重金属的测定

重金属的测定
重金属的测定

有机物破坏法

食品中重金属的分析和其他分析一样,关键在于如何将重金属从其他干扰其测定的物质中分离出来。一般是用湿法灰化或干法灰化的手段将食品中的有机物破坏、除去,至于湿法或干法的选择,要以不致丢失所要分析的对象为原则。

食品中的微量元素,多数以结合的形式存在于有机物中,我们在分析和测定这些元素时,需将这些元素从有机物中游离出来,或者将有机物破坏后测定,根据被测的性质,选则合适的有机物破坏法,使样品中绝大部分有机物破坏。某些元素在破坏有机物的过程中无丝毫损失,又能在破坏有机物后测定是何物干扰。

常用于有机物破坏的方法有两种

1.湿化法(湿法破坏)主要用硫酸来破坏有机物

2.消化法

⑴HNO3-H2SO4消化法

⑵H2SO4-H2O2消化法

⑶H2SO4-HCLO4消化法

3.灰化法(干法灰化),将样品灰化。用灰分来测定这些元素。

干法灰化又分

1.直接灰化法(用于含Cu、Pb、Zn样品中的有机物破坏)

2.Ca(OH)2法(用于含砷有机样品的破坏)

3.NaOH法(适用于含锡样品的有机物破坏)

1.直接灰化法

固体样5g→500℃马福炉→灰白色→冷却→加1:1 HCL 2ml→水浴加热至干→加水定容到50ml的容

量瓶中

液体样 25ml→蒸发皿→水溶至干→入马福炉→同上

2.Ca(OH)2法 (含砷样)

称5g样+5g Ca(OH)2→于蒸发皿→加少量水→均匀→保温炭化→500℃马福炉→灰白色→冷却→加

6N HCL溶解→定容50ml

3.NaOH法 (含锡样品)

称样5g +10%NaOH 3ml→蒸发皿→水溶蒸干→低温→600℃灰化为灰

白色→冷却→加5ml水→蒸干→加10ml浓HCL→溶解→10ml→移入

50ml容量瓶→用1:1 的HCL定容

二湿法破坏

1.HNO3-H2SO4

HNO3-H2SO4 消化法适用于含Pb、As、Cu、Zn等样品分析。

样品→于K瓶→加水10ml+ HNO3 15ml+ H2SO410ml→ K瓶溶液呈棕色时→加HNO3 2-5ml→有机物完全分解→不再有棕色气体产生时→迅速加热→呈微黄色→冷却→水5ml→定容50ml(作空白)

2.H2SO4-H2O2消化法

此法用于含Fe含脂肪高的食品的破坏方法eg:糕点、罐头、肉制品、乳制品等。

样品+10ml H2SO4→低温至黑色糊稠状→升温→加3%→的H2O22ml→溶液呈透明液体→加热10分钟→冷却→定容50ml(作空白)

3.H2SO4-HCLO4消化法

适用于含Sn、Fe 有机物的破坏

样品+10ml H2SO4→低温至黑色糊稠状→升温→滴加HCLO4 2ml→至溶液呈透明液体→加热20分

钟→冷却→加10ml水→定容50ml

以上我们讲了湿法破坏的三种方法,可以根据要测的样品和所有的试剂仪器来选择有机物的破坏

方法。湿法破坏和干法破坏各有优缺点,下面我们来比较一下三.湿法破坏和干法破坏的优缺点

湿法破坏干法破坏

消化时间快消化时间很慢

需温度低,挥发少,时间短要求温度高,挥发快,时间长对样品性质

不敏感对样品有选择性

较多的监视(需人看管)不需监视

试剂空白大试剂空白小

不能处理大量样品能处理大量样品

砷的测定(古蔡氏测砷法)

一、目的与要求:

1、掌握古蔡氏法测定砷含量的原理方法。

二、原理:

样品经消化后,以碘化钾、氯化亚锡将高价砷还原为三价砷然后与锌粒和酸产生的新生态氢生成砷化氢,再与溴化汞试纸生成黄色至橙色的色斑比较定量。

三、试剂与仪器:

1、5%溴化汞乙醇溶液

2、溴化汞试纸:将滤纸剪成直径为2cm的圆片,浸泡于溴化汞乙醇溶液中。使用前取出,使其自然干燥后备用。

3、40%酸性氯化亚锡溶液:称取20克氯化亚锡(Sncl2.2H2O),溶于12.5毫升浓盐酸中,用水稀释至50毫升。另加2颗锡粒于溶液中。

4、10%醋酸铅溶液。

5、醋酸铅棉花:将脱脂棉浸泡于10%醋酸铅溶液中,1小时后取出,并使之疏松,在100℃烘箱内干燥,取出置于玻璃瓶中塞紧保存备用。

6、醋酸铅试纸:将普通滤纸浸入10%醋酸铅溶液中,1小时候取出,自然晾干,剪成条状(8×5cm),置于瓶中保存,备用。

7、无砷锌细粒。

8、浓盐酸。

9、20%碘化钾溶液。

10、10%硝酸镁溶液。

11、氧化镁;

12、砷标准溶液:精确称取预先在硫酸干燥器中干燥过的或在100℃干燥2小时的三氧化二砷0.1320克,溶于l0毫升lN氢氧化钠溶液中,加1N硫酸溶液10毫升将此溶液仔细地移入1000毫升容量瓶中,并用

水稀释至刻度。此液每毫升含0.1毫克砷。使用时可将此液稀释成每毫升含l或10mg的砷。

13、1N氢氧化钠:量取52毫升氢氧化钠饱和溶液,注入l000毫升不含二氧化碳的水中,混匀。

14、1N硫酸溶液。

15、古蔡氏砷斑法测定器(见下图)

四、操作方法:

1、样品处理:准确称取样品10克,置于瓷坩埚中,加入氧化镁粉2克,10%硝酸镁溶液10毫升,在水浴上蒸干。小火炭化后,移入550℃高温炉中灰化至白色灰烬,冷却,加人l0毫升浓盐酸溶解残渣,然后用水移入100毫升量瓶中,并稀释至刻度,摇匀。

2、样品分析:准确吸取样品溶液20毫升,移入砷斑法测定器,分别置于三角瓶中,分别加入每毫升含1mg的砷的标准溶液0.0、1.0、2.0、3.0、4.0、5.0毫升。于各瓶中加入20%碘化钾溶液5毫升。40%氯化亚锡溶液2毫升于样品溶液中再加入浓盐酸13毫升,于标准溶液中各加入浓盐酸15毫升,并各加入水使总体积为45毫升。放置10分钟后。加入锌粒5克迅速装上已装有溴化汞试纸,醋酸铅棉花和滤纸的试砷管。在25-30℃下避光放置45分钟。取出溴化汞试纸,将样品和标准色斑目测比较,求出样品溶液中的含砷量。

计算:

砷(mg/kg)=C/W×100

C:相当于砷的标准量(mg)

W:测定时样液相当于样品的重量(g),

说明:

(1)吸取样品溶液的量可视样品中含砷量而定,最后总体积达45毫升即可。

(2)样品色斑相当于砷的量应扣除空白液的色斑相当于砷的量。

(3)试剂空白只允许呈现极浅的淡黄色(一般不应显色)砷斑。如空白显色砷,应找出原因。

(4)对试剂要求纯度高,必须是无砷锌粒,一级盐酸。

(5)装入醋酸铅棉花时,不要太紧和太软,紧与松要适应。

(6)加入锌粒时,要每加一次锌粒,立即盖上一支预先准备好的醋酸铅棉花,溴化汞试纸的玻璃管。

(7)如样品中含有锑,也能够生成与砷斑类似的锑斑,锑能溶解在80%乙醇中,而砷斑不溶解。

实验(二) (DDC-Ag)比色法

一、原理

样品消化后,以碘化钾,氯化亚锡将高价砷还原为三价砷,然后与锌粒和酸产生的新生态氢声称砷化氢,经银盐溶液吸收后,形成红色胶态物,与标准系列比较定量。

二、试剂与仪器

1、砷的吸收:称取0.25克DDC-Ag和0.25克奎宁(C20H24O2N2),溶于100毫升氯仿中静置过夜,必要时过滤。澄清的吸收液应贮于棕色瓶中。

奎宁的处理:一般奎宁以盐类形式存在,如硫酸奎宁。将它溶于沸水中,加入1N氢氧化钠溶液使溶液呈碱性,此时有大量奎宁析出。过滤,氯渣用水洗涤数次,然后溶于氯仿中此氯仿液置于分液漏斗中,用水洗至水层呈中性,氯仿层用无水硫酸钠干燥后,蒸发氯仿,残氯仿液置于分液漏斗中,用水洗至水层呈中性。氯仿层用无水硫酸钠干燥后,蒸发氯仿,残渣以少量丙酮处理之,即得到奎宁粉末。

砷吸收液中加奎宁的目的,是使吸收液呈碱性,能加速胶态银稳定的形成。其他如吡啶也有类色作用。

2、其他试剂的配制同古蔡氏砷班法。

3、分光光度计;

4、砷化氢吸收装置:如下图所示。

1-150ml锥形瓶 2-气管

3-醋酸铅棉花 4-10ml刻度离心管

三、操作方法:

1、样品处理:按古蔡砷斑法的样品处理,所得的灰分,加水l0毫升,1:1 H2S04溶液10毫升,使残渣溶解,并过滤于100毫升容量瓶中,用水稀释至刻度。

2、样品分析:吸取一定量样品溶液(视样品中含砷量而定)置于三角烧瓶中。另准确吸取每毫升相当于1微克砷的标准溶液0.0、1.0、2.0、3.0、4.0、5.0毫升,分别置于三角烧瓶中。在盛有样品溶液或标准溶液的三角烧瓶中各加入水60毫升,l:1H2SO4溶液15毫升,15%碘化钾溶液5毫升,40%氯化亚锡溶液2毫升,摇匀,放置10分钟后,加入锌粒6克,立即塞紧带有玻璃弯管的橡皮塞,并将出口的尖管浸插在预先加有5毫升.吸收液的比色试管中,在室温下(25℃左右)反应吸收40分钟。取下吸收管,用氯仿补足各管的吸收液的体积至5毫升。用分光光

