立体图形的展开与折叠
展开与折叠(3种题型)-2023年新七年级数学核心知识点与常见题型(北师大版)(解析版)
展开与折叠(3种题型)【知识梳理】一.几何体的展开图(1)多数立体图形是由平面图形围成的.沿着棱剪开就得到平面图形,这样的平面图形就是相应立体图形的展开图.同一个立体图形按不同的方式展开,得到的平面展开图是不一样的,同时也可看出,立体图形的展开图是平面图形.(2)常见几何体的侧面展开图:①圆柱的侧面展开图是长方形.②圆锥的侧面展开图是扇形.③正方体的侧面展开图是长方形.④三棱柱的侧面展开图是长方形.(3)立体图形的侧面展开图,体现了平面图形与立体图形的联系.立体图形问题可以转化为平面图形问题解决.从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.二.展开图折叠成几何体通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.三.专题:正方体相对两个面上的文字(1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象.(2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.(3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面.【考点剖析】一.几何体的展开图(共9小题)1.(2022秋•江汉区期末)下列平面图形中,是棱柱的展开图的是()A.B.C.D.【分析】依据棱柱的所有的面的形状以及位置,即可得到棱柱的表面展开图.【解答】解:A.该平面图形不能围成棱柱,故本选项错误;B.该图是棱柱表面展开图,故本选项正确;C.该平面图形不能围成棱柱,故本选项错误;D.该平面图形不能围成棱柱,能围成圆柱,故本选项错误.故选:B.【点评】本题考查了几何体的展开图以及棱柱的结构特征,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.2.(2022秋•南京期末)如图是一个正方体的表面展开图,在这个正方体中,与点B重合的点为()A.点C和点D B.点A和点E C.点C和点E D.点A和点D【分析】根据图形,把正方体展开图折叠成正方体,观察得到重合的点.【解答】解:在这个正方体中,与点B重合的点为点C和点D.故选:A.【点评】本题考查了几何体的展开图,掌握折叠后的正方体的图形是关键.3.(2022秋•莲湖区期末)诗语同学周末帮妈妈拆完快递后,将包装盒展开,进行了测量,结果如图所示.已知长方体盒子的长比宽多3cm,高是2cm.(1)求长方体盒子的长和宽.(2)求这个包装盒的体积.【分析】(1)利用图中关系首先求出宽,然后求出长;(2)用体积公式即可.【解答】解:(1)宽为:(14﹣2×2)÷2=5(cm),长为:5+3=8(cm);(2)8×5×2=80(cm3).【点评】本题考查的是几何体的展开图,解题的关键是求出长和宽.4.(2022秋•鹤壁期末)如图是一个用硬纸板制作的长方体包装盒展开图,已知它的底面形状是正方形,高为12cm.(1)制作这样的包装盒需要多少平方厘米的硬纸板?(2)若1平方米硬纸板价格为元,则制作10个这样的包装盒需花费多少钱?(不考虑边角损耗)【分析】(1)根据长方体的表面积公式计算即可;(2)根据题意列式计算即可.【解答】解:(1)由题意得,2×(12×6+12×6+6×6)=360cm2;答:制作这样的包装盒需要360平方厘米的硬纸板;(2)360÷10000×5×10=1.8元,答:制作10个这样的包装盒需花费1.8元钱.【点评】本题考查了几何体的表面积,正确的计算出长方体的表面积是解题的关键.5.(2022秋•和平区期末)某校积极开展文明校园的创建活动,七年级学生设计了正方体废纸回收盒,如图所示,将写有“收”字的正方形添加到图中,使它们构成完整的正方体展开图,共有种添加方式.【分析】根据正方体表面展开图的特征进行判断即可.【解答】解:“收”字分别放在“垃”“圾”“分”“类”下方均可成完整的正方体展开图,所以有4种添加方式.故答案为:4.【点评】本题主要考查了正方体的展开图特点,掌握正方体表面展开图的特征是正确判断的关键.6.(2022秋•江阴市期末)如图是一个正方体纸盒,下面哪一个可能是它的表面展开图()A.B.C.D.【分析】正方体的空间图形,从相对面入手,分析及解答问题.B,D与此不符,所以错误;再观察3个图案所在的位置,而选项C不符,正确的是A.故选:A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.(2022秋•二道区校级期末)图①,图②,图③均为5×5的正方形网格,在网格中选择2个空白的正方形涂上阴影,使它们与图中四个有阴影的正方形一起构成一个正方体的表面展开图,并且3种方法得到的展开图不相同.【分析】依据正方体展开图的特征进行判断,即可得到3种不同的正方体展开图.【解答】解:如图所示:(答案不唯一)【点评】此题主要考查了几何体的展开图,关键是掌握正方体展开图的结构特点.8.(2022秋•伊川县期末)如图,是一个几何体的表面展开图:(1)请说出该几何体的名称;(2)求该几何体的表面积;(3)求该几何体的体积.【分析】(1(2)依据长方体的表面积等于六个面面积之和即可得出结论;(3)依据体积计算公式,即可得到该几何体的体积.【解答】解:(1)该几何体的名称是长方体;(2)该几何体的表面积为:2×(2×3+2×1+1×3)=22(平方米);(3)该几何体的体积为:2×3×1=6(立方米).【点评】本题考查了几何体的展开图,掌握立体图形与平面图形的转化,建立空间观念是关键.9.(2022秋•仪征市期末)将一个无盖正方体展开成平面图形的过程中,需要剪开条棱.【分析】根据无盖正方体的棱的条数以及展开后平面之间应有棱连着,即可得出答案.【解答】解:∵无盖正方体有5个表面,两个面共一条棱,共8条棱,要展成如图所示图形必须4条棱连接,∴要剪8﹣4=4条棱,故答案为:4.【点评】此题主要考查了正方体的展开图的性质,根据展开图的性质得出要展成如图所示图形必须4条棱连接,是解题关键.二.展开图折叠成几何体(共9小题)10.(2022秋•沈河区期末)如图,如果裁掉一个正方形后能折叠成正方体,那么能裁掉的是()A.①B.②和③C.③和④D.②或③或④【分析】根据正方体的展开图得出结论即可.【解答】解:由正方体的展开图可知,去掉②或③或④原图都可以折叠成正方形,故选:D.11.(2022秋•高新区期末)下列图形经过折叠不能成为一个封闭的正方体的是()A.B.C.D.【分析】根据正方体的展开图得出结论即可.【解答】解:由题意知,图形不能折叠成正方体,故选:D.【点评】本题主要考查正方体的展开图,熟练掌握正方体的展开图是解题的关键.12.(2022秋•青秀区校级期末)如图平面图形不能折成无盖长方体盒子的是()A.B.C.D.【分析】根据长方体展开图得出结论即可.【解答】解:由题意知,图形不能折成无盖长方体盒子,故选:C.【点评】本题主要考查长方体展开图的知识,熟练掌握长方体展开图的知识是解题的关键.13.(2022秋•晋江市期末)图①是正方体的表面展开图,该正方体从图①所示的位置折叠成图②的正方体,在图①标注的顶点A、B、C、D中,与点P重合的顶点是()A.点A B.点B C.点C D.点D【分析】先找出下面,然后折叠,找出正方形ABCD位于正方体的哪个面上,点P所在正方形位于正方体的哪个面上,即可找出与点P重合的顶点.【解答】解:如图:以正方形1为下面,将正方体从图①所示的位置折叠成图②的正方体时,正方形ABCD位于正方形的上面,点P所在正方形在前面,点B与点P重合.故选:B.【点评】本题考查正方形的展开图和空间想象能力,关键是找出或想象出折叠前后图形的关系.14.(2022秋•秦淮区期末)下列图形中,能通过折叠围成一个三棱柱的是()A.B.C.D.【分析】根据三棱柱及其表面展开图的特点对各选项分析判断即可得解.【解答】解:A、折叠后两侧面重叠,不能围成三棱柱,故本选项错误;B、折叠后能围成三棱柱,故本选项正确;C、底面有2个三角形,不能折叠围成一个三棱柱,故本选项错误;D、展开图有3个底面,不能围成三棱柱,故本选项错误.故选:B.【点评】本题考查了三棱柱表面展开图,上、下两底面应在侧面展开图长方形的两侧,且是全等的三角形,15.(2022秋•姜堰区期末)小明在学习了《展开与折叠》这一课后,掌握了长方体盒子的制作方法.如图是他制作的一个半成品的平面图:(1)在中补充一个长方形,使该平面图能折叠成一个长方体盒子;(2)已知小明制作长方体的盒子长是宽的2倍,宽是高的2倍,且长方体所有棱长的和为56cm,求这个长方体盒子的体积.