机械优化设计PPT课件
合集下载
机械优化设计PPT课件
ⅱ)设计方案—由设计常量和设计变量组成。
ⅲ)维 数—设计变量的个数n.
通常,n ,设计自由度 , 越能获得理想的结果,但求解难度 .
n 10 小型问题 n 11 50 中型问题 n 50 大型问题
2019/8/16
14
2.设计空间
Rn(n 4) 为超越空间.
2019/8/16
15
三.目标函数和等值线
1.目标函数—数学模型中用来评价设计方案优劣的函
数式 (又称评价函数): f (X ) f (x1, x2,...xn ) ①常用指标: 最好的性能; 最小的重量; 最紧凑的外形;
最小的生产成本; 最大的经济效益等.
②单目标和多目标;
l1 l2 l3 l4 0
l1 l10 0
arccos (l2 l1)2 l42 l32 arccos (l2 l1)2 l42 l32 0
2(l2 l1)l4
2(l2 l1)l4
180
l12
l22
2l32 sin 2 ( l22 l12
2019/8/16
22
3.算法的收敛性和收敛准则
1)算法的收敛性
若由某迭代算法计算得到
有极限 lim X (k) X *,这里X *为精确解,则称该迭代算法是 k
收敛的.
2)算法的收敛速度
一般根据算法对正定二次函数的求解能力来判 断,能在有限步迭代中得到其极小点,称算法具有 二次收敛性。具有二次收敛性的算法是收敛速度较 高的方法。
1)二十世纪三十年代.前苏联 Канторович 根据生产组织和计划管理的需要提出线性规划问题. 在 第二次世界大战期间出于战争运输需要,提出线性规划 问题的解法;
ⅲ)维 数—设计变量的个数n.
通常,n ,设计自由度 , 越能获得理想的结果,但求解难度 .
n 10 小型问题 n 11 50 中型问题 n 50 大型问题
2019/8/16
14
2.设计空间
Rn(n 4) 为超越空间.
2019/8/16
15
三.目标函数和等值线
1.目标函数—数学模型中用来评价设计方案优劣的函
数式 (又称评价函数): f (X ) f (x1, x2,...xn ) ①常用指标: 最好的性能; 最小的重量; 最紧凑的外形;
最小的生产成本; 最大的经济效益等.
②单目标和多目标;
l1 l2 l3 l4 0
l1 l10 0
arccos (l2 l1)2 l42 l32 arccos (l2 l1)2 l42 l32 0
2(l2 l1)l4
2(l2 l1)l4
180
l12
l22
2l32 sin 2 ( l22 l12
2019/8/16
22
3.算法的收敛性和收敛准则
1)算法的收敛性
若由某迭代算法计算得到
有极限 lim X (k) X *,这里X *为精确解,则称该迭代算法是 k
收敛的.
2)算法的收敛速度
一般根据算法对正定二次函数的求解能力来判 断,能在有限步迭代中得到其极小点,称算法具有 二次收敛性。具有二次收敛性的算法是收敛速度较 高的方法。
1)二十世纪三十年代.前苏联 Канторович 根据生产组织和计划管理的需要提出线性规划问题. 在 第二次世界大战期间出于战争运输需要,提出线性规划 问题的解法;
机械优化设计PPT
2.梯度投影法
约束面上的梯度投影方向
四、步长的确定
1.取最优步长
2. αk取到约束边界的最大步长
1.取最优步长
2. αk取到约束边界的最大步长
1) 取一试验步长αt,计算试验点xt。
2) 判别试验点xt的位置。 3) 将位于非可行域的试验点xt,调整到约束面上。
2. αk取到约束边界的最大步长
3.计算步骤
三、 不等式约束的增广乘子法
三、 不等式约束的增广乘子法
三、 不等式约束的增广乘子法
图6-36 增广乘子法框图
第七节 非线性规划问题的线性化解法——线性逼近法
一、 序列线性规划法
二、割平面法 三、小步梯度法 四、非线性规划法
一、 序列线性规划法
6-37
二、割平面法
三、小步梯度法
1) 由设计者决定k个可行点,构成初始复合形。 2) 由设计者选定一个可行点,其余的(k-1)个可行点用随机法产生。 3) 由计算机自动生成初始复合形的全部顶点。