度计于500nm波长处测定光密度。根据各标准管读得的光密度绘制标准曲线。根据样品溶液测得的光密度,从标准曲线中查得相应的砷含量。

计算:

砷(mg/kg)=C/W×1000

C:相当于砷的标准量(mg);

W:测定时样品溶液相当样品的重量(g)

注:

(1)砷的反应吸收尽量控制在25℃左右进行。天热时测定,吸收管应放在冰水中,避免吸收液挥发。

(2)使用无砷锌粒时,最好加人两颗颗粒较大的锌粒,其余仍用细锌粒。如全部用细锌粒,反应太激烈。

食品中铅的测定

一、目的与要求:

1.掌握双硫腙比色法测定铅含量的原理与方法。

2.熟悉72工型分光光度计的工作原理和使用方法。

二、原理:

样品经消化后,在PH8.5-9.0时,铅离子与双硫腙生成红色络合物,溶于三氯甲烷,加入柠檬酸铵,氰化钾和盐酸羟胺等,防止铁、铜、锌等离子干扰,与标准系列比较定量。

三、试剂:

l、1:1氨水;、

2、6N盐酸:量取100毫升盐酸,加水稀释至200ml。

3、酚红指示液:0.1%乙醇溶液。

4、20%盐酸羟胺溶液:称取20克盐酸羟胺,加水溶解至约50ml,加2滴酚红指示液,加1:1氨水,调PH至8.5-9.0(由黄变红,再多加2滴)用双硫腙-三氯甲烷溶液提取至三氯甲烷层绿色不变为止,弃去再用三氯甲烷洗二次,弃去三氯甲烷层,水层加6N盐酸呈酸隆,加水至100毫升。

5、20%柠檬酸铵溶液:称取50克柠檬酸铵,溶于100毫升水中,加2滴酚红指示液,加l:1氨水,调PH至8.5-9.0,用双硫腙-三氯甲烷溶液提取数次,每次10-20ml,至三氯甲烷层绿色不变为止,弃去三氯甲烷层,再用三氯甲烷洗二次,每次5ml,弃去三氯甲烷层,加水稀释至250毫升。

6、10%氰化钾溶液;

7、三氯甲烷;不应含氧化物。

(1)检查方法:量取10ml三氯甲烷,加25ml新煮沸过的水,振摇3分钟,静置分层后,取10ml水液,加数滴15%碘化钾溶液及淀粉指示液,振摇后应不显蓝色。

(2)处理方法:于三氯甲烷中加人工1/10-1/20体积的20%硫酸钠溶液洗涤,再用水洗后加入少量无水氯化钙脱水后进行蒸馏,弃去最初及最后的l/10馏出液,收集中间馏出液备用。

8、淀粉指示液:称取0.5克可溶性淀粉,加5ml水搅匀后,慢慢倒入lOOml沸水中,随到搅拌,煮沸,放冷备用。用时配制。

9、1%硝酸:量取1ml硝酸,加水稀释至100ml。

10、双硫腙溶液:0.5%三氯甲烷溶液,保存冰箱中,必要时用下述方法纯化。

称取0.5克研细的双硫腙,溶于50ml三氯甲烷中,如不全溶;可用滤纸过滤于250m1分液漏斗中,用1:99氨水提取三次,每次100ml,将提取液用棉花过滤至500m1分液漏斗中,用6N盐酸调至酸性,将沉淀出的双硫腙用三氯甲烷提取2-3次,每次20ml,合并三氯甲烷层,用等量水洗涤二次,弃去洗涤液,在50℃水浴上蒸去三氯甲烷。精制的双硫腙置硫酸干燥器中,干燥备用。或将沉淀出的双硫腙用200,200,100ml 三氯甲烷提取三次,合并三氯甲烷层为双硫腙溶液。

11、双硫腙使用液:吸取1.Oml双硫腙溶液,加三氯甲烷至10ml,混匀。用:1cm比色杯,以三氯甲烷调节零点,于波长510nm处测吸光度(A)下式用算出配制100m1双硫腙使用液(70%透光率)所需双硫腙溶液的毫升数(N)。

V =(10(2-lg70))/A=1.55/A

12、铅标准溶液:精密称取0.1598克硝酸铅,加10ml1%硝酸,全部溶解后,移入100ml容量瓶中,加水稀释至刻度,此溶液每毫升相当于lml 铅。

13、铅标准使用液:吸取1.0ml铅标准溶液,置于100毫升容量瓶中,加水稀释至刻度。此溶液每毫升相当于10mg铅。

四、仪器:

1、所用玻璃仪器均用l0-20%硝酸浸泡24小时以上,用自来水反复冲洗,最后用水冲洗干净。

2、分光光度计。

五、操作方法:

1、样品消化

(1)硝酸-硫酸法

a、酱、酱油、醋、豆腐乳、酱腌菜等:称取10.0克样品(或吸取10.Oml 液体样品),置于250ml定氮瓶中,加数粒玻璃珠,lOml硝酸,放置片刻,小火加热、待作用缓和,放冷,沿瓶壁加入1%硝酸,再加热,至瓶中液体开始变成棕色时,不断沿瓶壁滴加硝酸有机质分解完全。加热火力,至产生白烟,溶液应澄清无色或微带黄色,放冷。在操作过程中应注意防止爆炸。

加20ml水煮沸,除去残余的硝酸至产生白烟为止,如此处理两次,放冷。将冷后的溶液移入50ml或lOOml容量瓶中用水洗涤定氮瓶,洗液并容量瓶中再放冷,加水至刻度,混匀。定容后的溶液每lml相当于2g 样品或2ml样品.

b、含酒精性饮料或二氧化碳饮料:吸取10.Oml样,置于250ml定氮瓶中,加数粒玻璃珠,先用小火加热除去乙醇或二氧化碳,再加lOml硝酸,混匀后,以下按(a)自“放置片刻”起依法操作,但定容后的溶液每10ml相当于2m1样品。

c、含糖量高的食品:称取1.0克样品,置于250ml定氮瓶中,先加少许水使湿润,加数粒玻璃珠,10ml硝酸,摇匀,缓缓加入10ml硫酸,待作用缓和停止起泡沫后,先用小火缓缓加热(糖分易炭化),不断沿瓶壁:加硝酸,待泡沫全部消失后,再加大火力,至有机质分解完全发生白烟,溶液应澄清无色或微带黄色,放冷。以下按a自“加20ml水煮沸”起依法操作。

以上湿法消化要同时作空白试验。

(2)灰化法

a、糕点及其他含水分少的食品:称取5.0克样品,置于坩埚中,加:至炭化,然后移入高温炉中,500℃灰化3小时、放冷,取出坩埚,加l ml 硝酸、湿润灰分,用小火蒸干,在500℃灼烧1小时,放冷,取出坩埚。加lml 硝酸,加热,使灰分溶解,移入50ml容量瓶中,用水沸涤坩埚,洗液并入容量瓶中,加水至刻度,混匀备用。

b、含水分多的食品或液体样品:称取5.0克或5.0ml样品,置于蒸发皿中,先在水浴上蒸于,再按a自“加热至炭化”起依法操作。

2、测定

吸取10.Oml消化后的定容溶液和同量的试剂空白液,分别置于125ml 分液漏斗中,各加水至20ml。

吸取0.00、0.10、0.20、0.30、0.40、0.50ml铅标准使用液(相当于0、1、2、3、4、5mg铅)分别置于125m1分液漏斗中,各加1%硝酸溶液至20ml。

于样品消化液,试剂空白液和铅标准液中各加2m120%柠檬酸铵溶液,lml20%盐酸羟胺溶液和2滴酚红指示液,用1:1氨水调至红色,再各加2ml10%氰化钾溶液,混匀。各加5.Oml 硫腙使用液,剧烈振摇1分钟,静置分层后,三氯甲烷层经脱脂棉滤人1cm比色杯中,以零点于波长5lOnm处测吸光度,绘制标准曲线比较。

计算:

X=((A1—A2)×1000)/( m×V2/V1×1000)

X:样品中铅的含量,mg/kg或mg/L;

A1:测定用样品消化液中铅的含量,mg;

A2:试剂空白液中铅的含量,mg;

M:样品质量(体积),克(m1);

V1:样品消化液的总体积(m1);

V2:测定用样品消化液体积,m1。

食品中总汞的测定

第一法冷原子吸收法

一、目的与要求:

1、掌握用分光分度计测定总汞的方法

2、初步掌握用冷原子吸收法测总汞的方法

二、原理:

汞蒸气对波长253.7nm的共振线具有强烈的吸收作用,样品经过硝酸—硫酸或硝酸-硫酸—五氧化二钒消化使汞转为离子状态,在强酸性中以氯化亚锡还原成元素汞,以氮气干燥清洁空气作为载体,将汞吸出,进行冷原子吸收测定,与标准系列比较定量。

三、试剂与仪器:

1、硝酸

2、硫酸

3、30%氯化亚锡溶液:称取30克氯化亚锡(Sncl2·2H20)加少量水,再加2ml硫酸使溶解后,加水稀释至100ml,放置冰箱保存。

4、无水氯化钙,干燥用。

5、5N混合酸液:量取10ml硫酸,再加人lOml硝酸,慢慢倒人50ml 水中,冷后加水稀释至100ml。

6、五氧化二钒。

7、5%高锰酸钾溶液:配好后煮沸10分钟,静置过夜,过滤,棕色瓶中。

8、20%盐酸羟胺溶液。

9、汞标准溶液:精密称取0.1354克于干燥器干燥过的二氯化汞,加5N 混合酸溶解后移入100ml容量瓶中,并稀释至刻度,混匀,此溶液每毫升相当于1mg汞。

10、汞标准使用液:吸取1.0ml汞标准溶液,置于100毫升容量瓶中,加5N混合酸稀释至刻度,此溶液每毫升相当于1ug汞,再吸取此液1.0,置于lOOml容量瓶中,加5N混合酸稀释至刻度,此溶液每毫升相当于0.lug汞,用时现配。