【分析】(1)根据长方体的展开图补充图形即可求解;(2)根据题意,设长方体的高为a,则宽为2a,长为4a,根据长方体所有棱长的和为56cm,列出方程,进而根据体积公式即可求解.【解答】解:(1)如图所示,(2)设长方体的高为acm,则宽为2acm,长为4acm,根据题意得,4(a+2a+4a)=56(cm),解得:a=2,∴这个长方体的高为2cm,宽为4cm,长为8cm,∴这个长方体盒子的体积为:2×4×8=64(cm3).【点评】本题考查了长方体的展开图,一元一次方程的应用,掌握以上知识是解题的关键.16.(2022秋•宛城区校级期末)某“综合实践”小组开展了“长方体纸盒的制作”实践活动,他们利用边长为a(cm)的正方形纸板制作出两种不同方案的长方体盒子(图1为无盖的长方体纸盒,图2为有盖的长方体纸盒).【操作一】根据图1方式制作一个无盖的长方体盒子.方法:先在纸板四角剪去四个同样大小边长为b (cm)的小正方形,再沿虚线折合起来.【问题解决】(1)若a=12cm,b=3cm,则长方体纸盒的底面积为;【操作二】根据图2方式制作一个有盖的长方体纸盒.方法:先在纸板四角剪去两个同样大小边长为b (cm)的小正方形和两个同样大小的小长方形,再沿虚线折合起来.【拓展延伸】(2)若a=12cm,b=2cm,该长方体纸盒的体积为;(3)现有两张边长a均为30cm的正方形纸板,分别按图1、图2的要求制作无盖和有盖的两个长方体盒子,若b=5cm,求无盖盒子的体积是有盖盒子体积的多少倍?【分析】(1)由折叠可得底面是边长为6cm的正方形,进而求出底面积即可;(2)由展开与折叠可知,折叠成长方体的长、宽、高分别为a﹣2b,,b,根据体积公式进行计算即可;(3)当a=30cm,b=5cm时,分别求出按图1,图2的折叠方式所得到的长方体的体积即可.【解答】解:(1)如图1,若a=12cm,b=3cm,则长方体纸盒的底面是边长为12﹣3×2=6(cm)的正方形,因此面积为6×6=36(cm2),故答案为:36cm2;(2)如图2,先在纸板四角剪去两个同样大小边长为b(cm)的小正方形和两个同样大小的小长方形,再沿虚线折合起来可得到长为a﹣2b,宽为,高为b的长方体,当a=12cm,b=2cm,该长方体纸盒长为12﹣2×2=8(cm),宽为=4(cm),高为2cm,所以体积为8×4×2=64(cm3),故答案为:64cm3;(3)当a=30cm,b=5cm时,按图1作无盖的长方体的纸盒的体积为(30﹣5×2)(30﹣5×2)×5=2000(cm3),按图2作的长方体的纸盒的体积为(30﹣5×2)()×5=1000(cm3),2000÷1000=2(倍),答:无盖盒子的体积是有盖盒子体积的2倍.【点评】本题考查展开图折叠成几何体,掌握棱柱的展开图的特征是正确解答的前提,根据展开图得出折叠后长方体的长、宽、高是解决问题的关键.17.(2022秋•昆明期末)图(1)和图(2)中所有的正方形都相同,将图(1)的正方形放在图(2)中的①②③④⑤某一位置,所组成的图形不能围成正方体的位置是()A.①②B.②③C.③④D.②⑤【分析】由平面图形的折叠及正方体的表面展开图的特点解题.【解答】解:将图1的正方形放在图2中的②⑤的位置出现重叠的面,所以不能围成正方体.故选:D.【点评】本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.熟记正方体的11种展开图是解题的关键.18.(2022秋•阳泉期末)小明在学习了正方体的展开图后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀剪开了一个长方体纸盒,可是一不小心多剪开了一条棱,把纸盒剪成了两部分,如图1、图2所示.请根据你所学的知识,回答下列问题:观察判断:小明共剪开了条棱;动手操作:现在小明想将剪断的图2重新粘贴到图1上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒(如图3),请你帮助小明在图1中补全图形;解决问题:经过测量,小明发现这个纸盒的底面是一个正方形,其边长是长方体的高的5倍,并且纸盒所有棱长的和是880cm,求这个纸盒的体积.【分析】(1)根据平面图形得出剪开棱的条数,(2)根据长方体的展开图的情况可知有四种情况,(3)设最短的棱长高为acm,则长与宽相等为5acm,根据棱长的和是880cm,列出方程可求出长宽高,即可求出长方体纸盒的体积.【解答】解(1)小明共剪了8故答案为:8.(2)如图,四种情况.(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长高为acm,则长与宽相等为5acm,∵长方体纸盒所有棱长的和是880cm,∴4(a+5a+5a)=880,解得a=20,∴这个长方体纸盒的体积为20×100×100=200000(立方厘米).【点评】本题主要考查了几何展开图,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.三.专题:正方体相对两个面上的文字(共7小题)19.(2022秋•泗阳县期末)动手操作:做一个正方体木块,在正方体的各面分别写上1,2,3,4,5,6这6个不同的数字,若它可以摆放成如图所示的两种不同位置,请你判断数字5对面的数字是()A.1B.2C.3D.6【分析】根据图形以及数字的摆放,第一图可得6的下面为1,1的右边为4,第二个图可知4的下面是5,5的右边是2【解答】解:根据图形以及数字的摆放,第一图可得6的下面为1,1的右边为4,第二个图可知4的下面是5,5的右边是2,将正方形展开如图所示,∴5的对面是6,故选:D.【点评】本题考查了正方体展开图,相对面上的字,注意数字的摆放是解题的关键.20.(2022秋•溧水区期末)如图是一个正方体的平面展开图,若该正方体相对两个面上的数相等,则a+b+c =.【分析】利用正方体及其表面展开图的特点解题.【解答】解:由图可知,c+1=3,1+b=1,a=﹣2,所以a=﹣2,b=0,c=2,所以a+b+c=0.故答案为:0.【点评】本题考查了正方体相对两个面上的文字,解答本题的关键在于注意正方体的空间图形,从相对面入手,分析及解答问题.21.(2022秋•高邮市期末)一个正方体的6个面上分别标有字母a、b、c、d、e、f.若甲、乙两位同学分别在f、e朝上时,看到的另两个字母如图,则b对面的是.【分析】根据第一个图形和第二个图形中都含有d的面,即可判断.【解答】解:由题意可知d字母所在面相邻的面上的字母分别为a、c、e、f,则d的对面是b.即b对面的是d.故答案为:d.【点评】本题考查了正方体相对两个面上的文字,同时也考查了空间想象能力和推理能力.正确记忆立方体的特点是解题关键.22.(2022秋•川汇区期末)党的二十大报告提出,要以中国式现代化全面推进中华民族伟大复兴.将“中国式现代化”这六个字分别写在一个正方体的六个表面上,如图是它的一种展开图,则与“式”相对的字是()A.中B.国C.现D.代【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【解答】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“式”字相对的面上的汉字是“中”.故选:A.【点评】本题考查了正方体的展开图形,掌握相对面进行分析及解答是关键.23.(2022秋•青神县期末)如果一个骰子相对两面的点数之和为7,它的表面展开图如图所示,则下面判断正确的是()A.A代表B.B代表C.C代表D.B代表【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.【解答】解:根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A与点数是1的对面,B与点数是2的对面,C与点数是4的对面,∵骰子相对两面的点数之和为7,∴A代表的点数是6,B代表的点数是5,C代表的点数是3.故选:A.【点评】本题考查了正方体相对两个面上的文字,掌握从相对面入手是关键.24.(2022秋•汉台区期末)如图是正方体的平面展开图,若将图中的平面展开图折叠成正方体后,相对面上的两个数之和为7,求x﹣y+z的值.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面判断即可.【解答】解:由图可知:z与4相对,y与﹣2相对,x与12相对,由题意得:z+4=7,y+(﹣2)=7,x+12=7,∴z=3,y=9,x=﹣5,∴x﹣y+z=﹣5﹣9+3=﹣11,∴x﹣y+z的值为﹣11.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.25.