细胞凋亡详解-附过程示意图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
细胞凋亡
细胞凋亡(apoptosis)指为维持内环境稳定,由基因控制的细胞自主的有序的死亡。
细胞凋亡与细胞坏死不同,细胞凋亡不是一件被动的过程,而是主动过程,它涉及一系列基因的激活、表达以及调控等的作用,它并不是病理条件下,自体损伤的一种现象,而是为更好地适应生存环境而主动争取的一种死亡过程。
中文名细胞凋亡外文名Apoptosis
Apoptosis 美[ˌæpɔpˈtoʊsɪz] n.程序性细胞死亡,细胞凋落,细胞凋亡
a type of cell death in which the cell uses specialized cellular machinery to kill itself
人体内的细胞注定是要死亡的,有些死亡是生理性的,有些死亡则是病理性的,有关细胞死亡过程的研究,已成为生物学、医学研究的一个热点。
人们已经知道细胞的死亡起码有两种方式,即细胞坏死与细胞凋亡(apoptosis)。
细胞坏死是早已被认识到的一种细胞死亡方式,而细胞凋亡则是逐渐被认识的一种细胞死亡方式。
细胞凋亡是细胞
的一种基本生物学现象,在多细胞生物去除不需要的或异常的细胞中起着必要的作用。
它在生物体的进化、内环境的稳定以及多个系统的发育中起着重要的作用。
细胞凋亡不仅是一种特殊的细胞死亡类型,而且具有重要的生物学意义及复杂的分子生物学机制。
凋亡是多基因严格控制的过程。
这些基因在种属之间非常保守,如Bcl-2家族、caspase家族、癌基因如C-myc、抑癌基因P53等,随着分子生物学技术的发展对多种细胞凋亡的过程有了相当的认识,但是迄今为止凋亡过程确切机制尚不完全清楚。
而凋亡过程的紊乱可能与许多疾病的发生有直接或间接的关系。
如肿瘤、自身免疫性疾病等,能够诱发细胞凋亡的因素很多,如射线、药物等。
人的部分生理结构属于自然凋亡,如人的有尾阶段,尾部在发育过程中自动凋亡。
研究历史
1.凋亡概念的形成1965年澳大利亚科学家发现,结扎鼠门静脉后,电镜观察到肝实质组织中有一些散在的死亡细胞,这些细胞的溶酶体并未被破坏,显然不同于细胞坏死。
这些细胞体积收缩、染色质凝集,从其周围的组织中脱落并被吞噬,机体无炎症反应。
1972年Kerr等三位科学家首次提出了细胞凋亡的概念,宣告了对细胞凋亡的真正探索的开始,在此之前,关于胚胎发育生物学、免疫系统的研究,肝细胞死亡的研究都为这一概念的提出奠定了基础。
2.细胞凋亡的形态学及生物化学研究阶段(1972-1987)。
1)利用光镜和电镜对形态学特征进行了详细的研究。
2)染色体DNA的降解:细胞凋亡的一个显著特征就是细胞染色质的DNA降解,凋亡时DNA的断片大小规律是200bp的整数倍。
3)RNA/蛋白质大分子的合成。
4)钙离子变化,细胞内钙离子浓度的升高是细胞发生凋亡的一个重要条件。
5)内源性核酸内切酶:细胞发生凋亡是需要这种核酸内切酶参与的。
3.细胞凋亡的分子生物学研究阶段。
1)与细胞凋亡的相关基因及调控。
2)细胞凋亡的信号转导。
3)与细胞凋亡的各种分子及其相互作用及相互关系。
4.细胞凋亡的临床应用基础研究阶段细胞凋亡的研究,其生命力在于最终能够有利于疾病机制的阐明,以及新疗法的探索及问世。
细胞凋亡与程序性死亡
其实从严格的词学意义上来说,细胞程序性死亡(PCD)与细胞凋亡是有很大区别的。
细胞程序性死亡的概念是1956年提出的,PCD是个功能性概念,描述在一个多细胞生物体中某些细胞死亡是个体发育中的一个预定的,并受到严格程序控制的正常组成部分。
例如蝌蚪变成青蛙,其变态过程中尾部的消失伴随大量细胞死亡,高等哺乳类动物指间蹼的消失、颚融合、视网膜发育以及免疫系统的正常发育都必须有细胞死亡的参与。
这些形形色色的在机体发育过程中出现的细胞死亡有一个共同特征:即散在的、逐个地从正常组织中死亡和消失,机体无炎症反应,而且对整个机体的发育是有利和必须的。