11、消化装置一套。

12、测汞仪。

13、汞蒸气发生器。

14、抽气装置。

四、操作方法:

(一)样品消化

1、回流消化法。

(1)、粮食或水分少的食品:,称取10克样品,置于消化装置锥形瓶中,加玻璃珠数粒,加45ml硝酸,lOml硫酸,转动锥形瓶防止局部炭化,装上冷凝管后,小心火加热,待开始发泡即停止加热,发泡停止后,加热回流2小时。如加热过程中溶液变棕色,再加5ml硝酸,继续回流2小时,放冷后从冷凝管上端小心加20ml水,继续加热回流10分钟,放冷,用适量水冲洗冷凝管,洗液并入消化液中,将消化液经玻璃棉过滤于lOOml容量瓶内,用少量水洗锥形瓶,滤器,洗液并入容量瓶内,加水至刻度混匀,取与消化样品相同量的硝酸、硫酸,按同一方法做试剂空白试验。

(2)植物油及动物油脂:称取5.0克样品,置于消化装置锥形瓶中,加玻璃珠数粒,加入7m1硫酸,小心混匀至溶液颜色变为棕色,然后加40ml 硝酸,装上冷凝管后,以下按(1)自“小火加热”起依法操作。

(3)薯类、豆制品:称取20克捣碎混匀的样品(薯类须预先洗净晾干),置于消化装置锥形瓶中,加玻璃珠数粒及30ml硝酸、5ml硫酸,转动锥形瓶防止局部炭化,装上冷凝管后,以下按(1)自“小火加热”起依法操作。

(4)肉、蛋类:称取10克捣碎混匀的样品,置于消化装置锥形瓶中,加玻璃数粒及30ml硝酸,5m1硫酸,转动锥形瓶防止局部炭化,装上冷凝管以下按自(1) “小火加热”起依法操作。

(5)牛乳及乳制品:称取20克牛乳或酸牛乳,或相当于20克牛乳的乳制品(2.4克全脂乳粉,8克甜炼乳),置于消化装置锥形瓶中,加玻璃珠数粒及30ml硝酸,牛乳或酸牛乳加10ml硫酸,乳制品加5m1硫酸,转动锥形瓶防止局部炭化。装上冷凝管后,以下按(1)“小火加热”起依法操作。

2、五氧化二钒消化法

本法适用于水产品、蔬菜、水果。

(1)取可食部分、洗净,晾干、切碎、混匀,取2.50克水产品或l0克蔬菜,水果,置于50-lO0ml锥形瓶中,加50mg五氧化二钒粉末,再加8m1硝酸,振摇,放置4小时,加5m1硫酸,混匀,然后移至140℃砂浴上加热,开始作用较猛烈,以后渐渐缓慢,待瓶口基本上无棕色气体逸出时,用少量水冲洗瓶口,再加热5分钟,放冷。加5ml 5%高锰酸钾溶液,放置4小时(或过夜),滴加20%盐酸羟胺溶液使紫色褪去,振

摇,放置数分钟,移入容量瓶中,并稀释至刻度,蔬菜、水果为25ml,水产品为100ml。

取与消化样品相同量的五氧化二钒,硝酸,硫酸按同一方法进行试剂空白试验。

(二)测定

1、用回流消化法制备的样品消化液

(1)、吸取10.Oml样品消化液,置于汞蒸气发生器内,连接抽气装置,沿壁迅速加入2m130%氯化亚锡溶液,立即通人流速为1.5升/分的氮气或经活性炭处理的空气,使汞蒸气经过氯化钙干燥管进入测汞仪中,读取测汞仪上最大读数,同时做试剂空白实验。

(2)吸取0.00,0.10、0.20、0.30、0.40、0.50ML汞标准使用液(相当0、0.01、0.02、0.03、0.04、0.05ug汞)置于试管中,各加10ml l5N混合酸,以下按测定(1)自“置于汞蒸气发生器内”起依法操作,绘制标准曲线。

(3)计算:

X=((A1-A2)×1000)/( m×V2/V1×1000)

X:样品中汞的含量,mg/kg;

A l:测定用样品消化液中汞的含量,ug;

A2:试剂空白液中汞的含量,ug;

M;样品质量,g;

V l:样品消化液总体积,ml;

V2:测定用样品消化液体积,ml。

2、用五氧化二钒消化法制备的样品消化液

(1)吸取10.Oml样品消化液,以下按回流消化法的测定(1)的方法操做。

(2)吸取0.0、0.1、0.2、0.3、0.4、0.5ml汞标准使用液(相当0、

0.1、0.2、0.3、0.4、0.5ug汞),置于6个50ml容量瓶中,各加lmll:

1)硫酸、lmll5%高锰酸钾溶液,加20ml水,混匀,滴加20%盐酸羟胺溶液使紫色褪去,加水至刻度混匀,分别吸取10.Oml(相当0.00、0.02、0.04、0.06、0.08、0.10ug汞),以下按回流消化法(1)自“置于汞蒸气发生器内”起依法操作,绘制标准曲线。

(3)计算同前。

第二法双硫腙法

一、原理:

样品经消化后,汞离子在酸性溶液中可与双硫腙生成橙色络合物,溶于三氯佐烷,与标准系列比较定量。

二、试剂与仪器:

1、硝酸

2、硫酸

3、1N硫酸:量取5m1硫酸、缓缓倒入l5Oml水中,冷却后加水至180ml。

食品中几种常见的重金属检测方法

食品中几种常见的重金属检测方法 随着现阶段社会经济的快速发展,人们物质生活水平在不断提升,社会各界开始逐步重视食品安全问题。当前环境污染问题较为严重,各类重金属对食品安全构成了极大的威胁。为了有效应对食品安全中的重金属污染问题,当前需要对各类检测技术进行探究,促进食品安全检测工作质量的提升。 食品安全对于社会群众生命健康具有重要影响,当前相关食品检测机构需要从日常工作中提高责任意识,完善各项检测技术,确保食品安全。目前自然界中比重大于5的金属都被称为重金属,并不是所有的重金属都会对人体健康构成威胁,当重金属实际含量超出人体承受限度时会造成不同程度的危害,比如Pb、Cd、As、Hg等元素。许多重金属不能通过简单方法就能有效消除,如果人类长期使用被重金属污染后的食物,将会导致中毒问题。所以对重金属检测方法进行研究,对维护食品安全具有重要意义。 食物中常见重金属的主要来源概述 目前食品中存有的重金属来源主要有自然原因,也有诸多人为因素。自然原因主要包括不同地质和地理要素的影响,比如火山运动频繁的地区或是矿区,部分有毒重金属物质会对当地动植物产生不同程度污染,人类生活在此区域内,误食动植物都会诱发重金属中毒。人为因素导致的污染

主要是各类社会活动产生的主要后果,现阶段我国工业经济发展较快,各类工业生产活动会产生大量废渣和废水,此类废弃物当中存有较多重金属元素,如果相关部门不能对其进行有效处理,此类废弃物排放到自然环境中,不仅会破坏自然生态环境,还会对当地群众生命健康构成威胁。还有部分食物在实际存储和运输过程中与各类重金属元素进行直接接触,或是食物添加剂当中的有毒元素不断累积、发生相应化学反应都会导致重金属中毒现象的发生。 现阶段食品中几种常见的重金属检测方法探析 原子吸收光谱法。原子吸收光谱法主要是根据自由基础形态下的原子对辐射光进行共振吸收,通过光照强度来对食物中含有的重金属元素进行检测。此类方法实际操作较为便捷,能够最快速度得出相应结果,是当前食物重金属检测的重要技术。此类技术将磷酸二氢钾或是硝酸钯作为改进剂,通过添加改进剂能够使得原子温度有效降低,排除外界干扰因素,使得检测结果更加准确。现阶段在原子吸收光谱法中应用的吸收分光光度计都是通过微机进行控制,运用软件进行自动处理,简化了各项操作程序,有效缩短了实际反应时间。 原子荧光光谱法。原子荧光光谱技术是存在于原子发射和原子吸收之间的分析技术,在食物样品中添加还原剂,使得原子能够吸收特定的频率辐射,逐步形成激发态原子,此

土壤中重金属的测定

实验题目土壤中Cu的污染分析实验 一、实验目的与要求 一、实验目的与要求 (1)了解重金属Cu对生物的危害及其迁移影响因素。 (2)了解重金属Cu的污染及迁移影响因素。 (3)掌握土壤消解及其前处理技术。 (4)掌握原子吸收分析土壤中金属元素的方法。 (5)掌握土壤中Cu污染评价方法。 二、实验方案 1.仪器 原子吸收分光光度计 电热板 量筒100mL 烧杯(聚四氟乙烯) 吸量管、50mL比色管、电子天秤 2.试剂 浓硝酸GR、浓盐酸GR、氢氟酸GR、浓高氯酸GR Cu标准储备液、Cu的使用液 3.实验步骤 (1)三份待测土样,约0.5g分别置于3个聚四氟乙烯烧杯; (2)向烧杯加入2ml蒸馏水湿润土样后,再加入10ml HCl并在电热板上加热至近干; (3)往烧杯中加入10ml HNO3,置于电热板上加热至近干; (4)往烧杯中加入5mlHF,置于电热板上加热至近干; (5)往烧杯中加入5mLHClO4,于电热板上加热至冒白烟时取下冷却; (6)取3支50ml具塞比色管,分别向管中加入2mlHNO3,分别对应加入冷却好的消解土样后,再加水稀释至刻度线; (7)如果溶液比较混浊,则要过滤再进行测定。