(2022秋•青神县期末)一个立方体的六个面上分别标上一至六点(一个小圆表示一点,每个面上的点数不同),然后将完全一样的四个立方体摆放成如图样式的一个长方体,我们能看到的面上的点数如图所示,则长方体底面上的点数之和是.【分析】先判断出相对的面的点数,再进行计算即可.【解答】解:由题意可知,“3点”的面的邻面有“2点、6点、4点、5点”,所以与“3点”相对的面的点数为“1点”;因为“4点”的面的邻面有“6点、5点、3点、1点”,所以与“4点”相对的面的点数为“2点”;因为“6点”的面的邻面有“3点、1点、4点、2点”,所以与“6点”相对的面的点数为“5点”;所以长方体底面上的点数之和是:4+1+5+2=12.故答案为:12.【点评】本题考查了正方体相对两个面上的文字,关键是弄清每个骰子六面点数之和是几,每个骰子看见面的点数之和是几.【过关检测】一.选择题(共4小题)1.(2022•河南三模)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“豫”字所在面相对的面上的汉字是()A.老B.南C.河D.家【分析】根据正方体的平面展开图找相对面的方法,同层隔一面判断即可.【解答】解:在原正方体中,与“豫”字所在面相对的面上的汉字是“家”,故选:D.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的平面展开图找相对面的方法是解题的关键.2.(2022•金坛区二模)某几何体的表面展开图如图所示,这个几何体是()A.圆柱B.长方体C.四棱锥D.五棱锥【分析】根据四棱锥的侧面展开图得出答案.【解答】解:这个几何体由四个三角形和一个正方形围成,故这个几何体为四棱锥.故选:C.【点评】此题主要考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决此类问题的关键.3.(2022•梧州模拟)下列在立体图形中,它的侧面展开图是扇形的是()A.正方体B.长方体C.圆柱D.圆锥【分析】根据常见立体图形的侧面展开图判断即可得出答案.【解答】解:A选项,正方体的侧面展开图是长方形,故该选项不符合题意;B选项,长方体的侧面展开图是长方形,故该选项不符合题意;C选项,圆柱的侧面展开图是长方形,故该选项不符合题意;D选项,圆锥的侧面展开图是扇形,故该选项符合题意;故选:D.【点评】本题考查了几何体的展开图,掌握常见几何体的侧面展开图:①圆柱的侧面展开图是长方形.②圆锥的侧面展开图是扇形.③正方体的侧面展开图是长方形是解题的关键.4.(2022•丰台区二模)如图,下列水平放置的几何体中,侧面展开图是扇形的是()A.B.C.D.【分析】根据几何体的展开图:三棱柱的侧面展开图是三个长方形;四棱柱的侧面展开图是四个长方形;圆柱的侧面展开图是矩形;圆锥的侧面展开图是扇形;可得答案.【解答】解:AB、侧面展开图是四个长方形,故此选项不符合题意;C、侧面展开图是一个长方形,故此选项不符合题意;D、侧面展开图是扇形,故此选项符合题意.故选:D.【点评】本题考查了几何体的展开图,记住常用几何体的侧面展开图是解题的关键.二.填空题(共3小题)5.(2022•晋中一模)“双奥之城”指既举办过夏季奥运会又举办过冬季奥运会的城市.2008年北京夏季奥会之后,2022年北京冬季奥运会成功举办,使北京成为世界上首座“双奥之城”.下列正方体展开图的每个面上都标有一个汉字,把它们折成正方体后,与“双”字相对面上的汉字是.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面,判断即可.【解答】解:与“双”字相对面上的汉字是城,故答案为:城.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.6.(2021秋•息县期末)根据表面展开图依次写出立体图形的名称:、、.【分析】根据表面展开图的形状判断即可.【解答】解:圆锥的表面展开图是一个扇形和圆,四棱锥的表面展开是一个四边形和四个三角形,三棱柱的表面展开是三个长方形和两个三角形.【点评】本题考查立体图形的表面展开,熟悉各几何体表面展开的形状是求解本题的关键.7.(2021秋•绵阳期末)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“y”一面与相对面上的代数式相等,则有“xy2”一面与相对面上的代数式的和等于0(用数字作答).【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端对面,判断即可.【解答】解:由图可知:y与2y﹣3相对,xy2与﹣3xy相对,由题意得:y=2y﹣3,∴y=3,∴xy2+(﹣3xy)=9x+(﹣9x)=0,∴有“xy2”一面与相对面上的代数式的和等于0,故答案为:0.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.三.解答题(共5小题)8.(2021秋•武功县期末)如图是正方体的平面展开图,若将图中的平面展开图折叠成正方体后,相对面上的两个数之和为7,求x﹣y+z的值.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面判断即可.【解答】解:由图可知:z与4相对,y与﹣2相对,x与12相对,由题意得:z+4=7,y+(﹣2)=7,x+12=7,∴z=3,y=9,x=﹣5,∴x﹣y+z=﹣5﹣9+3=﹣11,∴x﹣y+z的值为﹣11.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.9.(2021秋•临汾期末)阅读与思考请阅读下列材料,并完成相应的任务:任务:(1)在图②中,若字母Q表示包装盒的上表面,字母P表示包装盒的侧面,则下表面在包装盒表面展开图中的位置是;A.字母B B.字母A C.字母R D.字母T(2)若在图③中,网格中每个小正方形的边长为1,求包装盒的表面积.【分析】(1)根据长方体的表面展开图找相对面的方法,同层隔一面,判断即可;(2)根据长方体的表面积公式进行计算即可解答.【解答】解:(1)在图②中,若字母Q表示包装盒的上表面,字母P表示包装盒的侧面,则下表面在包装盒表面展开图中的位置:字母B,故答案为:A;(2)由题意得:2×3×2+2×3×1+2×2×1=12+6+4=22,∴包装盒的表面积为22.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据长方体的表面展开图找相对面的方法是解题的关键.10.(2021秋•渠县期末)如图,是底面为正方形的长方体的表面展开图,折叠成一个长方体,那么:(1)与N重合的点是哪几个?(2)若AB=3cm,AH=5cm,则该长方体的表面积和体积分别是多少?【分析】(1)把展开图折叠即可得出答案;。
七年级数学展开与折叠
在机械制造中,经常需要将零件展开成平面图形进行加工和制造。这样可以提高加工精度 和效率,也可以减少材料浪费和降低成本。同时,在机械装配过程中,也需要将零件按照 一定规律进行折叠和组装。
02
平面图形展开与折叠
正方形和长方形展开
正方形展开
正方形可以沿着对角线或者中垂线展开成一个直线 段或者两个相等的直角三角形。
物理理论的数学化
许多物理理论最终需要转化为数学 模型以便进行更深入的分析和研究, 如量子力学和广义相对论等。
数学在化学中的应用
化学计量学
数学在化学计量学中有着广泛应 用,如化学方程式的配平、摩尔
质量的计算等。
化学反应动力学
数学方法可以帮助研究化学反应 的速率和机理,如反应速率常数
的确定、反应机理的推导等。
圆形和扇形展开后,其各边长度和角 度关系可能会发生变化。同时,圆形 和扇形的面积和周长也会发生变化。
扇形展开
扇形是圆的一部分,可以沿着半径或者圆弧 展开,得到一个平面图形。根据展开方式的 不同,可以得到不同的形状,如三角形、梯 形等。
03
立体图形展开与折叠
正方体和长方体展开
正方体展开
正方体有6个面,12条棱,8个顶 点,可以展开成6个相连的正方形 。展开后,相对的面不相邻。
实现变废为宝
利用废旧纸张、布料等材 料进行展开与折叠的手工 制作,可以实现资源的再 利用,具有环保意义。
05
拓展内容:数学在其他领域的应用
数学在物理中的应用
描述物理现象
数学语言可以精确描述物理现象, 例如牛顿第二定律 F=ma 就用数 学表达式阐明了力和加速度之间
的关系。
解决物理问题
数学方法如微积分、常微分方程等 被广泛应用于解决物理问题,如求 解运动方程、分析电磁场等。
立体形的展开与折叠