二、复合形法的搜索方法
1.反射 2.扩张 3.收缩 4.压缩
1.反射
1) 2) 3) 4) 计算复合形各顶点的目标函数值,并比较其大小,求出最好点L、最坏 点H及次坏点G 计算除去最坏点H外的(k-1)个顶点的中心C 从统计的观点来看,一般情况下,最坏点H和中心点C的连线方向为目标
四、非线性规划法
第八节 广义简约梯度法
一、 简约梯度法
一、 简约梯度法
二、 广义简约梯度法
二、 广义简约梯度法
三、 不等式约束函数的处理和换基问题
1.不等式约束函数的处理方法
2.基变量的选择和换基问题
1.不等式约束函数的处理方法
2.基变量的选择和换基问题
机械优化设计方法ppt课件
目标函数的一般表示式为:
f (x) f (x1, x2,...xn )
23
优化设计的目的就是要求所选择的设计变
量使目标函数达到最佳值,即使 f (x) Opt
通常 f (x) min
单目标设计问题
目标函数
多目标设计问题
目前处理多目标设计问题的方法是组合成一个 复合的目标函数,如采用线性加权的形式,即
f (x) W1 f1(x) W2 f2 (x) ... Wq fq (x)
24
四、优化问题的数学模型
优化设计的数学模型是对优化设计问题的数 学抽象。 优化设计问题的一般数学表达式为:
min f (x) x Rn
s.t. gu (x) 0 u 1, 2,..., m
hv (x) 0 v 1, 2,..., p n
4
图1-3 机械优化设计过程框图
5
优化设计与传统设计相比,具有如下三个特点:
(1)设计的思想是最优设计; (2)设计的方法是优化方法; (3)设计的手段是计算机。
二、机械优化设计的发展概况
1ቤተ መጻሕፍቲ ባይዱ优化设计的应用领域 近几十年来,随着数学规划论和电子计算机的迅 速发展而产生的,它首先在结构设计、化学工程、 航空和造船等部门得到应用。
架的高h和钢管平均直径D,使钢管总质量m为最小。
11
图2-2 人字架的受力
12
人字架的优化设计问题归结为:
x D H T 使结构质量
mx min
但应满足强度约束条件 x y 稳定约束条件 x e
13
1
钢管所受的压力
F1
FL h
F(B2 h
25
f (x) f (x1, x2,...xn )
23
优化设计的目的就是要求所选择的设计变
量使目标函数达到最佳值,即使 f (x) Opt
通常 f (x) min
单目标设计问题
目标函数
多目标设计问题
目前处理多目标设计问题的方法是组合成一个 复合的目标函数,如采用线性加权的形式,即
f (x) W1 f1(x) W2 f2 (x) ... Wq fq (x)
24
四、优化问题的数学模型
优化设计的数学模型是对优化设计问题的数 学抽象。 优化设计问题的一般数学表达式为:
min f (x) x Rn
s.t. gu (x) 0 u 1, 2,..., m
hv (x) 0 v 1, 2,..., p n
4
图1-3 机械优化设计过程框图
5
优化设计与传统设计相比,具有如下三个特点:
(1)设计的思想是最优设计; (2)设计的方法是优化方法; (3)设计的手段是计算机。
二、机械优化设计的发展概况
1ቤተ መጻሕፍቲ ባይዱ优化设计的应用领域 近几十年来,随着数学规划论和电子计算机的迅 速发展而产生的,它首先在结构设计、化学工程、 航空和造船等部门得到应用。
架的高h和钢管平均直径D,使钢管总质量m为最小。
11
图2-2 人字架的受力
12
人字架的优化设计问题归结为:
x D H T 使结构质量
mx min
但应满足强度约束条件 x y 稳定约束条件 x e
13
1
钢管所受的压力
F1
FL h
F(B2 h
25
机械优化设计课件2
用如下二维问题来说明有约束优化问题的几何解释 可知该问题的最优点为目标函数等值线 与可行域边界 g2 ( x) 0 的切点
( x1* , x2* ) (1.34,0.58)
* * 最优值为: f ( x1 , x2 ) 3.8
该问题的目标函数及等值线
该问题的设计空间及可行域
有约束的二维优化问题极值点所处位置的不同情况:
等式约束