因此认为动物发育过程中存在的细胞程序性死亡是一个发育学概念,而细胞凋亡则是一个形态学的概念,描述一件有着一整套形态学特征的与坏死完全不同的细胞死亡形式。
但是一般认为凋亡和程序性死亡两个概念可以交互使用,具有同等意义。
细胞凋亡与坏死的区别
虽然凋亡与坏死的最终结果极为相似,但它们的过程与表现却有很大差别。
Necrosis 英[neˈkrəʊsɪs] 美[neˈkroʊsɪs] n.(器官或组织细胞的)坏死
the death of most or all of the cells in an organ or tissue caused by injury, disease, or a loss of blood supply
坏死(necrosis):坏死是细胞受到强烈理化或生物因素作用引起细胞无序变化的死亡过程。
表现为细胞胀大,胞膜破裂,细胞内容物外溢,核变化较慢,DNA降解不充分,引起局部严重的炎症反应。
凋亡是细胞对环境的生理性病理性刺激信号,环境条件的变化或缓和性损伤产生的应答有序变化的死亡过程。
其细胞及组织的变化与坏死有明显的不同。
过程
1、凋亡起始
2、凋亡小体形成
3、凋亡小体逐渐被邻近的细胞或体内吞噬细胞所吞噬,凋亡细胞的残余物质被消化后重新利用。
形态学变化形态学观察细胞凋亡的变化是多阶段的,细胞凋亡往往涉及单个细胞,即便是一小部分细胞也是非同步发生的。
首先出现的是细胞体积缩小,连接消失,与周围的细胞脱离,然后是细胞质密度增加,线粒体膜电位消失,通透性改变,释放细胞色素C到胞浆,核质浓缩,核膜核仁破碎,DNA降解成为约180bp-200bp片段;胞膜有小泡状形成,膜内侧磷脂酰丝氨酸外翻到膜表面,胞膜结构仍然完整,最终可将凋亡细胞遗骸分割包裹为几个凋亡小体,无内容物外溢,因此不引起周围的炎症反应,凋亡小体可迅速被周围专职或非专职吞噬细胞吞噬。
过程机理
细胞凋亡的过程大致可分为以下几个阶段:
接受凋亡信号→凋亡调控分子间的相互作用→蛋白水解酶的活化(Caspase)→进入连续反应过程
启动阶段
细胞凋亡的启动是细胞在感受到相应的信号刺激后胞内一系列控制开关的开启或关闭,不同的外界因素启动凋亡的方式不同,所引起的信号转导也不相同,客观上说对细胞凋亡过程中信号传递系统的认识还是不全面的,比较清楚的通路主要有:
1)细胞凋亡的膜受体通路:各种外界因素是细胞凋亡的启动剂,它们可以通过不同的信号传递系统传递凋亡信号,引起细胞凋亡,我们以Fas -FasL为例:
Fas是一种跨膜蛋白,属于肿瘤坏死因子受体超家族成员,它与FasL结合可以启动凋亡信号的转导引起细胞凋亡。
它的活化包括一系列步骤:首先配体诱导受体三聚体化,然后在细胞膜上形成凋亡诱导复合物,这个复合物中包括带有死亡结构域的Fas相关蛋白FADD。
Fas又称CD95,是由325个氨基酸组成的受体分子,Fas一旦和配体FasL 结合,可通过Fas分子启动致死性信号转导,最终引起细胞一系列特征性变化,使细胞死亡。
Fas作为一种普遍表达的受体分子,可出现于多种细胞表面,但FasL的表达却有其特点,通常只出现于活化的T细胞和NK细胞,因而已被活化的杀伤性免疫细胞,往往能够最有效地以凋亡途径置靶细胞于死地。
Fas分子胞内段带有特殊的死亡结构域(DD,death domain)。
三聚化的Fas和FasL结合后,使三个Fas分子的死亡结构域相聚成簇,吸引了胞浆中
另一种带有相同死亡结构域的蛋白FADD。
FADD是死亡信号转录中的一个连接蛋白,它由两部分组成:C端(DD 结构域)和N端(DED)部分。
DD结构域负责和Fas分子胞内段上的DD结构域结合,该蛋白再以DED连接另一个带有DED的后续成分,由此引起N段DED随即与无活性的半胱氨酸蛋白酶8(caspase8)酶原发生同嗜性交联,聚合多个caspase8的分子,caspase8分子遂由单链酶原转成有活性的双链蛋白,进而引起随后的级联反应,即Caspases,后者作为酶原而被激活,引起下面的级联反应。