立体形的展开与折叠立体形的展开与折叠,是指将平面图形通过一系列步骤,将其展开成立体形状,或将立体形状折叠成平面图形。
这一过程在许多领域中都有广泛的应用,如纸艺、造型设计、工程制图等。
本文将介绍立体形的展开与折叠的基本原理、应用场景和技巧。
一、基本原理立体形的展开与折叠基于平面展开与立体折叠的原理。
平面展开是指将立体体积展开成平面图形,常用于纸艺折纸、纸板模型制作等领域。
立体折叠则是指将平面图形通过折叠操作还原成原来的立体形状,常用于结构设计、空间拼合等领域。
立体形的展开设计需要考虑以下几个原则:1. 保持形状完整性:展开后的平面图形应能完整还原成立体形状,不得有遗漏或重叠部分。
2. 保持比例关系:展开后的平面图形应能保持与原立体形的比例关系,确保准确性和工程可行性。
3. 考虑连接方式:在展开设计中,需要考虑连接方式,以确保展开后的平面图形在连接时具有稳定性和牢固性。
二、应用场景立体形的展开与折叠在许多领域中都有广泛应用,以下列举几个常见的应用场景:1. 纸艺折纸:纸艺折纸是一种将纸张通过折叠操作,将其展开和形变成各种立体形状的艺术和手工制作技巧。
通过不同的折法和连接方式,可以将平面的纸张变成立体的动物、植物、建筑等形状,具有较高的艺术性和观赏性。
2. 空间结构设计:在建筑和工程领域中,需要进行空间结构设计,通过将平面图形展开和折叠,可以在设计过程中预测和模拟结构的形态和力学特性。
例如,通过将二维平面图形展开,可以预测建筑物的构造和拼接方式,提前解决结构问题。
3. 装配式建造:立体形的展开与折叠在装配式建造中也有广泛应用。
通过将各种建筑构件进行展开,可以提前制作和加工,减少现场加工,提高施工效率和质量。
同时,展开与折叠也可以帮助设计师进行规划和设计,确保构件的准确性和一致性。
三、技巧与注意事项在进行立体形的展开与折叠时,有一些常用技巧和注意事项需要注意:1. 预先规划:在进行展开与折叠设计之前,需要对立体形状进行预先规划和分析。
初一上册第一章生活中的立体图形 展开与折叠讲义
生活中的立体图形展开与折叠教学内容一、重点知识归纳及讲解1、常见几何体的特征及分类几何体是从实物中抽象出来的数学模型,常见的几何体有圆柱、圆锥、正方体、长方体、棱柱、球体等,它们各有自身的特征,既有共同点,又有不同点,可以根据其共同点进行分类,可以根据其不同点进行区分.2、点、线、面、体之间的关系点动成线、线动成面、面动成体.几何图形是由点、线、面构成的;组成体的面可以是平的,也可以是曲的;面与面相交得到线、线可以是直的,也可以是曲的;线与线相交得到点.3、棱柱的特性在棱柱中,任何相邻两个面的交线都叫做棱,相邻两个侧面的交线叫做侧棱,棱柱的所有侧棱长都相等,棱柱的上、下底面是相同的多边形,侧面都是长方形.根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱等,它们的底面图形的形状分别为三边形、四边形、五边形、六边形,长方体和正方体都是四棱柱.底面多边形的边数为n的棱柱有2n个顶点、3n条棱、n条侧棱、(n+2)个面、2个底面、n个侧面.4、棱柱、圆柱、圆锥的表面展开图棱柱的表面展开图是由两个相同的多边形和一些长方形连成的,沿棱柱表面不同的棱剪开,可以得到不同组合方式的平面展开图.圆柱的表面展开图是由两个相同的圆形和一个长方形连成的.圆锥的表面展开图是由一个圆形和一个扇形连成的.二、难点知识剖析1、棱柱与圆柱的异同点相同点:圆柱和棱柱都有两个底面.不同点:圆柱的底面是圆形,而棱柱的底面是多边形;圆柱的侧面是一个曲面,而棱柱的侧面是四边形.2、圆柱、圆锥的侧面展开图圆柱的侧面展开图是一个长方形,一边长是底面的圆周长,相邻一边的长是圆柱的高.圆锥的侧面展开图是扇形,其半径为圆锥母线长,弧长是圆锥的底面周长.三、典型例题解析例1、将如图所示的几何体进行分类,并说明理由.例2、将图1所示的三角形绕直线l旋转一周,可以得到如图2所示的几何体的是哪一个三角形?例3、如图所示的八棱柱,它的底面边长都是5厘米,侧棱长都是6厘米,回答下列问题:(1)这个八棱柱一共有多少面?它们的形状分别是什么图形?哪些面的形状、面积完全相同?(2)这个八棱柱一共有多少条棱?它们的长度分别是多少?(3)沿一条侧棱将其侧面全部展开成一个平面图形,这个图形是什么形状?面积是多少?例4、如图所示是一多面体的展开图,每个面内都标注了字母,请根据要求回答问题:(1)如果面A在多面体的底部,那么哪一面会在上面?(2)如果面F在前面,从左面看是面B,那么哪一面会在上面?(3)如果从右面看是面C,面D在后面,那么哪一面会在上面?例5、如图所示,哪些图形可以折成一个棱柱?例6、把半径为10cm的半圆折成一个圆锥,则这个圆锥的底面积是多少平方厘米?四、随堂练习1、下列图形中属于棱柱的有()A.2个B.3个C.4个D.5个2、有一个正方形木块,它的六个面分别标上数字1~6,下面三个图是从不同方向看到的数字情况,则数字5对面的数字是()A.3 B.4C.6 D.不能确定3、如图所示,虚线左边的图形绕虚线旋转一周,能形成的几何体是()A.B.C.D.4、在下列结论中:(1)一条直线和一个曲面相交,可能得到两个点;(2)一个平面和一条曲线相交,可能得到两个点;(3)两个平面相交,可能得到一条曲线;(4)一个平面与一个曲面相交,可能得到一条直线.其中正确的个数为()A.4 B.3C.2 D.15、在下列说法中:(1)平面上的线都是直线;(2)曲面上的线都是曲线;(3)两条线相交只能得到一个交点;(4)两个面相交只能得到一条交线.其中不正确的个数为()A.1 B.2C.3 D.46、如图所示,一个三棱柱按粗黑线的棱剪开后的展开图是()A.B.C.D.7、如图所示是一个正方体纸盒的展开图,若在其中的三个正方形A、B、C内分别填入适当的数,使得它们折成正方体后相对的面上的两个数互为相反数,则填入正方形A、B、C内的三个数分别是()A.1,-2,0 B.0,-2,1C.-2,0,1 D.-2,1,08、下列图形中,是正方体的展开图的是()A.B.C. D.五、知识点小结1、常见几何体的特征及分类几何体是从实物中抽象出来的数学模型,常见的几何体有_______、_________、______、_______、_____、_____等,它们各有自身的特征,既有共同点,又有不同点,可以根据其共同点进行分类,可以根据其不同点进行区分.2、点、线、面、体之间的关系点动成线、线动成面、面动成体.几何图形是由点、线、面构成的;组成体的面可以是____的,也可以是_____的;面与面相交得到_____、______可以是直的,也可以是曲的;线与线相交得到_______.3、棱柱的特性在棱柱中,任何相邻两个面的交线都叫做_____,相邻两个侧面的交线叫做_______,棱柱的所有侧棱长都_______,棱柱的上、下底面是_______的多边形,侧面都是_______形.根据底面图形的______将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱等,它们的底面图形的形状分别为____边形、_____边形、_____边形、______边形,长方体和正方体都是______棱柱.底面多边形的边数为n的棱柱有_____个顶点、______条棱、_____条侧棱、______个面、____个底面、___个侧面.4、棱柱、圆柱、圆锥的表面展开图棱柱的表面展开图是由两个相同的____形和一些______形连成的,沿棱柱表面不同的棱剪开,可以得到不同组合方式的平面展开图.圆柱的表面展开图是由两个相同的_____形和一个_____形连成的.圆锥的表面展开图是由一个_____形和一个___________形连成的.5、棱柱与圆柱的异同点相同点:圆柱和棱柱都有______个底面.不同点:圆柱的底面是_____,而棱柱的底面是______形;圆柱的侧面是一个_____面,而棱柱的侧面是_____形.6、圆柱、圆锥的侧面展开图圆柱的侧面展开图是一个_____形,一边长是底面的______长,相邻一边的长是圆柱的______.圆锥的侧面展开图是_____形,其半径为圆锥_______长,弧长是圆锥的底面______长.六、巩固练习1、将两个完全相同的长方体拼在一起,如果能组成一个正方体,请求出表面积减少的百分比?2、把一块表面涂着红漆的正方体大积木锯成27块大小一样的小积木,求这些小积木中一面涂漆的块数.3、一个小圆和半个大圆恰好能围成一个几何体的表面(接缝不计),那么这个小圆的半径与大圆的半径有什么关系?4、如图所示的一个长31.4cm,宽5cm的长方形,围成一个圆柱体,则要给它加上两个底面圆的面积是多少?七、课后作业1、如图所示有12个小正方体,每个小正方体内有6个面上分别写着数字1,9,9,8,4,5,用这12个小正方体拼成一个长方体,那么图中看不见的那些小正方体的面有几个?把这些面上的数相加得多少?2、3、。