---要求设计点同时在n维设计空间l个约束曲面上
不等式约束
---要求设计点在设计空间约束曲面的一侧(包括曲面本身)
在设计空间中,满足所有约束条件的区域称为可行域。
在设计空间中,至少不满足一个约束条件的区域称为非可行域。 可行域可记为: D x g j ( x) 0 ( j 1, 2,
在优化过程中,通过设计变量的不断向F(X)值改善的方向自动调整,最 后求得F(X)值最好或最满意的X值。
在实际优化问题中,对目标函数有两种要求形式
目标函数极小化 目标函数极大化
等价
所以,今后优化问题的数学表达一律采用目标函数的极小化形式
目标函数在设计空间的图像描述
一般地,n维目标函数可以在n+1维空间中描述其图像。 为了在n维设计空间中反映目标函数的变化情况,常采用 目标函数等值面的方法。其数学表达式:
1、
2、
采用作图法进行人字架的优化设计
3、数值迭代法(数学规划法):
xk
k 从一个初始设计 x 出发,按如下迭代公式:
x k 1 x k x k k 1 x 得到一个改进的设计 。
( x k ——修改量)
k 在这类方法中,许多算法是沿着某个搜索方向 ,以适当步长 k 的方式 d k 实现对 x 的修改,以获得x k 的值。
机械优化设计PPT
二、离散变量优化的主要方法及其特点、思路和步骤
表7-3 离散变量优化的主要方法及其特点和步骤
图7-8 两个目标函数的等值线和约束边界
三、协调曲线法
图7-9 协调曲线
四、分层序列法及宽容分层序列法
四、分层序列法及宽容分层序列法
采用分层序列法,在求解过程中可能会出现中断现象,使求解过程 无法继续进行下去。当求解到第k个目标函数的最优解是惟一时, 则再往后求第(k+1),(k+2),…,l个目标函数的解就完全没有意义 了。这时可供选用的设计方案只是这一个,而它仅仅是由第一个至 第k个目标函数通过分层序列求得的,没有把第k个以后的目标函数 考虑进去。尤其是当求得的第一个目标函数的最优解是唯一时,则 更失去了多目标优化的意义了。为此引入“宽容分层序列法”。这 种方法就是对各目标函数的最优值放宽要求,可以事先对各目标函 数的最优值取给定的宽容量,即ε1>0,ε2>0,…。这样,在求后一 个目标函数的最优值时,对前一目标函数不严格限制在最优解内, 而是在前一些目标函数最优值附近的某一范围内进行优化,因而避 免了计算过程的中断。
5.组合型算法终止准则
6.组合型算法的辅助功能
(1) 直线加速与二次曲线加速 当目标函数严重非线性时,即若
函数具有尖峰脊线,即存在“谷”时,则希望能沿着脊线方向进 行搜索,可迅速提高算法的寻优效率,该算法称为具有脊线加速 能力。 (2) 网格搜索法技术 将离散空间视为一网格空间,每个离散点 就是一个网格节点。 (3) 变量分解策略 将目标函数中的变量分成若干个子集合,若
离散复合形,重新进行调优搜索,直到前后两次离散复合形运算
的优化点重合,算法才最终结束。
6.组合型算法的辅助功能
图7-24 有脊线目标函数 寻优过程示意图
机械优化设计的基本概念和数学模型PPT课件
.
大齿轮强度要求 小齿轮强度要求 接触疲劳强度要求 齿宽系数要求 最小齿数要求
11
综上所述,这些问题的共同点都是:
在满足设计要求和条件的情况下,使目标的参数达 到最优,即最优参数。
一个优化设计问题应包括: 合理选择一组独立的参数——设计变量; 有一个或几个需要满足最佳的设计目标,它是设 计变量的函数——目标函数; 所取设计变量必须满足一定的限制条件—约束条件。
(2)根据要解决设计问题的特殊性来选择设计变量。
例如,圆柱螺旋拉压弹簧的设计变量有4个,即钢
丝直径d,弹簧中径D,工作圈数n和自由高度H。在设
计中,将材料的许用剪切应力和剪切模量G等作为设
计常量。在给定径向空间内设计弹簧,则可把弹簧中
径D作为设计常量。
.
17
(3)设计变量应该是独立的;
(4)用设计变量来阐述设计问题应该是用 最少的数量;
小型设计问题:一般含有2—10个设计变量;
中型设计问题:10—50个设计变量;
大型设计问题:50个以上的设计变量。
目前已能解决200个设计变量的大型最优化设计问
题。
.
16
如何选定设计变量?