细胞发生凋亡。
因而TNF诱导的细胞凋亡途径与此类似
2)细胞色素C释放和Caspases激活的生物化学途径
线粒体是细胞生命活动控制中心,它不仅是细胞呼吸链和氧化磷酸化的中心,而且是细胞凋亡调控中心。
实验表明了细胞色素C从线粒体释放是细胞凋亡的关键步骤。
释放到细胞浆的细胞色素C在dATP存在的条件下能与凋亡相关因子1(Apaf-1)结合,使其形成多聚体,并促使caspase-9与其结合形成凋亡小体,caspase-9被激活,被激活的caspase-9能激活其它的caspase如caspase-3等,从而诱导细胞凋亡。
此外,线粒体还释放凋亡诱导因子,如AIF,参与激活caspase。
可见,细胞凋亡小体的相关组份存在于正常细胞的不同部位。
促凋亡因子能诱导细胞色素C释放和凋亡小体的形成。
很显然,细胞色素C从线粒体释放的调节是细胞凋亡分子机理研究的关键问题。
多数凋亡刺激因子通过线粒体激活细胞凋亡途经。
有人认为受体介导的凋亡途经也有细胞色素C从线粒体的释放。
如对Fas应答的细胞中,一类细胞(type1)中含有足够的胱解酶8 (caspase8)可被死亡受体活化从而导致细胞凋亡。
在这类细胞中高表达Bcl-2并不能抑制Fas诱导的细胞凋亡。
在另一类细胞(type2)如肝细胞中,Fas受体介导的胱解酶8活化不能达到很高的水平。
因此这类细胞中的凋亡信号需要借助凋亡的线粒体途经来放大,而Bid -- 一种仅含有BH3结构域的Bcl-2家族蛋白是将凋亡信号从胱解酶8向线粒体传递的信使。
执行
尽管凋亡过程的详细机制尚不完全清楚,但是已经确定Caspase即半胱天冬蛋白酶在凋亡过程中是起着必不可少的作用,细胞凋亡的过程实际上是Caspase不可逆有限水解底物的级联放大反应过程,到目前为止,至少已有14种Caspase被发现,Caspase分子间的同源性很高,结构相似,都是半胱氨酸家族蛋白酶,根据功能可把Caspase 基本分为二类:一类参与细胞的加工,如Pro-IL-1β和Pro-IL-1δ,形成有活性的IL-1β和IL-1δ;第二类参与细胞凋亡,包括caspase2,3,6,7,8,9.10。
Caspase家族一般具有以下特征:
1)C端同源区存在半胱氨酸激活位点,此激活位点结构域为QACR/QG。
2)通常以酶原的形式存在,相对分子质量29000-49000(29-49KD),在受到激活后其内部保守的天冬氨酸残基经水解形成大(P20)小(P10)两个亚单位,并进而形成两两组成的有活性的四聚体,其中,每个P20/P10异二聚体可来源于同一前体分子也可来源于两个不同的前体分子。
3)末端具有一个小的或大的原结构域。
参与诱导凋亡的Caspase分成两大类:启动酶(inititaor)和效应酶(effector)它们分别在死亡信号转导的上游和下游发挥作用。
Caspase活化机制
Caspase的活化是有顺序的多步水解的过程,Caspase分子各异,但是它们活化的过程相似。
首先在caspase前体的N-端前肽和大亚基之间的特定位点被水解去除N-端前肽,然后再在大小亚基之间切割释放大小亚基,由大亚基和小亚基组成异源二聚体,再由两个二聚体形成有活性的四聚体。
去除N-端前肽是Caspase的活化的第一步,也是必须的,但是Caspase-9的活化不需要去除N-端前肽,Caspase活化基本有两种机制,即同源活化和异源活化,这两种活化方式密切相关,一般来说后者是前者的结果,发生同源活化的Caspase又被称为启动caspase(initiator caspase),包括caspase-8,-10,-9,诱导凋亡后,起始Caspase通过adaptor被募集到特定的起始活化复合体,形成同源二聚体构像改变,导致同源分子之间的酶切而自身活化,通常caspase-8,10,2介导死亡受体通路的细胞凋亡,分别被募集到Fas和TNFR1死亡受体复合物,而Caspase-9参与线粒体通路的细胞凋亡,则被募集到Cyt c/d ATP/Apaf-1组成的凋亡体(apoptosome)。