展开与折叠(第一课时)课件
新闻报道
新闻报道通常采用倒金字塔结构, 先概述主要内容,再逐步展开细 节,使读者能够快速了解事件概 况,并选择感兴趣的部分深入阅
读。
小说故事
小说中经常使用展开手法,逐步 揭示人物性格、情节发展和社会 背景,通过悬念和伏笔吸引读者
继续阅读。
科学研究
在科学研究中,研究者通常先提 出假设或问题,然后通过实验和 数据分析逐步展开论证,以支持
展开与折叠的综合应用案例分析
报告文档
在撰写报告或文档时,通常需要将内 容分为多个章节,每个章节可以独立 展开或折叠,以便读者快速了解报告 结构并选择感兴趣的部分阅读。
演示文稿
在制作演示文稿时,可以使用展开和 折叠技巧来组织内容,突出重点和细 节,使演示更加生动有趣。
谢谢
THANKSBiblioteka 不规则折叠则没有固定的规律, 需要根据实际情况进行灵活的 折叠操作。
展开与折叠的应用场景
在建筑领域,展开与折叠可以用 于建筑设计、施工和维修,如展 开式太阳能板、折叠式建筑结构 等。
在机械领域,展开与折叠可以用 于制造可变形的机器人、机械手 等设备,提高设备的适应性和灵 活性。
在包装领域,展开与折叠可以用 于设计可折叠的纸盒、塑料袋等 包装材料,便于存储和运输。
展开机构的基本原理通常基于连杆机构、铰链机构、曲柄滑块机构等基本机械原理, 通过一系列的几何学和力学的原理,实现机构的展开和折叠。
在展开过程中,机构通常经历从不稳定状态到稳定状态的转变,这需要合理的设计 以确保机构的稳定性和可靠性。
展开机构的类型与特点
不同类型的展开机构具有不同的特点和应用场景。例 如,自展式机构通常具有较好的稳定性和可靠性,适 用于长期使用和复杂环境;而被动展收式机构则适用 于需要频繁展开和折叠的场合。
教学知识点立体形的展开和折叠
教学知识点立体形的展开和折叠在数学教学中,立体形的展开和折叠是一个重要的概念。
通过展开和折叠,我们可以更好地理解和操作各种立体形。
本文将介绍立体形的展开和折叠的基本概念、方法和应用。
一、立体形的展开立体形的展开是指将一个立体形体上的各个面展开成一个平面上的图形。
展开后的图形称为展开图。
通过展开,我们可以更好地观察和理解立体形的各个面和边。
以长方体为例,我们可以将长方体展开成由6个矩形面组成的平面图形。
展开后的图形中,每个顶点对应一个角,每个边对应一条线段。
展开后的图形能够清晰地展示出相邻面、共边顶点等信息,便于进行计算和分析。
二、立体形的折叠立体形的折叠是指将展开图重新折叠成原立体形的过程。
通过折叠,我们可以将展开图还原成原本的立体形状,并可以进行实际的操作和制作。
折叠的基本原则是通过将展开图上的各个面按照对应的边进行折叠,使得各个面相互重合,还原成立体形状。
在折叠的过程中,要注意保持角的大小和边的对齐,以保证折叠后的立体形与原始立体形相同。
折叠有助于锻炼学生的空间想象力和手工操作能力。
通过折叠,学生可以更深入地理解立体形的形状和结构,并从中发现一些规律和性质。
三、立体形展开和折叠的应用立体形的展开和折叠在实际生活中有广泛的应用。
以下是一些例子:1. 制作模型:通过将展开图打印出来、剪下并折叠,我们可以制作各种立体模型,如建筑物、动物等。
这有助于培养学生的动手能力和创造力。
2. 产品包装设计:在设计产品的包装盒时,我们常常需要将一个立体形折叠为一个面积较小的展开图,以方便储存、运输和销售。
同时,展开和折叠的技巧也会影响到包装盒的结构和美观度。
3. 制作立体图案:在纸艺、贺卡制作等手工活动中,我们经常需要进行立体图案的制作。
通过展开和折叠,我们可以将平面图案转化为立体结构,给作品增添立体感。
4. 空间几何推理:在数学的几何推理中,我们常常需要通过观察和分析立体形的展开图来解决问题。
通过合理地利用展开图的信息,我们可以推断出立体形的各个面和边的性质,从而得到解题的线索。
立体图形的展开与折叠ppt课件
2024/1/27
25
鼓励学生在日常生活中多加观察和实践
2024/1/27
观察身边的立体图形
建议学生多留意身边的各种立体图形,如家具、玩具、包 装盒等,思考它们的形状、结构和展开方式。
实践立体图形的展开与折叠
鼓励学生动手尝试将身边的立体图形展开成平面图形,并 尝试重新折叠成立体图形,加深对立体图形与平面图形之 间转换关系的理解。
解题思路与方法
通过实例分析,分享解决创新题型的思路和方法,如逆向思维、构 造法等。
学生自主探究与展示
鼓励学生自主探究创新题型,并展示他们的解题过程和成果。
2024/1/27
18
05 学生自主操作练 习环节
2024/1/27
19
提供多种不同难度级别练习题
基础练习题
针对初学者,提供简单的立体图 形展开与折叠题目,帮助学生掌
2024/1/27
12
标记法:在展开图上做标记辅助判断
01
02
03
做标记
在展开图的各个部分上标 注出对应的立体图形的特 征,如角度、边长等。
2024/1/27
分析标记
根据标注的特征,分析各 个部分在立体图形中的位 置关系。
判断折叠方向
结合分析的结果,判断各 个部分应该朝哪个方向折 叠。
13
实践操作:动手尝试不同折叠方式
个性化指导
针对不同学生的问题,教师给予 个性化的指导和建议,帮助学生 更好地掌握立体图形的展开与折
叠知识。
鼓励尝试
教师鼓励学生大胆尝试和探索新 的解题方法和思路,培养学生的
创新意识和实践能力。
2024/1/27
22
06 课程总结与拓展 延伸
七年级数学辅导: 立体图形的展开与折叠
几何(一)立体图形的展开与折叠【知识要点】1、 折叠:将一个平面图形折叠起来,就得到一个立体图形;即平面图形立体化.2、展开:将一个立体图形的表面展开,就得到一个平面图形;即立体图形平面化.3、欧拉公式:顶点数+面数-边数=2【典型例题】例1 观察图1-1中平面展开图的折叠过程,并回答1号面、2号面、3号面的对面分别是几号面。
例2 如图1-2,可以沿线折叠成一个带数字的立方体,每三个带数字的面交于立方体的一个顶点,则相交于一个顶点的三个面上的数字之和最小的是_____________.例3 如图1-3所示,剪一块硬纸片可以做成一个多面体的纸模型(沿虚线折,沿实线粘)这个多面体的面数,顶点数和棱数总和是多少?图1-3图1-2图1-1例4请问出正方体的展开图有多少种?请分别画出。
例5 下图(图1-4)是一个正方体,四边形APQC 表示用平面截正方体的截面,其中P,Q 分别是EF,FG 的中点,请在右下方的展开图中画出四边形APQC 四条边.例6 如图1-5所示,在正方体两个相距最远的顶点处逗留着一只苍蝇和一只蜘蛛,蜘蛛可以从哪条最短的路径爬到苍蝇处?说明你的理由。
例7 在五彩缤纷的世界里,其中有各种各样的立体图形,已知一个十二面体如图1-6所示,试求该十二面体的顶点数和棱数。
图1-6十二面体图1-5C B AD GQF P E H 图1-4 A B F E H D CG G C C DD H例8 如图1-7,将三个同样的正方体重叠放在不透明的桌面上,每个正方体的六个面上分别写有1,2,3,4,5,6,并且相对的两个面上的数字之和是7,现在有5个面上的数字不论从哪个角度都看不到,这5个看不到的面上的数字的乘积是_________________.【练习与拓展】一、选择题:1.图1-8中的长方形折叠后能围成一个三棱柱,这个三棱柱的底面一定是( )A .三角形B .等边三角形C .等腰三角形D .直角三角形2.六个立方体A 、B 、C 、D 、E 、F 的可见部分如图1-9,下边是其中一个立体__________的侧面展开图。
第一讲 立体图形的展开与折叠(学生版)