确定设计变量时应注意以下几点:
(1)抓主要,舍次要。 对产品性能和结构影响大的参数可取为设计变量,
影响小的可先根据经验取为试探性的常量,有的甚至 可以不考虑。
.
3
实例1、箱盒的优化设计(续)
分析:
(1)箱盒的表面积的表达式;
(2)设计参数确定:长x1,宽x2,高x3 ; (3)设计约束条件:
(a)体积要求; (b)长度要求;
x2 x1
x3
.
4
数学模型
设计参数: x1, x2, x3
大齿轮强度要求 小齿轮强度要求 接触疲劳强度要求 齿宽系数要求 最小齿数要求
11
综上所述,这些问题的共同点都是:
在满足设计要求和条件的情况下,使目标的参数达 到最优,即最优参数。
一个优化设计问题应包括: 合理选择一组独立的参数——设计变量; 有一个或几个需要满足最佳的设计目标,它是设 计变量的函数——目标函数; 所取设计变量必须满足一定的限制条件—约束条件。
(2)根据要解决设计问题的特殊性来选择设计变量。
例如,圆柱螺旋拉压弹簧的设计变量有4个,即钢
丝直径d,弹簧中径D,工作圈数n和自由高度H。在设
计中,将材料的许用剪切应力和剪切模量G等作为设
计常量。在给定径向空间内设计弹簧,则可把弹簧中
径D作为设计常量。
.
17
(3)设计变量应该是独立的;
(4)用设计变量来阐述设计问题应该是用 最少的数量;
小型设计问题:一般含有2—10个设计变量;
中型设计问题:10—50个设计变量;
大型设计问题:50个以上的设计变量。
目前已能解决200个设计变量的大型最优化设计问
题。
.
16
如何选定设计变量?
确定设计变量时应注意以下几点:
(1)抓主要,舍次要。 对产品性能和结构影响大的参数可取为设计变量,
影响小的可先根据经验取为试探性的常量,有的甚至 可以不考虑。
.
3
实例1、箱盒的优化设计(续)
分析:
(1)箱盒的表面积的表达式;
(2)设计参数确定:长x1,宽x2,高x3 ; (3)设计约束条件:
(a)体积要求; (b)长度要求;
x2 x1
x3
.
4
数学模型
设计参数: x1, x2, x3
机械优化设计NO.ppt
4、作图求出问题的最优解
问题的实质:在可行域内,求使目标函数值为最小
的点及该点的函数值
X
f
(
X
)
最优解:Xf
[x1 , x2 ]T f (X )
T
[1.4142,1.4142] 0.6863
24
x2
f (X ) (x1 2)2 (x2 2)2 ( Ci )2
(如: P13飞剪机剪切
f1(X ) f2 (X )
f1 (x1, f 2 (x1,
x2 x2
xn ) xn )
机构的优化问题)
f q ( X ) f q (x1, x2 xn )
q
f (X ) f j (X ) q _ 追求的目标数目
j 1
q
f (X ) j f j (X ) j 1
g1( X ) 0 X (2)
X (4)
X (3)
D
g4(X) 0
h1 ( X ) 0
g3(X ) 0
x1
边界点:X (2)
例:一个二维问题的可行域
13
五、目标函数的等值线(面)
等值线(面): 具有相同目标函数值的点集在设计空
间形成的曲线和曲面
F(x)
① 一维问题(n =1):
目标函数是一维函
3
hv (X ) 0
2
x
2
X
1
g1(X ) x1 0
D
g3 ( X ) x12 x22 4 0
g2 (X ) x2 0
O
1
x1
2
问题的实质:在可行域内,求使目标函数值为最小
的点及该点的函数值
X
f
(
X
)
最优解:Xf
[x1 , x2 ]T f (X )
T
[1.4142,1.4142] 0.6863
24
x2
f (X ) (x1 2)2 (x2 2)2 ( Ci )2
(如: P13飞剪机剪切
f1(X ) f2 (X )
f1 (x1, f 2 (x1,
x2 x2
xn ) xn )
机构的优化问题)
f q ( X ) f q (x1, x2 xn )
q
f (X ) f j (X ) q _ 追求的目标数目
j 1
q
f (X ) j f j (X ) j 1
g1( X ) 0 X (2)
X (4)
X (3)
D
g4(X) 0
h1 ( X ) 0
g3(X ) 0
x1
边界点:X (2)
例:一个二维问题的可行域
13
五、目标函数的等值线(面)
等值线(面): 具有相同目标函数值的点集在设计空
间形成的曲线和曲面
F(x)
① 一维问题(n =1):
目标函数是一维函
3
hv (X ) 0
2
x
2
X
1
g1(X ) x1 0
D
g3 ( X ) x12 x22 4 0
g2 (X ) x2 0
O
1
x1
2
机械优化设计概述(PPT共 95张)
求:在钢管压应力 不超过
和失稳临界应力
e
y
条件下,
使质量m最小的高度h和直径D?