(8) AAS测定。 三、实验结果与数据处理 Cu标准溶液曲线 各个区域土壤中Cu的含量 mg/kg 教学区 1 2 3 4 5 6 7 8 实(1-2)2 实(1-2)4 实(2-3)1 工(3-4)3 教1 教2 教5 图1 17.83 13.01 24.78 8.56 16.76 6.30 12.49 7.09 生活区 1 2 3 4 5 6 东1 东2 东12 东14 二饭教寓5.49 19.27 6.20 2.11 13.70 16.18 其他区 1 2 3 4 5 6 7 8 行山3 行山4 行山5 体1 体4 南商1 南商4 中心湖1 15.96 7.75 9.93 9.65 8.46 16.80 9.47 9.30 外环区 1 2 3 4 5 6 7 8 外1 外2 外6 外4 公4 公10 农田2 农田4 14.80 14.13 15.53 12.41 59.07 10.88 10.46 24.24 四、结论 1.数据可靠性评价 由图可知标准曲线的相关系数均为R2=0.9995,可知在数据处理的过程中,由标准溶液产生的误差是可忽略不计的。但是本次实验,人为的误差相 当大,在整个实验过程中发现,有好几个组的几个样品都已经蒸干了,这已

三种土壤重金属快速检测仪的检测原理及方法

三种土壤重金属快速检测仪的检测原理及方法 土壤重金属污染目前是我国面临非常严峻的问题,所以市场上检测土壤重金属仪器层出不穷。 测量土壤重金属目前主要是有下面几种方法: 1、原子吸收光谱法 这种方法是相对比较传统的测量重金属的方法,先将土壤风干,再经过消解处理、定容,之后制备标准溶液,之后上机操作测量。测量原理是利用待测元素的共振辐射,通过其原子蒸汽,测定其吸光度;它有单光束,双光束,双波道,多波道等结构形式。其基本结构包括光源,原子化器,光学系统和检测系统。这种原理测出来相对精度较高,只是测量的时间上相对过长,通常整个过程需要24小时出结果。 2、伏安极谱法 这种方法也是先将土壤风干,再经过消解处理,然后将浸提液放入极谱仪中,直接测量。其原理是通过将一个变化的电压信号施加到电极上,而后测量电极的响应电流来测量重金属的含量,这种方法与原子吸收光谱法相比,测量精度更高,运行成本低,可以做形态分析等。 3、X射线荧光光谱法 X射线荧光光谱分析法利用初级X射线光子或其他微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。这种方式测量土壤重金属无需将土壤进行前处理,测量速度快,精度也能达到ppm 级。非常适合拿到野外走哪儿测哪儿,测量结果还能保存,有些还可以进行GPS 定位,记录什么地方土壤测量的结果是多少。并且测量时不存在任何耗材,无需任何使用成本。目前做的比较好的品牌有托普云农的土壤重金属快速检测仪,设备小巧,配有专门分析土壤模块,所以相对测量精度高。非常适合野外快速测量土壤重金属。 以上介绍的这些测量土壤重金属的方法都是目前市场上相对成熟的测量土壤重金属的方法,也是比较常规的方法。可以根据自己的需要选择合适的土壤重金属检测仪。 仪器名称:托普云农土壤重金属快速检测仪仪器型号:TPJS-B 金属检测仪、便携式重金属检测仪

土壤中重金属全量测定方法

版本1: 土壤中铜锌镉铬镍铅六中重金属全量一次消解测定方法.用氢氟酸-高氯酸-硝酸消解法,国家标准物质检测值和标准值吻合性很好,方便可行.具体方法: 准确称取0.5克土壤样品(过0.15mm筛)于四氟坩埚中,加7毫升硝酸+3毫升高氯酸+10毫升氢氟酸加盖,放置过夜(不过夜效果同),电热板上高温档加热(数显的控制温度300~350度)1小时,去盖,加热到近干,冷却到常温,然后再加3毫升硝酸+2毫升高氯酸+5毫升氢氟酸,高温档继续加热到完全排除各种酸,既高氯酸白烟冒尽,加1毫升(1+1)盐酸溶解残渣,完全转移到25毫升容量瓶中,加0.5毫升的100g/L的氯化铵溶液,定容,然后原子吸收分光光度计检测,含量低用石墨炉,注意定容完尽快检测锌,且锌估计需要适当的稀释.其实放置几天没有问题,相对比较稳定拉. 版本2: 1)称量0.5000g样品放入PTFE(聚四氟乙烯)烧杯中(先称量样品,后称量标 样),用少量去离子水润湿; 2)缓缓加入10.0mLHF和4.0mLHClO4(如果在开始加热蒸发前先把样品在混合 酸中静置几个小时,酸溶效果会更好一些),加盖后在电热板上200℃下蒸发(蒸发至样品近消化完后打开坩埚盖)至形成粘稠状结晶为止(2~3小时); 3)视情况而定,若有未消化完的样品则需要重新加入HF和HClO4,每次加入都 需要蒸发至尽干;若消化完全则直接进行下一步; 4)加入4.0mLHClO4,蒸发至近干,以除尽残留的HF; 5)加入10.0mL的5mol/L HNO3,微热至溶液清亮为止。检查溶液中有无被分解 的物料。如有,蒸发至近干,执行步骤4(此时可以酌情减半加酸); 6)待清亮的溶液冷却后,转入容量瓶,用去离子水定容至50mL(此时所得溶 液中硝酸含量为1mol/L),然后立即转移到新聚丙烯瓶中储存。 附: 现在一般做法是,砷汞用1+1的王水在沸水煮2小时,加固定剂(含5g/l重铬酸钾的5%硝酸溶液),在50毫升比色管中,固定,然后用原子荧光光谱仪测定砷汞.

水样中各种重金属的测定

水样中各种重金属的测定方法 1铜、锌、铅、镉的测定火焰原子吸收法(水和废水监测分析方法第四版增补版pp.325-326) 本法适用于测定地下水、地表水、和废水中的铅锌铜镉。 仪器:原子吸收分光光度计 试剂:硝酸,优级纯;高氯酸,优级纯;去离子水; 金属标准储备液:准确称取经稀酸清洗并干燥后的0.5000g光谱重金属,用50ml(1+1)硝酸溶解,必要时加热直至溶解完全。用水稀释至500.0ml,此溶液每毫升含1.00mg金属。 混合标准容液:用0.2%硝酸稀释金属标准储备液配制而成,使配成的混合标准溶液每毫升含镉、铜、铅和锌分别为10.0、50.0、100.0、和10.0μg。 步骤 (1)样品预处理 取100ml水样放入200ml烧杯中,加入硝酸5ml,在电热板上加热消解(不要沸腾)。蒸至10ml左右,加入5ml硝酸和高氯酸2ml,再次蒸至1ml左右。取下冷却,加水溶解残渣,用水定容至100ml。 取0.2%硝酸100ml,按上述相同的程序操作,以此为空白值。(2)样品测定 据表1所列参数选择分析线和调节火焰。仪器用0.2%硝酸调零。吸入空白样和试样,测量其吸光度。扣除空白样吸光度后,从校准曲线上查出试样中的金属浓度。如可能,也从仪器中直接读出试样中的

金属浓度。 表1 元素分析线波长(nm)火焰类型本法测定范围(mg/L)镉228.8 乙炔-空气,氧化型0.05~1 铜324.7 乙炔-空气,氧化型0.05~5 铅283.3 乙炔-空气,氧化型0.2~10 锌213.8 乙炔-空气,氧化型0.05~1 (3)标准曲线 吸取混合标准溶液0, 0.50,1.00, 3.00,5.00和10.00ml,分别放入六个100ml容量瓶中,用0.2%硝酸稀释定容。此混合标准系列各重金属的浓度见表2。接着按样品测定的步骤测量吸光度,用经空白校正的各标准的吸光度对相应的浓度作图,绘制标准曲线。 表2 混合标准使用溶液体积 (ml) 0 0.50 1.00 3.00 5.00 10.00 标准系列各重金属浓度(mg/L)镉0 0.05 0.10 0.30 0.50 1.00 铜0 0.25 0.50 1.50 2.50 5.00 铅0 0.50 1.00 3.00 5.00 10.00 锌0 0.05 0.10 0.30 0.50 1.00 注:定容体积100ml 计算 被测金属(mg/L)= v m 式中:m—从校准曲线上查出或仪器直接读出的被测金属量(μg);

土壤重金属检测方法汇总

土壤重金属检测方法汇总 摘要:土壤重金属检测是土壤的常规监测项目之一。采用合理的土壤重金属检测方法,能快速有效地对土壤重金属检测和污染评价,并满足土壤的管理和决策需要。本文介绍了几种常用的土壤重金属检测方法,原子荧光光谱法,原子吸收光谱法,电感耦合等离子体发射光谱,激光诱导击穿光谱法和X射线荧光光谱,在介绍各个检测方法特性的同时,就灵敏度,测试范围,精确度,测试样品的数量等优缺点进行了对比。 关键词:土壤;重金属;检测方法 1. 前言 许多研究表明,种植物的质量安全与产地的土壤环境关系密切。重金属一般先进入土壤并积累,种植物通过根系从土壤中吸收,富集重金属,有时也通过叶片上的气孔从空气中吸收气态或尘态的重金属元素[1]。近几年,种植地因农药、肥料、生长素的大量施用及工业“三废”的污染,土壤重金属含量超标较严重且普遍,这不仅毒害土壤-植物系统,降低种植物品质,而且还会通过径流和淋洗作用污染地表水,尤其重要的是通过食物链的方式进入人体内,对于重金属的富集人体难以代谢,最终直接或间接危害人体器官的健康[2]。为此,解决这一难题,建设绿色食品和无公害食品生产基地,要求我们从土壤中的重金属检测分析抓起。本文介绍了土壤重金属的检测方法、并且对比各种方法优缺点。2.土壤中重金属检测方法 2.1 原子荧光光谱法 原子荧光光谱法是以原子在辐射能量分析的发射光谱分析法。利用激发光源发出的特征发射光照射一定浓度的待测元素的原子蒸气,使之产生原子荧光,在一定条件下,荧光强度与被测溶液中待测元素的浓度关系遵循Lambert-Beer定律[3],通过测定荧光的强度即可求出待测样品中该元素的含量。 原子荧光光谱法具有原子吸收和原子发射两种分析方法的优势[4],并且克服了这2种方法在某些地方的不足。该法的优点是灵敏度高,目前已有20多种元素的检出限优于原子吸收光谱法和原子发射光谱法;谱线简单;在低浓度时校准曲线的线性范围宽达3~5个数量级,特别是用激光做激发光源时更佳,但其存在荧光淬灭效应,散射光干扰等问题[5]。该方法主要用于金属元素的测定,在环境科学、高纯物质、矿物、水质监控、生物制品和医学分析等方面有广泛的应用[6]。突出在土壤中的应用如何,以下各方法均是这个问题,相比之下2.5写的比较好