第一讲 立体图形的展开与折叠知识清单1. 棱柱棱柱分为直棱柱和斜棱柱,初中阶段只讨论直棱柱.n 棱柱的定点有n 2个,棱有n 3条,面有(2 n )个,因此任意一个棱柱的顶点数、棱数和面数之间存在着这样的关系:顶点数+面数-棱数=2.2. 点、线、面、体从运动的角度看:点动成线,线动成面,面动成体. 3. 展开图与折叠图(1)几种常见的立体图形的展开图:(2)将正方体表面沿着某些棱剪开展成一个平面图形,需要剪开7条棱,由于剪开的方法不同,会得到11种不同形状的展开图.①“一四一”型:如下图,四个一行中排列,上下各一任意放,共6种;①“二三一”型:如下图,二在三上露一端,一在三下任意放,共3种;①“二二二”型:如下图,两两三行排有序,恰是登天上云梯,仅1种;①“三三”型:如下图,三个三排两行,中间一“日”放光芒,仅1中.题型突破题型1 识别几何体1.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥2.下列几何体中,是圆柱的为()A.B.C.D.3.下列图形中,属于立体图形的是()A.B.C.D.4.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有4个面是三角形;乙同学,它有6条棱,则该模型对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥5.一个棱柱共有9条棱,这个棱柱是()A.三棱柱B.四棱柱C.五棱柱D.六棱柱题型2 立体题图像的表面积1.已知正方体的边长为a.(1)一个正方体的表面积是多少?体积是多少?(2)2个正方体(如图②)叠放在一起,它的表面积是多少?体积是多少?(3)n个正方体按照图②的方式叠放在一起,它的表面积是多少?体积是多少?2.一个六棱柱模型如图所示,底面边长都是5cm,侧棱长为4cm,这个六棱柱的所有侧面的面积之和是()A.20cm2B.60cm2C.120cm2D.240cm23.小华自己动手做了一个铁皮圆柱形笔筒,它的底面直径为6cm,高为10cm,则其表面积为()A.156πcm2B.120πcm2C.69πcm2D.60πcm24.棱长是1cm的小立方体组成如图所示的几何体,那么这个几何体的表面积为()A.36cm2B.33cm2C.30cm2D.27cm25.如图所示的五棱柱的底面边长都是5cm,侧棱长12cm,它有多少个面?它的所有侧面的面积之和是多少?6.棱长为a的正方体,摆成如图所示的形状.(1)如果这一物体摆放三层,试求该物体的表面积;(2)依图中摆放方法类推,如果该物体摆放了上下20层,求该物体的表面积.(3)依图中摆放方法类推,如果该物体摆放了上下n层,求该物体的表面积.题型3 点、线、面、体1.将第一行的图形绕轴旋转一周,便得到第二行的几何体,用线连一连.2.将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A.B.C.D.3.天上一颗颗闪烁的星星给我们以“”的形象;中国武术中有“枪扎一条线,棍扫一大片”的说法,这句话给我们以“”的形象;宾馆里旋转的大门给我们以“”的形象.4.流星划过天空时留下一道明亮的光线,用数学知识解释为.5.如图,上面的平面图形绕轴旋转一周,可以得出下面的立体图形,请你把有对应关系的平面图形与立体图形连接起来.题型4 几何体的展开图1.下列图形中,可以是正方体表面展开图的是()A.B.C.D.2.下列图形中,不可以作为一个正方体的展开图的是()A.B.C.D.3.有一种正方体如图所示,下列图形是该方体的展开图的是()A.B.C.D.4.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为()A.圆锥,正方体,三棱锥,圆柱B.圆锥,正方体,四棱锥,圆柱C.圆锥,正方体,四棱柱,圆柱D.正方体,圆锥,圆柱,三棱柱5.将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与“创”字所在的面相对的面上标的字是()A.庆B.力C.大D.魅6.如图所示的正方体的展开图是()A.B.C.D.7.如图,在无阴影的方格中选出两个画出阴影,使它们与图中4个有阴影的正方形一起可以构成一个正方体的表面展开图.(在图1和图2中任选一个进行解答,只填出一种答案即可)题型5 展开图折叠成几何体1.如图给定的是纸盒的外表面,下面能由它折叠而成的是()A.B.C.D.2.把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为()A.富B.强C.文D.民3.下列图形通过折叠能围成一个三棱柱的是()A.B.C.D.4.如图1,观察一个正方体骰子,其中点数1与6相对,点数2与5相对,点数3与4相对,现在图2中②、②、②、②中的某一处画○,然后去掉其余3处后,能围成正方体骰子的是()A.②B.②C.②D.②题组A基础过关一.选择题(共4小题)1.毕业前夕,同学们准备了一份礼物送给自己的母校.现用一个正方体盒子进行包装,六个面上分别写上“祝、母、校、更、美、丽”,其中“祝”与“更”,“母”与“美”在相对的面上.则此包装盒的展开图(不考虑文字方向)不可能是()A.B.C.D.2.小明同学中考前为了给自己加油,课余时间制作了一个六个面分别写有“17”“中”“考”“必”“胜”“!”的正方体模型,这个模型的表面展开图如图所示,与“胜”相对的一面写的()A.17B.!C.中D.考3.将一个棱长为3的正方体的表面涂上颜色,分割成棱长为1的小正方体(如图).设其中一面、两面、三面涂色的小正方体的个数分别为为x1、x2、x3,则x1、x2、x3之间的关系为()A.x1﹣x2+x3=1B.x1+x2﹣x3=1C.x1﹣x2+x3=2D.x1+x2﹣x3=2 4.如图,模块②由15个棱长为1的小正方体构成,模块②﹣②均由4个棱长为1的小正方体构成.现在从模块②﹣②中选出三个模块放到模块②上,与模块②组成一个棱长为3的大正方体.下列四个方案中,符合上述要求的是()A.模块②,②,②B.模块②,②,②C.模块②,②,②D.模块②,②,②二.填空题(共3小题)5.墙角处有若千大小相同的小正方体堆成如图所示实体的立体图形,如果打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后的实体的三种视围分别保持不变,那么最多可以搬走个小正方体.6.“齐天大圣”孙悟空有一个宝贝﹣﹣金箍棒,当他快速旋转金箍棒时,展现在我们眼前的是一个圆的形象,这说明.7.用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是cm2.三.解答题(共3小题)8.如图所示为8个立体图形.其中,柱体的序号为,锥体的序号为,有曲面的序号为.9.如图,在平整的地面上,有若干个完全相同的棱长为10cm的小正方体堆成一个几何体.(1)这个几何体由个小正方体组成.(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有个正方体只有一个面是黄色,有个正方体只有两个面是黄色,有个正方体只有三个面是黄色.(3)这个几何体喷漆的面积为cm2.10.值得探究的“叠放”!问题提出:把八个一样大小的正方体(棱长为1)叠放在一起,形成一个长方体(或正方体),这样的长方体(或正方体)表面积最小是多少?方法探究:第一步,取两个正方体叠放成一个长方体(如图②),由此可知,新长方体的长、宽、高分别为1,1,2.第二步,将新长方体看成一个整体,六个面中面积最大的是2,取相同的长方体,紧挨最大面积的面进行“叠放”,可形成一个较大的长方体(如图②),该长方体的长、宽、高分别为2,1,2.第三步,将较大的长方体看成一个整体,六个面中面积最大的是4,取相同的长方体,紧挨最大面积的面进行“叠放”,可形成一个大的正方体(如图②),该正方体的长、宽、高分别为2,2,2.这样,八个大小一样的正方体所叠放成的大正方体的最小表面积为6×2×2=24.仔细阅读上述文字,利用其中思想方法解决下列问题:(1)如图②,长方体的长、宽、高分别为2,3,1,请计算这个长方体的表面积.提示:长方体的表面积=2×(长×宽+宽×高+长×高)(2)取如图②的长方体四个进行叠放,形成一个新的长方体,那么,新的长方体的表面积最小是多少?(3)取四个长、宽、高分别为2,3,c的长方体进行叠放如图②,此时,形成一个新的长方体表面积最小,求c的取值范围.题组B提优过关一.选择题(共3小题)1.如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?()A.B.C.D.2.把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有()朵花.颜色红黄蓝白紫绿花的朵数123456A.15B.16C.21D.173.10个棱长为1的正方体木块堆成如图所示的形状,则它的表面积是()A.30B.34C.36D.48二.填空题(共2小题)4.如图,是由8个相同的小立方块达成的几何体,它的三个方向看到的都是2×2的正方形,拿掉若干个小立方块后,其三个方向观察到图形仍都为2×2的正方形.若已知该几何体不论拿掉哪一块小立方块,剩余立方块在几何体中的位置不变即几何体不会倒掉,则最多能拿掉小立方块的个数为5.墙角处有若千大小相同的小正方体堆成如图所示实体的立体图形,如果打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后的实体的三种视围分别保持不变,那么最多可以搬走个小正方体.三.解答题(共2小题)6.如图所示,左边是小颖的圆柱形的笔筒,右边是小彬的六棱柱形的笔筒.仔细观察两个笔筒,并回答下面问题.(1)圆柱、六棱柱各由几个面组成?它们都是平的吗?(2)圆柱的侧面与底面相交成几条线?它们是直的吗?(3)六棱柱有几个顶点?经过每个顶点有几条棱?(4)试写出圆柱与棱柱的相同点与不同点.7.一个正方体木块粘合成如图所示的模型,它们的棱长分别为1米、2米、4米,要在模型表面涂油漆,如果除去粘合部分不涂外,求模型的涂漆面积(可列式计算).。