第一章 优化设计概述
1.1 最优化问题示例 例1-1 人字架的优化设计
解:(1)钢管满足的强度与稳定条件
钢管所受压力
2 FL F (B h ) F 1 h h 1 2 2
2 EI 压杆临界失稳的临界力 Fe L2
A 2 T D2 8
第一章 优化设计概述
1.1 最优化问题示例 例1-1 人字架的优化设计 强度约束条件: y 稳定约束条件: e
F B h TDh
2
1 2 2
y
FB h
2
1 2 2
T D h
2 2ET2 D 2 2 8B h
使传统机械设计中,求解可行解上升为求解最优解成为 使传统机械设计中,性能指标的校核可以不再进行;
使机械设计的部分评价,由定性改定量成为可能;
使零缺陷(废品)设计成为可能;
大大提高了产品的设计质量,从而提高了产品的质量;
大大提高了生产效率,降低了产品开发周期。
绪论
2 机械的设计方法 实际案例:
2 r i arccos i
2 2 r l l 2 l l i 1 4 1 4cos i
2
2
第一章 优化设计概述
1.1 最优化问题示例 例1-3 平面连杆机构的优化 解:(2)约束条件
g 1 l1 l 2 0 g 2 l1 l 3 0 g 3 l1 l 4 l 2 l 3 0 g 4 l1 l 2 l 3 l 4 0 g 5 l1 l 3 l 2 l 4 0 l 22 l 32 l 1 l 4 2 g 6 arccos 2 l2l3 max 0
机械优化设计经典实例PPT课件
x1
x2 x1
3/ 2
0
g3 (X ) 3 l 3 x3 0
g4 (X ) d x2 0
g5 ( X ) D d x1 x2 0
设计实例2: 平面连杆机构优化设计
一曲柄摇杆机构, M为连秆BC上一点, mm为预期的运动 轨迹,要求设计该 曲柄摇杆机构的有 关参数,使连杆上 点M在曲柄转动一 周中,其运动轨迹 (即连杆曲线)MM 最佳地逼近预期轨 迹mm。
6.12(x12 x22 )x3 106
设计实例1:
g1 ( X ) d 4 D 4 1.27 D 10 5 x2 4 x14 1.27 10 5 0
g2 ()
154.34D D4 d 4
Dd D
3/ 2
154.34x1 x14 x2 4
设计实例2:
设计一再现预期轨迹mm的曲柄摇杆机构。已知xA= 67mm,yA=10mm,等分数s=12,对应的轨迹mm 上12个点的坐标值见表,许用传动角[γ]=300。
设计实例2:
一、建立优化设计的数学模型
点M的坐标: xM xA l1 cos( ) l5 cos( ) yM yA l1 sin( ) l5 sin( )
( ) arccosl12 l22 l32 l42 2l1l4 cos
2l2 l12 l42 2l1l4 cos arctg l1 sin
l4 l1 cos
设计实例2:
点M的坐标: xM xA l1 cos( ) l5 cos( ) yM yA l1 sin( ) l5 sin( )
机械优化设计NO.5.ppt
凸函数的基本性质
⑴、设f(X)为定义在D上的凸函数,λ为任意正
实数,则λf(X)也是凸集D上的凸函数
⑵、若函数 f1( X )和 f2 ( X )为凸集D上的两个凸
函数,则对任意正实数a和b,函数
f ( X ) af1( X ) bf2 ( X )仍为D集上的凸函数
⑶、若f(X)为凸集D上的凸函数,则f(X)在D上的 一个极小点也就是在D上的“全域最小点”
总返回
思考题:
1、何谓凸集、凸函数、凸规划? 2、如何判断函数的凸性? 3、写出第三章内容之间的相互联系以及在求优中
的意义。
预 习: 4 一维优化方法
4.1 概 述 4.2 初始搜索区间的确定 4.3 黄金分割法
Φ(X)
a X(1) X
X(2) b
X
f(X) ≤ Φ(X)
f(X)
f(X)
Φ (X)
0a
b
cX
定义:设f (X) 为定义在Rn 中凸集D上的函数,X (1) 和 X (2)
为D上任意两点,若对于任意实数 [0,1],恒
