厦门【数学】数学锐角三角函数的专项培优易错试卷练习题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、锐角三角函数真题与模拟题分类汇编(难题易错题)

1.已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数:

(1)如图1,若k=1,则∠APE的度数为;

(2)如图2,若k=3,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数.

(3)如图3,若k=3,且D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由.

【答案】(1)45°;(2)(1)中结论不成立,理由见解析;(3)(2)中结论成立,理由见解析.

【解析】

分析:(1)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出

△FAE≌△ACD,得出EF=AD=BF,再判断出∠EFB=90°,即可得出结论;

(2)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出

△FAE∽△ACD,再判断出∠EFB=90°,即可得出结论;

(3)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出

△ACD∽△HEA,再判断出∠EFB=90°,即可得出结论;

详解:(1)如图1,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,

∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF是平行四边形,

∴BD=AF,BF=AD.

∵AC=BD,CD=AE,

∴AF=AC.

∵∠FAC=∠C=90°,

∴△FAE ≌△ACD ,

∴EF=AD=BF ,∠FEA=∠ADC . ∵∠ADC+∠CAD=90°, ∴∠FEA+∠CAD=90°=∠EHD . ∵AD ∥BF , ∴∠EFB=90°. ∵EF=BF , ∴∠FBE=45°, ∴∠APE=45°.

(2)(1)中结论不成立,理由如下:

如图2,过点A 作AF ∥CB ,过点B 作BF ∥AD 相交于F ,连接EF ,

∴∠FBE=∠APE ,∠FAC=∠C=90°,四边形ADBF 是平行四边形, ∴BD=AF ,BF=AD . ∵3BD ,3AE ,

3AC CD

BD AE ==. ∵BD=AF ,

3AC CD

AF AE

==. ∵∠FAC=∠C=90°, ∴△FAE ∽△ACD ,

3AC AD BF

AF EF EF ===,∠FEA=∠ADC . ∵∠ADC+∠CAD=90°,

∴∠FEA+∠CAD=90°=∠EMD . ∵AD ∥BF , ∴∠EFB=90°.

在Rt △EFB 中,tan ∠FBE=3

EF BF =

∴∠FBE=30°, ∴∠APE=30°,

(3)(2)中结论成立,如图3,作EH ∥CD ,DH ∥BE ,EH ,DH 相交于H ,连接AH ,

∴∠APE=∠ADH ,∠HEC=∠C=90°,四边形EBDH 是平行四边形, ∴BE=DH ,EH=BD . ∵AC=3BD ,CD=3AE ,

3AC CD

BD AE

==. ∵∠HEA=∠C=90°, ∴△ACD ∽△HEA ,

3AD AC

AH EH

==,∠ADC=∠HAE . ∵∠CAD+∠ADC=90°, ∴∠HAE+∠CAD=90°, ∴∠HAD=90°.

在Rt △DAH 中,tan ∠ADH=3AH

AD

=, ∴∠ADH=30°, ∴∠APE=30°.

点睛:此题是三角形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的判定和性质,构造全等三角形和相似三角形的判定和性质.

2.下图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4 m,AB=6 m,中间平台宽度DE=1 m,EN ,DM ,CB 为三根垂直于AB 的支柱,垂足分别为N ,M ,B ,∠EAB=31°,DF ⊥BC 于点F ,∠CDF=45°,求DM 和BC 的水平距离BM 的长度.(结果精确到0.1 m .参考数据:sin 31°≈0.52,cos 31°≈0.86,tan 31°≈0.60)

【答案】2.5m. 【解析】

试题分析:设DF=x ,在Rt △DFC 中,可得CF=DF=x ,则BF=4-x ,根据线段的和差可得AN=5-x ,EN=DM=BF=4-,在Rt △ANE 中,∠EAB=

,利用∠EAB 的正切值解得x 的

值.

试题解析:解:设DF=,在Rt△DFC中,∠CDF=,

∴CF=tan·DF=,

又∵CB=4,

∴BF=4-,

∵AB=6,DE=1,BM= DF=,

∴AN=5-,EN=DM=BF=4-,

在Rt△ANE中,∠EAB=,EN=4-,AN=5-,

tan==0.60,

解得=2.5,

答:DM和BC的水平距离BM为2.5米.

考点:解直角三角形.

3.如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.

(1)求证:△ABC∽△BCD;

(2)求x的值;

(3)求cos36°-cos72°的值.

【答案】(1)证明见解析;(2

15

-+

;(3

758

+

【解析】

试题分析:(1)由等腰三角形ABC中,顶角的度数求出两底角度数,再由BD为角平分线求出∠DBC的度数,得到∠DBC=∠A,再由∠C为公共角,利用两对角相等的三角形相似得到三角形ABC与三角形BCD相似;

(2)根据(1)结论得到AD=BD=BC,根据AD+DC表示出AC,由(1)两三角形相似得比例求出x的值即可;

(3)过B作BE垂直于AC,交AC于点E,在直角三角形ABE和直角三角形BCE中,利用锐角三角函数定义求出cos36°与cos72°的值,代入原式计算即可得到结果.

试题解析:(1)∵等腰△ABC中,AB=AC,∠BAC=36°,

∴∠ABC=∠C=72°,

∵BD平分∠ABC,

相关文档
最新文档