初一数学上册第一章立体图形展开与折叠
第1节立体图形、展开与折叠【知识要点】1、给下列各图形标注名称,用自己的语言描述上列各几何体的特征:(1)(2)(3)(4)(5)(6)(7)2、棱柱与圆柱的相同点:棱柱与圆柱的不同点:3、面与面相交成______,线与线相交得到_______,点动成______,线动成_________,面动成_______4、多面体欧拉公式:【例题讲解】例1、将下列几何体分类,并说明理由(1)(2)(3)(4)(5)(6)(7)(8)【课堂练习】1、将下图中的几何体进行分类,并说明理由.简单的立体图2、一个直角三角形绕其直角边旋转一周得到的几何体是3、一个圆锥体有个面,其中,有_____个平面4、圆柱体有_____个面,其中有____个平面,还有一个面,是_____面。
5、下面给出的图形中,绕虚线旋转一周能形成圆锥的是()6、如图4-5是一些具体的图形—三棱镜、方砖、帆布帐篷、笔筒、铅锤、粮囤、天文台,图4-6中是一些立体图形,找出与图4-6立体图形类似的图形。
【例题】例题2、一个圆柱体的侧面展开图的边为4πcm的正方形,则它的表面积为______cm2例题3、当下面这个图案被折起来组成一个正方体,数字_____会在与数字2所在的平面相对的平面上。
4 5 61 2 3【巩固提高】1、已知某多面体的平面展开图如图所示,其中是三棱柱的有( B )A、1个B、2个C、3个D、4个2、下面的四个图形,能折叠成三棱柱的有( C )个.A、1B、2C、3D、43、下图是( B )的平面展开图.A、六棱柱B、五棱柱C、四棱柱D、五棱锥4、如图1所示,将图沿虚线折起来,得到一个正方体,那么“3”的对面是_____6__(填编号)5、下列图形中是正方体的展开图的是(D)(A) (B)(C)(D)6、如图是一个正方体的展开图,和C面的对面是___F___面.7、若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和为5,求x+y+z的值【解】13=++zyx第2节 展开与折叠、三视图【例题讲解】例1、下列图形中,是正方体的平面展开图的是 ( C )A B C D【课堂练习】1、长方形的长为6厘米,宽为4厘米,若绕着它的宽旋转一周得到的圆柱的体积为( D )立方厘米.A 、36πB 、72πC 、96πD 、144π2、画出下图中由几个正方体组成的几何体的三视图。
三维几何的展开与折叠
三维几何的展开与折叠三维几何是几何学中的重要分支,它研究的是空间中的图形和物体。
在三维几何中,展开与折叠是一种常见的操作,它能够将三维图形在二维平面上呈现出来,方便我们进行计算和分析。
本文将介绍三维几何的展开与折叠的原理和应用。
一、展开的原理展开是将三维图形在二维平面上展开的过程,通常采用无缝展开的方式,即展开后的图形各个部分之间没有重叠和间隙。
展开的原理基于如下几个步骤:1. 选择展开的视角:根据需要展开的图形,选择一个合适的视角,使得展开后的图形能够在二维平面上呈现出完整的形状。
2. 切割和拆解:将三维图形按照一定的规则进行切割和拆解,使得各个部分能够通过平移和旋转的方式展开到同一平面上。
3. 展开:将切割和拆解后的各个部分按照顺序展开到二维平面上,并通过标记或线段连接各个部分之间的对应关系,保持图形的完整性。
二、展开的应用展开在三维几何中有着广泛的应用。
以下是几个常见的应用场景:1. 制作纸模型:展开可以用于制作纸模型,使得原本复杂的三维图形可以通过一系列的展开和折叠操作变成平面上的几何图形,更易于制作和拼装。
2. 计算表面积和体积:通过展开,可以将三维图形转化为二维平面上的几何图形,从而方便计算其表面积和体积。
例如,展开一个立方体后,可以得到一个由六个正方形构成的平面图形,通过计算这些正方形的面积,就可以得到立方体的表面积。
3. 制作结构图和图样:展开图形后,可以作为制作结构图和图样的基础,有助于我们理解和分析复杂的结构和装配关系。
4. 工程设计:展开可以在工程设计中起到重要的作用,比如在制作底板、切割模板等方面都需要用到展开的技巧。
三、折叠的原理折叠是展开的逆过程,它将展开后的二维图形通过折叠还原成原始的三维图形。
折叠的原理也基于以下几个步骤:1. 选择折叠的方式:根据展开后的图形和需求,选择合适的折叠方式,包括平行折叠和垂直折叠等。
2. 确定折叠的边界和关系:通过观察展开后的图形,确定折叠的边界和各个部分之间的关系,如重合、相邻或相交等。
4.1.1折叠、展开与从不同方向观察立体图形(教案)-2023-2024学年七年级上册数学(人教版)
一、教学内容
本节课选自人教版七年级上册数学第4章《几何图形初步》中的4.1.1节“折叠、展开与从不同方向观察立体图形”。教学内容主要包括以下三个方面:
1.折叠:通过实际操作,让学生掌握正方体、长方体等简单立体图形的折叠方法,并理解其展开图形的特征。
此外,在小组讨论环节,学生们表现出了很高的积极性。他们围绕立体图形在实际生活中的应用展开了热烈的讨论,并提出了一些有趣的观点。这表明,学生们能够将所学知识与现实生活联系起来,这对于他们理解抽象的几何概念具有重要意义。
在今后的教学中,我需要关注以下几个方面:
1.对于教学难点,要设计更多的实例和练习,帮助学生巩固所学知识,提高解决问题的能力。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如“你们认为这些立体图形的折叠和展开在哪些场合下最有用?”
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(3)解决实际问题时,难以将所学知识灵活运用。
举例:在计算立体图形的表面积和体积时,部分学生可能会忘记使用正确的公式或方法。
在教学过程中,教师应针对教学难点进行有效指导,通过实际操作、示例讲解、讨论交流等方式,帮助学生突破难点,确保学生能够理解透彻本节课的核心知识。
四、教学流程
(一)导入新课(用时5分钟)
(2)从不同方向观察立体图形,学会用简单的几何语言描述观察到的形状。
举例:从正面、侧面、上面等不同方向观察正方体和长方体,让学生能够用“有几个面、面的形状和大小”等几何语言进行描述。
解密初中数学解题技巧之立体形的展开与折叠
解密初中数学解题技巧之立体形的展开与折叠数学是一门既有逻辑又有创造性的学科,其中立体几何是初中数学的重要内容之一。
在立体几何中,展开与折叠是解题的重要技巧之一。
本文将围绕这一主题展开。
一、展开的概念及方法在解决立体几何问题时,有时需要将立体形体展开成平面图形来进行分析与计算。
展开就是将一个立体形体在平面上按照一定规则展开,使之成为一个平面图形的过程。
展开后,我们可以更好地观察各个面的结构和关系,进而解决问题。
展开的方法主要有以下几种:1. 表面展开法:通过边沿的共边共点将立体形体展开。
2. 断口展开法:在立体形体上选择适当位置,然后将其切割成若干个部分,使得每个部分能够展开。
3. 考虑对称性:对于具有对称性的立体形体,可以利用对称性将其展开。
二、折叠的概念及技巧与展开相反,折叠是将一个平面图形折叠成一个立体形体的过程。
折叠可以将平面上的关系转化为空间中的关系,从而解决立体几何问题。
折叠的技巧主要有以下几点:1. 边线对折:将图形的边线按照一定关系对折,可以得到立体形体的边。
2. 角点对折:将图形的角点按照一定关系对折,可以得到立体形体的顶点。
3. 面对折:将图形的面按照一定关系对折,可以得到立体形体的面。
三、展开与折叠的应用举例为了更好地理解展开与折叠的技巧,我们来看几个具体的例子。
例1:展开与折叠的应用 - 正方体展开为平面图形假设有一个边长为a的正方体,我们将其展开为平面图形。
首先,我们将正方体的各个面按照一定规则展开,最后将展开后的各个面的边线进行连接,就可以得到一个包含正方形的平面图形。
例2:展开与折叠的应用 - 圆锥展开为扇形考虑一个圆锥,我们可以将其展开为扇形。
将圆锥绕着底面上的一条边旋转,就可以得到一个扇形。
在解题时,我们可以利用扇形的性质来解决问题。
例3:展开与折叠的应用 - 矩形展开为长方体将一个矩形的两个相对边折叠,使其形成一条立体的边,然后将其余两边折叠,可以得到一个长方体。
立体图形的展开与折叠(教案)
立体图形的展开与折叠一、教学目标:1. 让学生了解和掌握立体图形的展开与折叠的基本概念和方法。
2. 培养学生的空间想象能力和动手操作能力。