同源活化是细胞凋亡过程中最早发生的capases水解活化事件,启动Caspase活化后,即开启细胞内的死亡程序,通过异源活化方式水解下游Caspase将凋亡信号放大,同时将死亡信号向下传递。
异源活化(hetero-activation)即由一种caspase活化另一种caspase是凋亡蛋白酶的酶原被活化的经典途径。
被异源活化的Caspase又称为执行caspase(executioner caspase),包括Caspase-3,-6,-7。
执行Caspase不象启动Caspase ,不能被募集到或结合起始活化复合体,它们必须依赖启动Caspase才能活化。
Caspase效应机制
凋亡细胞的特征性表现,包括DNA裂解为200bp左右的片段,染色质浓缩,细胞膜活化,细胞皱缩,最后形成由细胞膜包裹的凋亡小体,然后,这些凋亡小体被其他细胞所吞噬,这一过程大约经历30-60分钟,Caspase引起上述细胞凋亡相关变化的全过程尚不完全清楚,但至少包括以下三种机制:
凋亡抑制物
正常活细胞因为核酸酶处于无活性状态,而不出现DNA断裂,这是由于核酸酶和抑制物结合在一起,如果抑制物被破坏,核酸酶即可激活,引起DNA片段化(fragmentation)。
现知caspase可以裂解这种抑制物而激活核酸酶,因而把这种酶称为Caspase激活的脱氧核糖核酸酶(caspase-activated deoxyribonuclease CAD),而把它的抑制物称为ICAD。
因而,在正常情况下,CAD不显示活性是因为CAD-ICAD,以一种无活性的复合物形式存在。
ICAD一旦被Caspase水解,即赋予CAD以核酸酶活性,DNA片段化即产生,有意义的是CAD只在ICAD存在时才能合成并显示活性,提示CAD-ICAD以一种共转录方式存在,因而ICAD对CAD的活化与抑制却是必需要的。
破坏细胞结构
Caspase可直接破坏细胞结构,如裂解核纤层,核纤层(Lamina)是由核纤层蛋白通过聚合作用而连成头尾相接的多聚体,由此形成核膜的骨架结构,使染色质(chromatin)得以形成并进行正常的排列。
在细胞发生凋亡时,核纤层蛋白作为底物被Caspase在一个近中部的固定部位所裂解,从而使核纤层蛋白崩解,导致细胞染色质的固缩。
调节蛋白功能
Caspase可作用于几种与细胞骨架调节有关的酶或蛋白,改变细胞结构。
其中包括凝胶原蛋白(gelsin)、聚合粘附激酶(focal adhesion kinase,FAK)、P21活化激酶α(PAKα)等。
这些蛋白的裂解导致其活性下降。
如Caspase 可裂解凝胶原蛋白而产生片段,使之不能通过肌动蛋白(actin)纤维来调节细胞骨架。
除此之外,Caspase还能灭活或下调与DNA修复有关的酶、mRNA剪切蛋白和DNA交联蛋白。
由于DNA的作用,这些蛋白功能被抑制,使细胞的增殖与复制受阻并发生凋亡。
所有这些都表明Caspase以一种有条不紊的方式进行"破坏",它们切断细胞与周围的联系,拆散细胞骨架,阻断细胞DNA复制和修复,干扰mRNA剪切,损伤DNA与核结构,诱导细胞表达可被其他的细胞吞噬的信号,并进一步使之降解为凋亡小体。
调节
细胞凋亡受到严格调控,在正常细胞Caspase处于非活化的酶原状态,凋亡程序一旦开始,Caspase被活经随后发生凋亡蛋白酶的层叠级联反应,发生不可逆的凋亡——细胞调节细胞凋亡的举例如下。
凋亡抑制分子
迄今为止,人类已发现多种凋亡抑制分子,包括P53,CrmA,IAPs,FLIPs以及Bcl-2家族的凋亡抑制分子。
