《一元二次方程的解法》规律总结归纳

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精心整理

精心整理

《一元二次方程的解法》规律总结

1.一元二次方程的解法

(1)直接开平方法:根据平方根的意义,用此法可解出形如a x 2=(a ≥0),

b )a x (2=-(b ≥0)类的一元二次方程.a x 2=,则a x ±=;

b )a x (2=-,b a x ±=-,b a x +=.对有些一元二次方程,本身不是上述两种形式,但可以化为a x 2

=或b )a x (2

=-的形式,也可以用此法解.

(2)因式分解法:当一元二次方程的一边为零,而另一边易分解成两个一次因式的积时,就可

0或x -3=

4b 2-20c =的

△>0⇔方程有两个不相等的实数根.

△=0⇔方程有两个相等的实数根.

△<0⇔方程没有实数根.

判别式的应用

(1)不解方程判定方程根的情况;

(2)根据参数系数的性质确定根的范围;

(3)解与根有关的证明题.

3.韦达定理及其应用

精心整理

精心整理

定理:如果方程0c bx ax 2=++(a ≠0)的两个根是21x x ,,那么

a c x x a

b x x 2121=⋅-=+,. 当a =1时,

c x x b x x 2121=⋅-=+,.

应用:

(1)已知方程的一根,不解方程求另一根及参数系数;

(2)已知方程,求含有两根对称式的代数式的值及有关未知系数;

(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程;

(4)已知两数和与积求两数.

4.一元二次方程的应用

相关文档
最新文档