(完整word版)重金属检测方法汇总

重金属检测方法汇总 重金属检测方法及应用 一、重金属的危害特性 从环境污染方面所说的重金属,实际上主要是指汞、镉、铅、铬、砷等金属或类金属,也指具有一定毒性的一般重金属,如铜、锌、镍、钴、锡等。我们从自然性、毒性、活性和持久性、生物可分解性、生物累积性,对生物体作用的加和性等几个方面对重金属的危害稍作论述。 (一)自然性: 长期生活在自然环境中的人类,对于自然物质有较强的适应能力。有人分析了人体中60多种常见元素的分布规律,发现其中绝大多数元素在人体血液中的百分含量与它们在地壳中的百分含量极为相似。但是,人类对人工合成的化学物质,其耐受力则要小得多。所以区别污染物的自然或人工属性,有助于估计它们对人类的危害程度。铅、镉、汞、砷等重金属,是由于工业活动的发展,引起在人类周围环境中的富集,通过大气、水、食品等进入人体,在人体某些器官内积累,造成慢性中毒,危害人体健康。 (二)毒性: 决定污染物毒性强弱的主要因素是其物质性质、含量和存在形态。例如铬有二价、三价和六价三种形式,其中六价铬的毒性很强,而三价铬是人体新陈代谢的重要元素之一。在天然水体中一般重金属产生毒性的范围大约在1~10mg/L之间,而汞,镉等产生毒性的范围在0.01~0.001mg/L之间。 (三)时空分布性: 污染物进入环境后,随着水和空气的流动,被稀释扩散,可能造成点源到面源更大范围的污染,而且在不同空间的位置上,污染物的浓度和强度分布随着时间的变化而不同。(四)活性和持久性: 活性和持久性表明污染物在环境中的稳定程度。活性高的污染物质,在环境中或在处理过程中易发生化学反应,毒性降低,但也可能生成比原来毒性更强的污染物,构成二次污染。如汞可转化成甲基汞,毒性很强。与活性相反,持久性则表示有些污染物质能长期地保持其危害性,如重金属铅、镉等都具有毒性且在自然界难以降解,并可产生生物蓄积,长期威胁人类的健康和生存。 (五)生物可分解性: 有些污染物能被生物所吸收、利用并分解,最后生成无害的稳定物质。大多数有机物都有被生物分解的可能性,而大多数重金属都不易被生物分解,因此重金属污染一但发生,治理更难,危害更大。 (六)生物累积性: 生物累积性包括两个方面:一是污染物在环境中通过食物链和化学物理作用而累积。二是污染物在人体某些器官组织中由于长期摄入的累积。如镉可在人体的肝、肾等器官组织中蓄积,造成各器官组织的损伤。又如1953年至1961年,发生在日本的水俣病事件,无机汞在海水中转化成甲基汞,被鱼类、贝类摄入累积,经过食物链的生物放大作用,当地居民食用后中毒。 (七)对生物体作用的加和性: 多种污染物质同时存在,对生物体相互作用。污染物对生物体的作用加和性有两类:一类是协同作用,混合污染物使其对环境的危害比污染物质的简单相加更为严重;另一类是拮抗作用,污染物共存时使危害互相削弱。 二、重金属的定量检测技术

食品中重金属检测注意事项

样品前处理注意事项: (一)铅、镉前处理注意事项 铅镉是非常容易污染的元素,只要我们的器皿和一些细小的环节稍加不注意就会造成空白和样品的污染,而且样品的不均也会引起平行样品的差异。 在进行样品消解时,干灰化法易造成被测元素的损失;在电热板上加混酸处理时,如果高氯酸在最后剩下过多,会造成空白过高;微波消解要是没有相应的赶酸设备,在转移到小烧杯赶酸,也会引起污染,因此在前处理上应该是步骤越少越好。 (二)砷、汞前处理注意事项 在消解样品的过程中,消解完全时,要把硝酸彻底赶完,因为硝酸具有氧化性质。 汞由于是沸点偏底,是及易挥发的元素,因此在前处理的过程中控制温度尤为重要。 微波消解法快速,试剂消耗少,消解完全,更适于高脂肪试样消解。但微波消解液酸度大,对于原子荧光法测定砷和汞干扰不明显;应用石墨炉原子吸收测定铅时酸度太大会导致背景值升高,且会缩短石墨管使用寿命。 因此,使用微波消解法进行石墨炉原子吸收测定时最好进行赶酸,或将消解液转移至敞口容器置于水浴中将棕色烟赶尽。 常规灰化法样品前处理 ◆常规灰化法测定镉,与微波消解和常规湿消解相比,结果的准确度和再现性较理想。国家标准物质小麦粉中镉测定结果均在允许偏差内。但灰化法铅的测定结果偏低。铅易损失,我们通常采用微波消解法进行铅的测定。 酱油、食盐、味精、酱腌菜等高盐试样用石墨炉原子吸收进行铅测定时背景值很高 上机条件的选择和优化 1、干燥时间的延长有利于元素的稳定 2、灰化温度的选择可以更好的去除一些干扰元素 3、灰化时间的调整可以减少元素的损失 4、测量方式可以适当调整 AAS常见故障的排除方法 仪器故障的判断: 仪器因素:由调制方法确定 化学因素:影响原子化效率或测量密度;样品粘度太大 样品被吸附或沾污 预处理方法与待测元素有干扰 一.灵敏度低 FAAS 1.提升量不足: 喷嘴堵塞 撞击球表面不光洁 雾化效率低 2.燃烧缝偏离光轴 3.燃气,助燃气比例不同: 燃烧头高度不对 乙炔到尾部3.5Kg/cm↓

蔬菜中重金属含量测定

华南师范大学实验报告 学生姓名学号 专业)年级、班级 课程名称仪器分析实验实验项目蔬菜中重金属(Pb、Cd)含量的测定实验类型□验证□设计□综合实验时间 2011年月日 √ 实验指导老师实验评分 实验题目:蔬菜中重金属(Pb、Cd)含量的测定 引言: 蔬菜中含有丰富的维生素、矿质元素和膳食纤维等多种营养成分,是人们日常生活中必不可少的食物,但随着工业化进程,工业“三废”的排放、农药、化肥的不合理使用等,严重污染了水、土、气,致使菜区生态环境日益恶化,造成蔬菜品质下降,污染物积累,并通过食物链的传递放大作用,从而对整个生态环境以及人类健康带来极大危害。因此对蔬菜中的重金属铅、镉研究具有极大的现实意义。 经查阅文献,发现目前有关铅、镉的测定方法主要有以下几种: 一、光化学法 1、光度法:如国家标准中第三标准法双硫腙比色法测食品中铅含量。它主要是利用PH=8.5~9.0 时,硫离子与双硫腙生成红色配合物,溶于三氯甲烷,加入柠檬酸铵,氰化钾与盐 酸羟铵等,防止铁、铜、锌等杂质离子的干扰,与标准系列比较定量。国际中测镉 的第三法则是用在碱性溶液中镉离子与6-溴苯并噻唑偶氮萘酚形成红色络合物,溶 于三氯甲烷,氰化钾等剧毒物质。因此应用有一定局限性。 2、原子荧光光谱法:准确配制铅镉系列的标准溶液,在实验工作条件下,测定这两个元素的荧光 强度,得到线性回归方程,再将待测样品的荧光强度代入方程即可得到样品 中铅镉浓度。该法快速、简便、准确且灵敏度高。 3、石墨炉原子吸收光谱法:分别准确量取一定量的铅镉储备液,配置一系列标准溶液后按所选工 作仪器条件用原子吸收分光光度计测出各溶液吸光度并制作A-C标准曲线,得出其一元线 性回归方程。再测出一定量试样溶液吸光度,代入回归方程中即可得到铅镉含量。 4、火焰原子吸收法(标准加入法):分别移取适量样品于容量瓶中,分别加入一系列不同体积相同 浓度的铅镉标准溶液,用盐酸定容。使用空气-乙炔火焰,于原子吸收光谱仪波长 283.30nm,228.85nm处分别测量铅镉的吸光度,以标准系列浓度为横坐标,以扣除空白溶 液的吸光度值为纵坐标作图,根据所绘制的直线外延与横轴的交点求出铅镉元素浓度。 5、电感耦合等离子体质谱法(ICP-MS)法:精密吸取铅镉标准储备溶液,用稀硝酸稀释配成含铅