1)P35和CrmA是广谱凋亡抑制剂,体外研究结果表明P35以竞争性结合方式与靶分子形成稳定的具有空间位阻效应的复合体并且抑制Caspases活性,同时P53在位点DMQD!G被靶Caspases特异切割,切割后的P35与caspase 的结合更强,CrmA(Cytokine response modfer A)是血清蛋白酶抑制剂,能够直接抑制多种蛋白酶的活性,但还未发现在哺乳动物中发现P35和CrmA的同源分子。
2)FLIPs(FLICE-imhibirory proterins)能抑制Fas/TNFR1介导的细胞凋亡。
它有多种变异体,但其N-端功能前区(Prodomain)完全相同,C端长短不一。
FLIPs通过DED功能区,与FADD和Caspase-8,10结合,拮抗它们之间的相互作用,从而抑制Caspase8,10募集到死亡受体复合体和它们的起始化。
3)凋亡抑制蛋白(IAPs,inhibitors of Apoptosisprotien)为一组具有抑制凋亡作用的蛋白质,首先是从杆状病毒基因组克隆到,发现能够抑制由病毒感染引起的宿主细胞死亡应答。
其特性是有大约20氨基酸组成的功能区,这对IAPs抑制凋亡是必需要的,它们主要抑制Caspase3,-7,而不结合它的酶原,对Caspase则即可以结合活化的,又可结合酶原,进而抑制细胞凋亡。
Bcl-2家族
这一家族有众多成员,如Mcl-1、NR-B、A1 、Bcl-w、Bcl-x、Bax、Bak、Bad、Bim等,它们分别既有抗凋亡作用,也有促凋亡的作用。
多数成员间有两个结构同源区域,在介导成员之间的二聚体化过程中起重要作用。
Bcl-2成员之间的二聚体化是成员之间功能实现或功能调节的重要形式。
Bcl-2生理功能是阻遏细胞凋亡,延长细胞寿命,在一些白血病中Bcl-2呈过度表达。
Bcl-2的亚细胞定位已经明确,它在不同的细胞类型可以定位于线粒体、内质网以及核膜上,并通过阻止线粒体细胞色素C的释放而发挥抗凋亡作用。
此外,Bcl-2具有保护细胞的功能,Bcl-2的过度表达可引起细胞核谷胱苷肽(GSH)的积聚,导致核内氧化还原平衡的改变,从而降低了Caspase的活性。
Bax是Bcl-2家族中参与细胞凋亡的一个成员,当诱导凋亡时,它从胞液迁移到线粒体和核膜。
有人研究发现,细胞毒性药物诱发凋亡时,核膜Bax 水平的上升与lamin及PARP两种核蛋白的降解呈正相关。
用Bax寡核苷酸处理的细胞,只能特异地阻断Lamin 的降解,对PARP的降解不起作用。
这种效应的调控机制仍然不清楚。
总之,细胞凋亡的调节是非常复杂的,参与的分子也非常多,还有很多不为我们所知的机理需要我们一步的探索。
医学应用
免疫学
1)胸腺细胞成熟过程中的凋亡:胸腺细胞经过一系列的发育过程而成为各种类型的免疫活性细胞。
在这一发展过程中,涉及了一系列的阳性细胞选择和阴性细胞选择过程。
以形成CD4+的T淋巴细胞亚型及CD8+的T淋巴细胞亚型;同时,对识别自身抗原的T细胞克隆进行选择性地消除,其细胞克隆死亡的机制主要是通过程序性细胞死亡。
因此,正常的免疫系统发育的结局,既形成了有免疫活性的淋巴细胞,又产生了对自身抗原的免疫耐受。
耐受机制的形成,主要靠识别自身抗原的T淋巴细胞克隆的程序性细胞死亡机制的活化。
2)活化诱导的细胞死亡:(activation-induced cell death,AICD)是T淋巴细胞程序性死亡的又一个主要类型。
正常的T淋巴细胞在受到入侵的抗原刺激后,T淋巴细胞被激活,并诱导出一系列的免疫应答反应。
机体为了防止过高的免疫应答,或防止这种免疫应答无限制地发展下去,便有AICD来控制激活T细胞的寿命。
实际上:T淋巴细胞的增殖与T淋巴细胞AICD具有共同的信号通路。
T淋巴细胞受到刺激后就开始活化,活化以后的T淋巴细胞如果有生长因子的存在,即发生生殖反应,如果没有或较少的生长因子的存在,则发生AICD。
3)淋巴细胞对靶细胞的攻击:免疫活性细胞,特别是淋巴因子激活的杀伤细胞(LAK),是过继性免疫治疗的一种重要形式。
