,即是指在不降低膜片的过载能力同时,使传感器获得较高的灵敏度和线性度、较小的零点输出和灵敏度温漂。

2.1 膜片形状的选取

由式(1)可知电阻的变化不仅与压阻系数有关,还与应力有关,而应力大小及分布情况与膜片的形状有关。由力学分析知,在相同条件下(芯片尺寸相同、同一压力等),E型结构的应力极值大于C 型硅杯的应力极值,故选用E型结构,传感器可获得更高的灵敏度。E型结构平膜背面有硬心,所以在有高灵敏度的同时可实现过压保护和较高的线性度。从提高传感器性能考虑,

E型膜片优于C 型硅杯(圆形平膜片、方形或矩形平膜片)。计算表明,3mmX3mm 芯片的/E型膜片的灵敏度已满足预定设计量程目标0~10kPa和0~100kPa的要求,故更复杂的梁膜复合应力集中结构不再考虑。

2.2 电阻条位置的确定

E型硅杯上的力敏电阻构成惠斯顿电桥。为使传感器具有较高输出灵敏度并减小温度影响,四个桥臂电阻应尽可能满足以下四个条件:

(1)等应力(绝对值)。(2)等压阻系数,尽量避免纵横压阻效应的相互影响。(3)等阻值。(4)等温度系数和灵敏度系数。

四、两种不同的硅压阻式压力微传感器的制造工艺

1、硅杯式压阻压力微传感器

图4-1给出了硅杯式压阻压力微传感器的制造工艺主要流程。

图4-1 硅杯式压阻压力微传感器制造工艺主要流程

1.1生成N型外延层

外延生长【epitaxial growth】在单晶衬底(基片)上生长一层有

一定要求的、与衬底晶向相同的单晶层的方法。外延生长技术发展于20世纪50年代末60年代初,为了制造高频大功率器件,需要减小集电极串联电阻。生长外延层有多种方法,但采用最多的是气相外延工艺,常使用高频感应炉加热,衬底置于包有碳化硅、玻璃态石墨或热分解石墨的高纯石墨加热体上,然后放进石英反应器中,也可采用红外辐照加热。为了克服外延工艺中的某些缺点,外延生长工艺已有很多新的进展:减压外延、低温外延、选择外延、抑制外延和分子束外延等。外延生长可分为多种,按照衬底和外延层的化学成分不同,可分为同质外延和异质外延;按照反应机理可分为利用化学反应的外延生长和利用物理反应的外延生长;按生长过程中的相变方式可分为气相外延、液相外延和固相外延等。

外延的过程中可以有不同类型的杂质和浓度进行掺杂。因为电化学刻蚀自动终止的需求,在许多微机械器件中都有使用N型硅在P 型基底上。

本步骤即是在双面抛光的P型Si(100)晶面上,用CVD外延反应器和气体源生成一层N型外延层(图4-2)。

图4-2 生成N型外延层

1.2光刻显影

光刻是一种复印图象同化学腐蚀相结合的综合技术,它采用照相

相关文档
最新文档