土壤重金属分析仪的操作方法

土壤重金属分析仪的操作方法 食品、土壤、水质逐渐被工业废气、废水、废渣所污染,甚至有些人直接用工业废水浇灌庄稼,造成土壤耕作层内的镉、铜、砷、铬、汞、镍、铁、铝、锌、锰、铜等重金属大量富积、积累,特别是城市郊区现象更为严重;加上大量使用无机化学农药等致使蔬菜和鱼类体内的重金属含量严重超标的情况,不断在人体内积累,导致消费者重金属慢性中毒现象发生,国内已发生多起重金属集体中毒事件,已引起政府的高度重视和社会各界的广泛关注,但是当前重金属测定方法测定速度慢、步骤繁琐且仪器昂贵。基于这种形势,托普云农开发出了重金属快速测定方法,可对蔬菜、食品、土壤、有机肥、烟叶等样品中的铅、砷、铬、镉、汞等进行快速联合测定。 一、土壤重金属分析仪检测原理: (一)样品经消化后,所有形态的重金属(包括砷、铅、镉、铬、汞、镍、铁、铝、锌、锰、铜等)都转化为离子型态,加入相关检测试剂后显色,在一定浓度范围内溶液颜色的深浅与重金属的含量呈比例关系,服从朗伯--比尔定律,再通过仪器进行测定得出含量值,与国家标准农产品安全质量无公害蔬菜安全要求允许限量的标准进行比较,来判断蔬菜样品重金属含量。

(二)各项重金属的检测原理及采用标准 1、重金属砷的检测原理及采用标准 采用国家标准(GB/T5009.11-2003)硼氢化物还原比色法,即样品经消化后,加入碘化钾-硫脲并加热,将五价砷还原为三价砷,在酸性条件下硼氢化钾将三价砷还原为负三价,形成砷化氢导入吸收液中呈黄色,经仪器检测得出砷含量。 2、重金属铅的检测原理及采用标准 采用国家标准(GB/T5009.12-2003)二硫腙比色法,即样品经消化后,在弱碱性条件下,铅离子与二硫腙生成红色络合物,溶于三氯甲烷后,比色测定。 3、重金属铬的检测原理及采用标准 样品经消化后,在二价锰存在条件下,铬离子与二苯碳酰二肼反应生成紫红色络合物,络合物颜色的深浅与六价铬含量呈正比,比色测定可得出铬含量。 4、重金属镉的检测原理及采用标准 采用国家标准(GB/T5009.15-2003)比色法,即样品经消化后,在碱性条件下,镉离子与6-溴苯丙噻唑偶氮萘酚生成红色络合物,溶于三氯甲烷后,比色测定。 5、重金属汞的检测原理及采用标准 采用国家标准(GB/T5009.17-2003)二硫腙比色法,即样品经消化后,在酸性条件下,汞离子与二硫腙生成橙红色络合物,溶于三氯甲烷后,比色测定。 现场测试

土壤中重金属全量测定方法

精心整理 精心整理 版本1: 土壤中铜锌镉铬镍铅六中重金属全量一次消解测定方法.用氢氟酸-高氯酸-硝酸消解法,国家标准物质检测值和标准值吻合性很好,方便可行.具体方法: 准确称取0.5克土壤样品(过0.15mm 筛)于四氟坩埚中,加7毫升硝酸+3毫升高氯酸+10毫升氢氟酸加盖,放置过夜(不过夜效果同),电热板上高温档加热(数显的控制温度300~350度)1小时,去盖,加热到近干,冷却到常温,然后再加3毫升硝酸+2毫升盐酸溶题,版本1) 2) 3) 4) 5) 6) 附: 现在一般做法是,砷汞用1+1的王水在沸水煮2小时,加固定剂(含5g/l 重铬酸钾的5%硝酸溶液),在50毫升比色管中,固定,然后用原子荧光光谱仪测定砷汞. 1 土壤消化(王水+HClO 4法) 称取风干土壤(过100目筛)0.1 g (精确到0.0001 g )于消化管中,加数滴水湿润,再加入3 ml HCl 和1 ml HNO 3(或加入配好的王水4~5mL ),盖上小漏斗置于通风橱中浸泡过夜。第二天放入消化炉中,80~90℃消解30 min 、100~110℃消解30 min 、120~130℃消解1 h ,取下置于通风处冷却。

精心整理 加入1 ml HClO4于100~110℃条件下继续消解30 min,120~130℃消解1 h。冷却,转移至20mL容量瓶中,定容,过滤至样品存储瓶中待测。 注:最高温度不可超过130℃。消化管底部只残留少许浅黄色或白色固体残渣时,说明消化已完全。如果还有较多土壤色固体存在,说明消化未完全,应继续120~130℃消化直至完全。 2植物消化(HNO3+H2O2法) 称取待测植物1~2g(具体根据该植物对重金属吸收能力的强弱而定)于消化管中,加入5ml HNO3,盖上小漏斗置于通风橱中浸泡过夜。第二天放入消化炉中,80~90℃消解30 min、100~110℃消解30 min、120~130℃消解1 h,取下置于通风处冷却。加入1 ml H2O2,于100~110℃条件下继续消解30 min,120~130℃消解1 h。冷却,转移至20mL容量瓶中,定容,过滤至样品存储瓶中待测。 精心整理

土壤重金属测定仪器设备

土壤重金属测定仪器设备 怎么检测土壤重金属?有很多方法,比如原子荧光光谱法、电感耦合等离子体发射光谱法、表面增强拉曼光谱法等,不过这些检测方法检测起来过程都比较繁琐,在一定程度上增加了实验人员的劳动强度。因此,需要一种低成本、精度高、时间短的测定土壤重金属解决方案,而TPJS-B土壤重金属测定仪的投入与应用则满足了这一需求。 那么,利用土壤重金属测定仪该如何检测土里的重金属呢? TPJS-B土壤重金属测定仪是由托普云农研发生产的,该仪器能够对土壤中主要重金属汞、镉、铅、铬、锌、铜等元素的含量进行检测,并且该体积较小,重量轻,便于携带,检测人员是可以直接带到野外使用的,并且在野外使用也是不需要准备样品就可直接对土壤分析,整个分析过程仅需80秒,由此可见检测时间很短,与实验室分析相比,不仅降低了样品处置、运输和相应的各类繁杂记录等流程,也降低了单个样品的成本,同时因为节省了大量的时间,因此费用成本的消耗更少。除此之外,该仪器的测量精度很高,可以为土壤环境研究的和污染防治提供重要的数据支撑,全面推进土壤改良工作,保障农作物健康生长。 近几年,随着城市化与工业化,环境污染问题越来越严重,其中土壤重金属污染问题受到社会各界的关注,主要是因为土壤重金属污染更有其隐蔽性和潜伏性,排放的重金属进入到土壤中,对人类的耕地和饮水产生很大的影响。由于重金属在进入人体后会对人体的健康产生很大影响,因此对土壤重金属的检测具有非常大的意义。而在当前农业发展的过程中,利用土壤重金属测定仪来开展土壤重金属检测开始成为十分重要的一项内容,与此同时,具有快速、低成本的现场土壤重金属检测能力,也让其在土壤污染调查和土壤修复中发挥出了应用的作用和效果。

食品中的重金属检验检测方法

食品中的重金属检验检测方法 食品中重金属污染的来源 (1)有些地区特殊的自然条件使得该环境的有毒重金属量会高于一般地区,比如一些特殊的矿区、海底火山附近等,使得该地区的动植物有毒含量高于其他地区。 (2)人为因素造成的环境污染使得有害重金属也污染了食品。在现代化工业生产中排放的工业废渣、废水、废气等造成了水体和土壤的污染。而生物通过环境摄取了重金属后又通过食物链的方式进入到人体内发生潜在的危害。 (3)在食品的加工、销售、储存和运输等各个环节中都有可能接触到有毒的容器、管道等,从而导致食品污染。 食品中重金属的检测方法 紫外分光光度法。紫外分光光度法是物质对光的选择吸收而产生的定量、定性和结构分析方法。加入显色剂使待测的物质在紫外线或者可见光情况下吸收化合物进行的光度测试,但是此方法不能有效的检测含量较低的重金属物质,需要有机溶剂检测某些元素,操作过程较繁琐。 高效液相色谱法。高效液相色谱法即HPLC,它是通过对紫外线-可见光检测仪的使用来记录显色试剂的显色过程及重金属物质形成过程,并通过色谱分离后的有色物体进行的检测。此种方法可以有效的排除杂质对于结果的影响,可

以同时对多种重金属进行相应检测,具有灵敏度高、可选择性、高分离效能等多项优点。 原子光谱技术 (1)原子吸收法(AAS)。原子吸收法包含了石墨炉原子吸收法和火焰原子吸收法两种,它是指通过对气态原子的利用去吸收一定量的光辐射,让原子外层的电子由原本的基态转换成激发态,从而吸收特征谱线,以此对其他化学元素进行测定的方法。各种电子和原子之间的能级存在着差异,它们在共振吸收特定波长的辐射光时具有一定的选择性,被共振吸收的波长刚好等于受到激发的原子产生的光谱波长,这个可以用作元素定性的依据。目前AAS已经成为了分析无机元素定量分析方法中最常见的一种。 F- AAS是一种分析速度快、操作流程简单、信号极其稳定、抗干扰能力、预处理过程简单的一种痕量分析方法,可以直接对高粘度及固体物质进行分析,但是不适合测定不能完全分解的耐高温的重金属元素。而GF- AAS的干扰项较多且十分严重,不宜做多种重金属元素的分析。 (2)电感耦合等离子体质谱法(ICPMS)。电感耦合等离子体质谱法即ICP- MS,它是一种基于等离子为离子源的关于质谱型元素的分析手段,可以同时测定多种重金属元素,此外该种测定方法还可以同其他的色谱分离方法一起使用,用来分析元素的价态。