在抗肿瘤、抗病毒及免疫调节中具有重要作用。
这些免疫活性细胞在攻击肿瘤细胞、病毒感染的细胞时,可诱导靶细胞发生程序性死亡。
临床医学
细胞凋亡之所以成为人们研究的一个热点,在很大程度上决定于细胞凋亡与临床病毒的密切关系。
这种关系不仅表现在凋亡及其机制的研究,阐明了一大类免疫病的发病机制,而且由此可以导致疾病新疗法的出现,特别是细胞凋亡与肿瘤及艾滋病之间的密切关系倍受人们重视。
1) HIV病毒感染造成CD4+细胞减少是通过细胞凋亡机制
HIV感染引起艾滋病,其主要的发病机制是HIV感染后特异性地破坏CD4+细胞,使CD4+以及与其相关的免疫功能缺陷,易招致机会性感染及肿瘤,但HIV感染后怎样特异性破坏CD4+细胞呢?一般认为,CD4+T淋巴细胞绝对数显著减少的原因,主要是通过细胞凋亡机制造成的。
这不仅阐明了AIDS时CD4+T细胞减少的主要原因,同时也为AIDS的治疗研究指明了一个重要的探索方向。
2)从细胞凋亡角度看,肿瘤的发生是由于凋亡受阻所致
一般认为恶性转化的肿瘤细胞是因为失控生长,过度增殖,从细胞凋亡的角度看则认为是肿瘤的凋亡机制受到抑制
不能正常进行细胞死亡清除的结果。
肿瘤细胞中有一系列的癌基因和原癌基因被激活,并呈过表达状态。
这些基因的激活和肿瘤的发生发展之间有着极为密切的关系。
癌基因中一大类属于生长因子家族,也有一大类属于生长因子受体家族,这些基因的激活与表达,直接刺激了肿瘤细胞的生长,这些癌基因及其表达产物也是细胞凋亡的重要调节因子许多种类的癌基因表达以后,即阻断了肿瘤细胞的凋亡过程,使肿瘤细胞数目增加,因此,从细胞凋亡角度来理解肿瘤的发生机制,是由于肿瘤细胞的凋亡机制,肿瘤细胞减少受阻所致。
因此,通过细胞凋亡角度和机制来设计对肿瘤的治疗方法就是重建肿瘤细胞的凋亡信号转递系统,即抑制肿瘤细胞的生存基因的表达,激活死亡基因的表达。
3)细胞凋亡的研究将给自身免疫病带来真正的突破
自身免疫病包括一大类难治性的免疫紊乱而造成的疾病,自身反应性T淋巴细胞及产生抗体的B淋巴细胞是引起自身免疫病的主要免疫病理机制,正常情况下,免疫细胞的活化是一个极为复杂的过程。
在自身抗原的刺激作用下,识别自身抗原的免疫细胞被活化,从而通过细胞凋亡的机制而得到清除。
但如这一机制发生障碍,那么识别自身抗原的免疫活性细胞的清除就会产生障碍。
有人观察到在淋巴增生突变小鼠中观察到Fas编码的基因异常,不能翻译正常的Fas跨膜蛋白分子,如Fas异常,由其介导的凋亡机制也同时受阻,便造成淋巴细胞增殖性的自身免疫疾患。
4)神经系统的退行性病变:老年性痴呆是神经细胞凋亡的加速而产生的。
阿尔茨海默病(AD)是一种不可逆的退行性神经疾病,淀粉样前体蛋白(APP)早老蛋白-1(PS1)早老蛋白-2(PS2)的突变导致家族性阿尔茨海默病(FAD)。
研究证明PS参与了神经细胞凋亡的调控PS1、PS2的过表达能增强细胞对凋亡信号的敏感性。
Bcl-2基因家族两个成员Bcl-xl和Bcl-2参与对细胞凋亡的调节。
线粒体
线粒体是真核细胞的重要细胞器,是动物细胞生成ATP的主要地点。
线粒体基质的三羧酸循环酶系通过底物脱氢氧化生成NADH。
NADH通过线粒体内膜呼吸链氧化。
与此同时,导致跨膜质子移位形成跨膜质子梯度和/或跨膜电位。
线粒体内膜上的ATP合成酶利用跨膜质子梯度能量合成ATP。
合成的ATP通过线粒体内膜ADP/ATP载体与细胞质中ADP交换进入细胞质,参与细胞的各种需能过程。
1951年,巴黎第八大学荣誉教授Glucksmann提出正常脊椎动物发育中的细胞死亡。
1966年,Saunders提出在形态发生中细胞死亡。
1972年,Kerr提出细胞凋亡(apoptosis),说明这是在组织动力学方面有广泛作用的一种基本生物学现象。
1974年,Lockshin提出细胞程序性死亡。
美国麻省理工学院教授Horvitz在研究线虫发育时发。