有: f(X) ≤ Φ(X) ,即: f (X (1) (1 ) X (2) ) ≤ f ( X (1) ) (1 ) f ( X (2) )成立,则称 f(X)为 定义在凸集D上的一个凸函数
f xi
(
X
(k
)
)
2
2
二、函数的二阶导数矩阵(Hesse矩阵)
H
(
X
)
2
f
(
X
)
简写为:
《机械优化设计》课件
成本最低、 利润最大、 效率最高、 能耗最低、 综合性能最好
f(x*)
0
x*
x
在规定的范围内(或条件下),
寻找给定函数取得的最大值(或最
小值)的条件。
………
绪论
1.2 优化设计 优化设计是使某项设计在规定的各种设计限制条件下,
优选设计参数,使某项或几项设计指标获得最优值。
1.3 传统设计与优化设计 传统设计:求得 可行解,人工计算。 优化设计:解得 最优解,计算机计算。
优化问题的数学模型是实际优化问题的数学抽象。在
明确设计变量、约束条件和目标函数之后,优化设计问
题可以表示成一般的数学形式。
求设计变量向量
使
且满足约束条件
或可写成miຫໍສະໝຸດ f ( X ) f (x1, x2, , xn )
s.t.
gu ( X ) gu (x1, x2, , xn ) 0 (u 1, 2, m) hk ( X ) hk (x1, x2, , xn ) 0 (u 1, 2, k)
361240181
第二章 优化设计的数学基础
等值线的分布规律: 等值线越内层其函数值越小(对于求目标函数的极小化来说) 沿等值线密的方向,函数值变化快;沿等值线疏的方向,函数值变
没有“心”:例,线性函数的等值线是平行的,无“心”,认为 极值点在无穷远处。
多个“心”:不是单峰函数,每个极(小)值点只是局部极 (小)值点,必须通过比较各个极值点和“鞍点”(须正确判别) 的值,才能确定极(小)值点。
•欢迎加入湖工 大考试资料群:
361240181
•欢迎加入湖工 大考试资料群:
优化设计概述
一 优化设计内涵 二 优化设计基本过程——人字架的 优化设计 三 优化设计问题的描述——数学模型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.04.2020
.
9
第一章 最优化设计概论
一. 引例 二. 设计变量 三. 目标函数和等值线 四. 约束条件 五. 最优化设计的数学模型 六. 优化计算的迭代方法
24.04.2020
.
10
一. 引例
1. 要用薄钢板制造一体积为5 m 3 的长方形汽车货箱(无上盖), 其长度要求不超过4m.问如何设计可使耗用的钢板表面积 最小?
设计原则:最优设计
设计手段:电子计算机和计算程序
设计方法:最优化数学方法
24.04.2020
.
3
机械最优化设计
在给定的载荷或环境条件下,在对机械产品的性 态、几何尺寸关系或其他因素的限制(约束)范 围内,选取设计变量,建立目标函数并使其获得 最优值的一种新的设计方法。
设计变量、目标函数和约束条件三者在设计空间 (以设计变量为坐标轴组成的实空间)的几何表 示中构成设计问题。
24.04.2020
.
7
3)二十世纪六十年代.美数学家 R.J.Duffin 提出了几 何规划, 可把高度非线性的问题转化为具有线性约束的 问题来求解, 使计算大为简化;
4) 动态规划由 R.Bellman 创立, 可解与时间有关的最优 化问题;
5) 混合离散规划是二十世纪八十年代提出的,目前仍在发 展过程中.
6
三.最优化方法的发展概况
---是适于生产建设、计划管理、科学实验和战争的需要发展起来的。
1)二十世纪三十年代.前苏联 Канторович 根据生产组织和计划管理的需要提出线性规划问题. 在 第二次世界大战期间出于战争运输需要,提出线性规划 问题的解法;
2)二十世纪五十年代末. H.W.Kuhn & A.W.Tucker提出 非线性规划的基本定理,奠定了非线性规划的理论基础. 其求解方法在六十年代获得飞速发展;
24.04.2020
.