土壤重金属测定ICP-MS实验操作步骤

18种元素的测定电感耦合等离子体质谱仪法 1.目的 为了提高电感耦合等离子体质谱仪的利用率和样品处理能力,规范电感耦合等离子体质谱的使用。 2.适用范围 适用于检验中经客户同意采用电感耦合等离子体质谱仪对土壤中Be、Cd、Ce、Co、Cu、La、Bi、Pb、Zn、Li、Mo、Ni、Th、Tl、U、W、Sc、Cr的含量的测定。操作该仪器进行检测人员需执证上岗。 3.职责 本作业指导书由质量技术部归口管理,操作人员应该持证上岗。 4.工作程序 4.1 试剂及仪器 4.1.1 试剂 除另有说明外,所用试剂均为优级纯,水为GB/T 6682规定的一级水。 a. 硝酸、盐酸、氢氟酸、高氯酸均为优级纯; b. 王水(1+1):取750ml盐酸与250ml硝酸混合后,加入1000ml水,摇匀。 c. 氩气(纯度≥99.999%); d. 去离子水:分析用水GB/T 6682中的一级水,电阻率≥18.2МΩ/cm。 e. 标准溶液及内标液均采用有证标准物质,按其证书及GB/T 602标准方法 配制; f. 内标储备液Rh、Re,100ng/mL;In 2O 3 ,100ug/ml 内标工作液Re、Rh由内标储备液用硝酸(1+99)稀释至100ug/ml;内标工 作液In 2O 3 由内标储备液用5%王水稀释至10g/L 内标混合液:取1ml 100ug/ml的Re、Rh混合内标和10ml 10g/L的In内标加入1L容量 瓶中,去离子水定容。

4.1.2 仪器 电感耦合等离子体质谱仪、电子天平(感量0.1mg)、土壤研磨仪。 4.2 分析步骤 4.2.1 试样制备 将采集的土壤样品(一般不少于500g)混匀后用四分法缩分至约100g。缩分后的土样经风干(自然风干或冷冻干燥)后,除去土样中石子和动物残体等异物,用木棒(或玛瑙棒)研压,通过2mm尼龙筛(除去2mm以上的砂砾),混匀。用玛瑙研钵将通过2mm尼龙筛的土样研磨至全部通过100目(孔径0.149mm)尼龙筛,混匀后备用。 4.3 试样消解 称取试样0.1000-0.1500g(精确至0.0001g)于30ml聚四氟乙烯坩埚中,加入8ml混合酸(浓硝酸:氢氟酸:高氯酸=3:3:1),敞口250℃加热至高氯酸冒尽(此时样品已经完全蒸干),断电。待温度降到约180℃趁热加入8ml(1+1)王水,10ml内标混合液,混匀后放置过夜用于ICP上机。次日分取250ul消解液,加入5ml 3%的硝酸溶液,混匀用于ICP-MS上机。其中,ICP-MS测定所用内标为Re、Rh,ICP测定所用内标为In。 4.4 工作曲线的绘制 选择10个合适的地球化学一级标准物质(水系沉积物、土壤),按照4.3步骤,制备相应的溶液,同时制备一份样品空白溶液,按以下仪器工作条件进行测定,并由计算机绘出工作曲线。 4.5 测定 按照ICP-MS仪器的操作规程,调整仪器至最佳工作状态,参考条件为RF功率1388W,冷却气(13.0 L/min)和雾化载气(0.95 L/min),样品以30 r/min速率进样(12滚柱),采样锥孔径为1.0 mm,孔径为0.7 mm截取锥在深度为16.5 mm 处采样,雾化室温度控制在3℃,采用跳峰模式数据采集(单峰采样点数为3),分析过程应用内标,采用ICP-MS分析方法中内标校正定量分析方法测定。待仪器稳定后,按顺序依次对标准溶液、空白溶液和试样溶液进行测定。 4.6 内标

重金属检测方法

重金属检测仪器选择 从环境污染方面所说的重金属,实际上主要是指汞、镉、铅、铬、砷等金属或类金属,也指具有一定毒性的一般重金属,如铜、锌、镍、钴、锡等。我们从自然性、毒性、活性和持久性、生物可分解性、生物累积性,对生物体作用的加和性等几个方面对重金属的危害稍作论述。通常认可的重金属分析方法有:紫外可分光光度法(UV)、原子吸收法(AAS)、原子荧光法(AFS)、电感耦合等离子体法(ICP)、X荧光光谱(XRF)、电感耦合等离子质谱法(ICP-MS)、电感耦合等离子质谱法(ICP-MS)分析等。 1. 原子吸收光谱法(Atomic Absorption Spectrometry -AAS) 原子吸收光谱法是20世纪50年代创立的一种新型仪器分析方法,它与主要用于无机元素定性分析的原子发射光谱法相辅相成,已成为对无机化合物进行元素定量分析的主要手段。原子吸收分析过程如下:1、将样品制成溶液(空白);2、制备一系列已知浓度的分析元素的校正溶液(标样);3、依次测出空白及标样的相应值;4、依据上述相应值绘出校正曲线;5、测出未知样品的相应值;6、依据校正曲线及未知样品的相应值得出样品的浓度值。 原子吸收分光光度计大概10-30万左右,可以作为重金属土壤修复的检测仪器。是重金属土壤修复研发试验中,定量、定性检测的精密仪器。而且国标中重金属的检测就是采用原子吸收分光光度计。 2. 紫外可见分光光度法(UV) 其检测原理是:重金属与显色剂—通常为有机化合物,可于重金属发生络合反应,生成有色分子团,溶液颜色深浅与浓度成正比。在特定波长下,比色检测。 分光光度分析有两种,一种是利用物质本身对紫外及可见光的吸收进行测定;另一种是生成有色化合物,即“显色”,然后测定。虽然不少无机离子在紫外和可见光区有吸收,但因一般强度较弱,所以直接用于定量分析的较少。加入显色剂使待测物质转化为在紫外和可见光区有吸收的化合物来进行光度测定,这是目前应用最广泛的测试手段。显色剂分为无机显色剂和有机显色剂,而以

小麦叶片中细胞器中重金属含量测定

小麦叶片中细胞器中重金属含量测定 一实验目的 1了解生物毒性的一般方法。 2掌握匀浆器、原子吸收仪的使用。 3掌握生物样品的处理方法。 二实验原理 湿法消化:使用具有强氧化性酸混合液(如HNO3、HCl、HClO4等),式样共同加热消化,使细胞器中的金属元素锌、铜、镉以离子态溶解在消解液中。 差速离心法:细胞内不同细胞器的比重和大小都不相同,在均匀密度介质中不同离心力下沉降的细胞器组成不同或在梯度介质中离心后分布于不同密度层,根据这一原理,差速离心法或密度梯度离心法就可将细胞内各种组分分离出来。分离流程: 破碎组织(匀浆或研磨)-差速离心或密度梯度离心分离细胞器-结果检验分析 原子吸收分光光度计一般由四大部分组成,即光源(单色锐线辐射源)、试样原子化器、单色仪和数据处理系统(包括光电转换器及相应的检测装置)。 原子化器主要有两大类,即火焰原子化器和电热原子化器。火焰有多种火焰,目前普遍应用的是空气—乙炔火焰。电热原子化器普遍应用的是石墨炉原子化器,因而原子吸收分光光度计,就有火焰原子吸收分光光度计和带石墨炉的原子吸收分光光度计。前者原子化的温度在2100℃~2400℃之间,后者在2900℃~3000℃之间。 火焰原子吸收分光光度计,利用空气—乙炔测定的元素可达30多种,若使用氧化亚氮—乙炔火焰,测定的元素可达70多种。但氧化亚氮—乙炔火焰安全性较差,应用不普遍。空气—乙炔火焰原子吸收分光光度法,一般可检测到PPm 级(10-6),精密度1%左右。国产的火焰原子吸收分光光度计,都可配备各种 型号的氢化物发生器(属电加热原子化器),利用氢化物发生器,可测定砷(As)、锑(Sb)、锗(Ge)、碲(Te)等元素。一般灵敏度在ng/ml级(10-9),相对标准偏差2%左右。汞(Hg)可用冷原子吸收法测定。 石墨炉原子吸收分光光度计,可以测定近50种元素。石墨炉法,进样量少,灵敏度高,有的元素也可以分析到pg/mL级。 三实验内容 1 实验液的预处理。 2 小麦叶片中细胞器中的重金属含量。 四实验仪器设备和材料清单 1 仪器设备:25ml匀浆器,电热板,原子吸收仪,石墨炉原子吸收分光光度计,电子分析天平,离心机;25ml、50ml比色管,离心管,50ml烧杯,50ml、500ml容量瓶,玻璃珠若干,剪刀,镊子。1ml、2ml、5ml、10ml、25ml移液

实验六 土壤重金属的测定

实验六土壤重金属的测定 一、研究目的及要求 1.掌握土壤样品布点、采样、运输及保存、前处理技术。 2.掌握分光光度法测定重金属的测定方法。 二、原理 分光光度法 ①锌:本方法适用于测定锌浓度在5-50ug/L的水样。当使用光程长200mm比色皿,试样体积为100mL时,检出限为5ug/L。本方法用四氯化碳萃取,在最大吸光波长535nm时,其摩尔吸光度约为9.3×104L/https://www.360docs.net/doc/ba973730.html,。 在pH为4.0~5.5的乙酸盐缓冲介质中,锌离子与双硫腙形成红色螯合物,用四氯化碳萃取后进行分光光度测定。水样中存在少量铅、铜、汞、镉、钴、铋、镍、金、钯、银、亚锡等金属离子时,对锌的测定有干扰,但可用硫代硫酸钠掩蔽和控制pH值而予以清除,其反应为: ②铜:用盐酸羟胺把二价铜离子还原为亚铜离子,在中性或微酸性溶液中,亚铜离子和2,9-二甲基-1,10-菲啰啉反应生成黄色络合物,在波长457nm处测量吸光度;也可用有机溶剂(包括氯仿-甲醇混合液)萃取,在波长457nm处测量吸光度。 在25mL水溶液或有机溶剂中,含铜量不超过0.15mg时,显色符合比耳定律,该颜色可保持数日。 三、仪器与试剂 3.1仪器 不锈钢锹、标签、牛皮纸、撵土棒、60目土筛、玛瑙研钵、电热板、漏斗、25mL容量瓶、50mL容量瓶、三角瓶。 3.2试剂 1.盐酸(优级纯);