13
2.设计空间
ⅰ)设计点与设计向量—每组设计变量值对应于以n个设计变 量为坐标轴的n维空间上的一个点,该点称设计点. 原点到 该点的向量称设计向量.
*设计点有连续与不连续之分; *可用数组表示:X[x1 x2 ...xn]T
ⅱ)设计空间—设计点n 的集合(XRn维实
欧氏空间
的生产成本; 最大的经济效益等.
解: 设货箱的长、宽、高分别为 x1,x2,x3,该问题可表示为: 求 x1,x2,x3
使 f( x 1 ,x 2 ,x 3 ) x 1 x 2 2 ( x 2 x 3 x 1 x 3 ) 达到最小 满足于 g 1 4 x 1 0
g 2 x1 0 g3 x2 0 g 4 x3 0 h1 x1x2 x3 5
x3
其解为:x 1
x2
x12.154,3x251 2.154,5x3215.07721 f1.392477
24.04.2020
.
11
2. 设计一曲柄摇杆机构. 已知: l3 1m 0,0 m 30,2 k 1 .2.5
要求: l1l102m 0 ,m 使 min达到最大.
B1
B2
解:由k1.25, 有 1800k1200
l
2
65
. 01181
arccos(l2 l1)2 l42 l32 arccos(l2 l1)2 l42 l32 0
l
4
95
. 36969
2(l2 l1)l4
l12
l22
2l32 sin2(
l22 l12
/ 2)
cos
0
2(l2 l1)l4
180
min
44 . 02305
24.04.2020
.
4
绪论
一.机械的设计方法
一)机械的传统设计方法
---基于手工劳动或简易计算工具
低效,一般只能获得一个可行的设计方案.
二)机械的现代优化设计方法
---基于计算机的应用 设计过程--- ① 从实际问题中抽象出数学模型;
② 选择合适的优化方法求解数学模型.
特
24.04.2020
点--- 以人机配合或自动搜索方式进行,能从“所
有的”可行方案中找出“最优的”设计方
案.
.
5
二.优化设计方法简介
1)古典方法: 微分法; 变分法. ---仅能解决简单的极值问题
2)现代方法: 数学规划方法 ---可求解包含等式约束和不等式约束 的复杂的优化问题.
有线性规划、非线性规划、几何规划、动态规 划和混合离散规划等。
24.04.2020
.
)。
•当设计点连续时, R 1为直线; R 2为平面; R 3为立体空间;
Rn(n 4) 为超越空间.
24.04.2020
.
14
三.目标函数和等值线
1.目标函数—数学模型中用来评价设计方案优劣的函数
式 (又称评价函数): f(X )f(x 1 ,x2,.xn .). ①常用指标最:好的性能; 最小的重量; 最紧凑的外形;最小
机械优化设计
绪论
一. 机械的设计方法 二. 优化设计方法简介 三. 最优化方法的发展概况
24.04.2020
.
2
最优化设计
定义:在现代计算机广泛应用的基础上发展起来 的一项新技术,是根据最优化原理和方法综合各 方面的因素,以人机配合方式或“自动探索”方 式,在计算机上进行的自动或半自动设计,以选 出现有工程条件下的最佳设计方案的一种现代设 计方法。
* 最优化方法用于机械设计是从二十世纪六十年代开始的, 较早的成果主要反映在机构的优化设计方面,现已广泛用 于机械零部件设计和机械系统的优化设计.
24ቤተ መጻሕፍቲ ባይዱ04.2020
.
8
最优化设计的主要内容
一)最优化设计概论 二)无约束优化方法 三)线性规划方法 四)约束优化方法 五)多目标优化方法 六)混合离散规划 七)机械优化设计实例
0
24.04.2020
.
12
二.设计变量
1.设计变量 —在设计中需进行优选的独立的待求参数;
*ⅰ)设计常量—预先已给定的参数;
ⅱ)设计方案—由设计常量和设计变量组成。
ⅲ)维 数—设计变量的个数n.
通常, n ,设计自由度 , 越能获得理想的结果,但求解难度 .
n 10小型问题 n 1150中型问题 n 50大型问题
k1
该问题可表示为
23
1 O 1
A2
A1
4
O2
求 l1,l2,l4
使 mcinom si nl2 2l3 22l2(ll34l1)2
min
满足于 l1 l2 l3 l4 0
l1 l2 l3 l4 0
求解结果 :
l1 l2 l3 l4 0
l
1
25
. 53377
l1 l10 0