2.硝酸(HNO3),优级纯; 3. 2%硝酸 4. 1+1硝酸 5. 高氯酸(HClO4),优级纯. 四、实验步骤 4.1 现场调查 泮湖花园处距离马路较远,可代表学校内土壤的情况,此处设置一个采样点。 4.2样品采集 采用网格采样法,设5个点,采样深度为0-30cm左右的表层土壤,对各点采集的试样混合后,反复按四分法弃取,收集1kg样品带回实验室。 将所采集土壤样品混匀后用继续用四分法缩分至约100g。缩分后的土样经风干(自然风干或冷冻干燥)后,除去土样中石子和动植物残体等异物,用木棒(或玛瑙棒)研压,通过2mm尼龙筛(除去2mm以上的砂砾),混匀。用玛瑙研钵将通过2mm尼龙筛的土样研磨至全部通过60目(孔径0.25mm)尼龙筛,混匀后备用。 4.3样品前处理 称取0.5~1g土样于50mL锥形瓶中,用水润湿加入10mL盐酸,盖上小漏斗,于通风橱内的电热板上低温加热,使样品初步分解,待蒸发至约剩3mL左右时,取下稍冷,然后加入5mL硝酸,在电热板上100~150℃微沸20min,取下稍冷,再加入5mL高氯酸,电热板上200~250℃左右加热,蒸发至近干,取下冷却,加(1+1)硝酸溶液4mL,在电热板上温热溶解残渣,冷却后移入50mL容量瓶中,冷却后用0.2%的硝酸溶液定容至标线摇匀,备测。 4.4 空白试验 用去离子水代替试样,采用和样品前处理相同的步骤和试剂进行处理,制备1个空白溶液。 4.5 测定 4.5.1分光光度法测定锌 4.5.1.1试剂 本标准所用试剂除另外说明外,均为分析纯试剂,实验中均用不含锌的水。 (1)无锌水:将普通蒸馏水通过阴阳离子交换柱以去除水中锌。 (2)四氯化碳(CCl4)。 (3)盐酸:1.18 g/mL (4)6mol/L盐酸:取100mL 盐酸(5.2.2)用水稀释到600mL。

浅析食品重金属测定中的几种样品消解方法

科技论坛 2017年9期︱333︱ 浅析食品重金属测定中的几种样品消解方法 罗砚文 遵义市产品质量检验检测院,贵州 遵义 563000 摘要:食品安全直接关乎人们身体健康,在当前社会快速进步和发展下,对于食品卫生安全提出了更高的要求。做好食品卫生安全检测工作十分关键,尤其是食品中的重金属物质检测,重金属物质可能通过水源、土壤和空气进入到食品中,在食品加工和存储中同样会产生严重的重金属污染,人们在食用重金属物质超标的食品后,将会损坏人体器官,诱发神经性疾病、心脑血管疾病和生殖系统疾病,严重情况下可能致癌。故此,为了保证食品卫生安全,需要选择合理的检测方法。确保食品卫生安全。本文就食品重金属测定中的几种样品消解方法展开深入分析,从多种角度进行剖析,总结当前常见的样品消解方法。 关键词:食品卫生安全;重金属测定;样品消解方法 中图分类号:TS201.6 文献标识码:B 文章编号:1006-8465(2017)09-0333-01 伴随着社会经济的持续增长,环境污染问题愈加严重,相应的带来了一系列食品安全问题,很多有害重金属物质通过化学形态进入到自然环境,对水源、土壤和空气产生污染,进而导致食品出现重金属污染问题。对于食品重金属含量的检测和分析,直接影响着人们的身体健康,这就需要选择合理的样品消解方法,深入分析和检测重金属物质,缩短样品消解时间的同时,可以有效提升检测效率和检测质量,为后续食品卫生安全提充分参考依据。由此,加强食品重金属测定的有效样品消解方法分析,有助于提升样品测定效率,推动社会和谐稳定发展。 1 样品消解方法 1.1 干法灰化 此种方法强调在特定温度下加热处理,物质分解和灰化后残留的物质可以选择适当溶剂溶解。结合灰化条件差异,主要包括两种。一种是在充满氧气的密闭瓶中,通过电火花引燃样品,使用吸收剂来吸收燃烧后产生的物质,用相配套的方法进行测定,此种方法称之为氧瓶燃烧法,可以用于硫、硼和磷物质的检测;另一种则是将检测样品放置在蒸发皿中,在500℃~800℃范围内加热处理,样品分解、灰化的产物使用特定溶剂溶解后测定,此种方法可以有效提升样品物质测定质量和效率。在食品卫生安全检测中,更多的是用于食品中铅、镉、铬等重金属物质的检测。 1.2 湿式消解 湿式消解是指在适量食品中融入氧化性强酸,加热煮沸后可以将有机质分解氧化为水、二氧化碳和其他气体,同时加入催化剂,破坏食品中有机物质。此种方法在实际应用中效果较为突出,对于含有大量有机物质的样品而言,主要是在玻璃容器中试验[1]。硝酸沸点在120℃以上时,可以充当于氧化剂作用,可以有效破坏样品中的有机质;硫酸由于自身特性,脱水能力较强,促使有机物炭化的同时,可以有效提升混合酸沸点。由于热的高氯酸自身较强的脱水和氧化作用,可以有效破坏样品有机质,去除样品中的硝酸同时,促使样品持续氧化。在这个过程中,硫酸自身较强的脱水作用,可以快速分解溶液中的有机质。如果样品中的无机物较多,可以选择混合酸进行消解,其中混合酸中盐酸为主要成分。 1.3 微波消解 微波消解主要是指将密闭容器中的消解液和试样借助微波加热,在高温增压下可以加快样品溶解速度。一般情况下,介质材料中包括极性分子和非极性分子,受到电磁场作用和影响,极性分子原有的分布状态将会发生不同程度上的转变,逐渐根据电磁场极性排列方向分布。如果是受到高频电磁作用影响,按照交变电磁场变化逐渐发生变化,受到微波磁场的影响,极性分子将会快速迁移,并在相互摩擦中致使反应物的温度逐渐升高,促使物质可以快速发生反应被消解。 通过对比分析上述三种消解方法中总锑含量,以菠菜为例,遵循国家标准物质要求,运用AFS 法测定可以得出:干灰法测定值为(0.029、032、0.035;0.039、0.041、0.042)mg/kg,平均值为0.036mg/kg,标准误差为0.0047,相对标准偏差为13.1%;湿消解法测定值为(0.032、0.034、0.035;0.037、0.040、0.040)mg/kg,平均值为0.036mg/kg,标准误差为0.0030,相对标准偏差为8.3%;微波消解法为(0.045、0.046、0.048;0.050、0.050、0.051)mg/kg,平均值为0.048mg/kg,相对标准偏差为13.1%。 2 样品消解法的优势和弊端 2.1 样品消解法的优势 其一,干法灰化优势。此种方法在实际应用中操作简单、便捷,适合应用在无法使用酸处理的有机质样品中,后续处理工作更为便捷,同时可以实现对微量元素的深入分析,一次性处理批量较大的样品。 其二,湿式消解的优势。此种方法操作便捷,更适合应用在重金属含量较大的食品检测中,其中包括铅、铬、锡等物质。加之消解酸纯度较高,内部成分并不复杂,只需要掌握合理的控制消化温 度,即可有效降低元素损失。 其三,微波消解优势。微波消解技术在实际应用中效果较为可观,所用剂量较小,消解效率更高,同时还可以有效降低环境污染,维护生态平衡。具体来看,微波消解技术升温快、加热快,可以有效缩短熔样时间,通过微波加热处理后,可以在罐内形成高温气压;消耗溶剂少,密闭硝酸过程中,可以有效避免酸挥发损失,同时还可以持续加酸,大大降低了资源浪费现象,提升试剂抗干扰能力。 2.2 样品消解法的弊端 其一,干法灰化方法在实际应用中,要求灰化温度在500℃~550℃左右,部分物质蒸导致元素损失。并且,此种方法的回收率不 高,资源利用效率不高,所以在实际应用中,做好样本的加标回收 试验,提升试验数据准确性[3]。 其二,样品在电炉中炭化到无盐过程需要耗费的时间较久,然后将其放入到马弗炉灰化处理中,大概在6个小时至8个小时左右。 如果灰化不充分,可以适当的增加灰化剂反复消化,确保样品可以 得到充分的消化[4]。 其三,湿式消解的氧化时间较久,大致需要1个小时左右,部分样品可以通过混合酸浸泡处理后,实现消解目的,但是费时较久。如果样品完全消解,在这个过程中需要耗费的酸量是非常大的。 其四,微波消解法同样存在不足,由于样品取样量较少,所以一般干样品不超过0.3g~0.5g 之间,鲜样品在1g~2g 之间,液体样品在1ml~2ml 之间。样品消解前需要进行预处理,只有处理完的消解 液,才能快速清除其中剩余酸和氮氧化物,同湿消化法缺陷相一致。 3 结论 综上所述,食品重金属含量的检测和分析,主要是为了维护人们的身体健康,这就需要选择合理的样品消解方法,深入分析和检测重金属物质,缩短样品消解时间的同时,可以有效提升检测效率和检测质量,推动社会和谐稳定发展。 参考文献: [1]谭湘武,马金辉,萧福元,彭蔚,黄昒昕.不同消解方法测定食品样品中总锑含量的比较研究[J].微量元素与健康研究,2015,25(05):1-5. [2]贺东霞.不同消解方法对食品样中Pb、Cd 等重金属测定的影响[J]. 河南预防医学杂志,2015,25(05):334-335+337. [3]杨艳芳,刘凤枝,蔡彦明.土壤样品的王水回流消解重金属测定方法的研究[J].农业环境与发展,2015,31(04):44-45. [4]黄晓纯,刘昌弘,张军,董泳秀,刘文华,赵秋香,李锡坤. ICP-MS 测定蔬菜样品中重金属元素的两种微波消解前处理方法[J].岩矿测试, 2013,11(03):415-419.

相关文档
最新文档