3. 培养学生解决实际问题的能力,提高学生的数学素养。
二、教学内容:1. 立体图形的展开与折叠的基本概念。
2. 常见立体图形的展开与折叠方法。
3. 立体图形展开与折叠在实际生活中的应用。
三、教学重点与难点:1. 教学重点:立体图形的展开与折叠的基本概念和方法。
2. 教学难点:立体图形展开与折叠的实际应用。
四、教学方法:1. 采用直观演示法,让学生清晰地了解立体图形的展开与折叠过程。
2. 采用小组合作学习法,培养学生的团队协作能力和沟通能力。
3. 采用问题驱动法,引导学生主动探究和解决问题。
五、教学准备:1. 教师准备立体图形教具,如正方体、长方体、圆柱体等。
2. 学生准备剪刀、胶水等手工制作工具。
3. 教学课件和教案。
教案内容请提供具体的教学过程、教学活动、学生活动、教学评价等详细信息,以便我更好地参考和使用。
六、教学过程:1. 导入:教师通过展示生活中的立体图形,如包装盒、建筑模型等,引导学生关注立体图形及其展开与折叠现象。
2. 新课导入:教师简要介绍立体图形的展开与折叠的基本概念,并提出本节课的学习目标。
3. 展开与折叠的演示:教师利用教具进行立体图形的展开与折叠演示,如正方体、长方体、圆柱体等,引导学生观察和思考。
4. 学生动手操作:学生分组进行立体图形的展开与折叠实践,教师巡回指导,解答学生疑问。
七、教学活动:1. 观察生活中的立体图形,了解其展开与折叠现象。
2. 观看教师演示,学习立体图形的展开与折叠方法。
3. 学生分组讨论,探讨立体图形展开与折叠的规律。
4. 学生动手操作,实践立体图形的展开与折叠。
5. 学生展示自己的作品,分享学习心得。
八、学生活动:1. 观察生活中的立体图形,记录其展开与折叠方法。
2. 参与小组讨论,提出自己的观点和看法。
3. 动手制作立体图形的展开与折叠作品。
立体几何中的折叠与展开问题
立体几何中的折叠与展开问题知识点梳理:1.解决折叠问题最重要的就是对比折叠前后的图形,找到哪些线、面的位置关系和数学量没有发生变化,哪些发生了变化,在证明和求解的过程中恰当地加以利用.解决此类问题的步骤:考向导航2.展开问题是折叠问题的逆向思维、逆过程,是将空间问题转化为平面问题来处理.一般地,涉及到多面体表面的问题,解题时不妨将它展开成平面图形试一试.目录类型一折叠问题 (1)类型二展开问题 (3)类型一折叠问题【例1】如图甲,在四边形ABCD中,23AD=2∆是边长为4的正三角形,CD=,ABC把ABC∆的位置,使得平面PAC⊥平面ACD;如图乙所示,点O、M、∆沿AC折起到PACN分别为棱AC、PA、AD的中点.(1)求证:平面PAD⊥平面PON;(2)求三棱锥M ANO-的体积.【例2】如图,在平面图形PABCD 中,ABCD 为菱形,60DAB ∠=︒,2PA PD ==,M 为CD 的中点,将PAD ∆沿直线AD 向上折起,使BD PM ⊥.(1)求证:平面PAD ⊥平面ABCD ;(2)若直线PM 与平面ABCD 所成的角为30︒,求四棱锥P ABCD -的体积.【变式1-1】如图甲的平面五边形PABCD 中,PD PA =,5AC CD BD ===,1AB =,2AD =,PD PA ⊥,现将图甲中的三角形PAD 沿AD 边折起,使平面PAD ⊥平面ABCD 得图乙的四棱锥P ABCD -.在图乙中(1)求证:PD ⊥平面PAB ;(2)求二面角A PB C --的大小;(3)在棱PA 上是否存在点M 使得BM 与平面PCB 所成的角的正弦值为13?并说明理由.类型二展开问题【例1】如图,已知正三棱柱111ABC A B C -的底面边长为2cm ,高为5cm ,则一质点自点A 出发,沿着三棱柱的侧面绕行两周到达点1A 的最短路线的长为()A .5cm B .12cm C .13cm D .25cm【例2】如图,正三棱锥S ABC -中,40BSC ∠=︒,2SB =,一质点自点B 出发,沿着三棱锥的侧面绕行一周回到点B 的最短路线的长为()A .2B .3C .3D .33【变式2-1】如图,在直三棱柱111ABC A B C -中,1AB =,2BC =,13BB =,90ABC ∠=︒,点D 为侧棱1BB 上的动点.(1)求此直三棱柱111ABC A B C -的表面积;(2)当1AD DC +最小时,三棱锥1D ABC -的体积.巩固训练1.把如图的平面图形分别沿AB 、BC 、AC 翻折,已知1D 、2D 、3D 三点始终可以重合于点D 得到三棱锥D ABC -,那么当该三棱锥体积最大时,其外接球的表面积为.2、如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且1PO OB ==,(Ⅰ)若D 为线段AC 的中点,求证:AC ⊥平面PDO ;(Ⅱ)求三棱锥P ABC -体积的最大值;(Ⅲ)若2BC =E 在线段PB 上,求CE OE +的最小值.3.请从下面三个条件中任选一个,补充在下面的横线上,并作答.①()0BA PA PD ⋅+= ;②7PC =;③点P 在平面ABCD 的射影在直线AD 上.如图,平面五边形PABCD 中,PAD ∆是边长为2的等边三角形,//AD BC ,22AB BC ==,AB BC ⊥,将PAD ∆沿AD 翻折成四棱锥P ABCD -,E 是棱PD 上的动点(端点除外),F ,M 分别是AB ,CE 的中点,且____.(1)求证://FM 平面PAD ;(2)当EF 与平面PAD 所成角最大时,求平面ACE 与平面ABCD 所成的锐二面角的余弦值.4.如图,在矩形ABCD 中,2,23AB AD ==,ABPCDFEE ,F 分别为AD ,BC 的中点,以DF 为折痕把CDF ∆折起,点C 到达点P 的位置,使1PE =.(1)证明:平面PEF ⊥平面ABFD ;(2)求二面角P DF E --的正弦值.参考答案类型一折叠问题【例1】【分析】(1)证明PO ⊥平面ACD 可得PO AD ⊥,根据中位线定理和勾股定理可证AD ON ⊥,故而AD ⊥平面PON ,于是平面PAD ⊥平面PON ;(2)分别计算AON ∆的面积和M 到平面ACD 的距离,代入体积公式计算.【解答】(1)证明:PA PC = ,O 是AC 的中点,PO AC ∴⊥,又平面PAC ⊥平面ACD ,平面PAC ⋂平面ACD AC =,PO ∴⊥平面ACD ,又AD ⊂平面ACD ,PO AD ∴⊥,23AD = ,2CD =,4AC =,222AD CD AC ∴+=,AD CD ∴⊥,ON 是ACD ∆的中位线,//ON CD ∴,AD ON ∴⊥,又ON PO O = ,AD ∴⊥平面PON ,又AD ⊂平面PAD ,∴平面PAD ⊥平面PON .(2)PAC ∆ 是边长为4的等边三角形,3PO ∴=M ∴到平面ACD 的距离132d PO ==,ON 是ACD ∆的中位线,1113324422AON ACD S S ∆∆∴==⨯=,11131332322M ANO AON V S PO -∆∴==⨯⨯ .【点评】本题考查了面面垂直的判定,棱锥的体积计算,属于中档题.【例2】【分析】(1)取AD 中点E ,连接PE ,EM ,AC ,可得PE AD ⊥,然后证明BD PE ⊥,可得PE ⊥平面ABCD ,进一步得到平面PAD ⊥平面ABCD ;(2)由(1)知,PE ⊥平面ABCD ,连接EM ,可得30PME ∠=︒,求解三角形可得1PE =,再求出四边形ABCD 的面积,代入棱锥体积公式求解.【解答】(1)证明:取AD 中点E ,连接PE ,EM ,AC ,PA PD = ,得PE AD ⊥,由底面ABCD 为菱形,得BD AC ⊥,E ,M 分别为AD ,CD 的中点,//EM AC ∴,则BD EM ⊥,又BD PM ⊥,BD ∴⊥平面PEM ,则BD PE ⊥,PE ∴⊥平面ABCD ,而PE ⊂平面PAD ,∴平面PAD ⊥平面ABCD ;(2)解:由(1)知,PE ⊥平面ABCD ,连接EM ,可得30PME ∠=︒,设AB a =,则224a PE =-,322AC EM ==,故tan tan 30PE PME EM ∠=︒=,即2234332a a -=,解得2a =.故1PE =,3ABCD S =四边形.故23133P ABCD ABCD V S PE -=⋅⋅=四边形.【点评】本题考查平面与平面垂直的判定,考查空间想象能力与思维能力,训练了多面体体积的求法,是中档题.【变式1-1】【分析】(1)推导出AB AD ⊥,AB ⊥平面PAD ,AB PD ⊥,PD PA ⊥,由此能证明PD ⊥平面PAB .(2)取AD 的中点O ,连结OP ,OC ,由AC CD =知OC OA ⊥,以O 为坐标原点,OC 所在的直线为x 轴,OA 所在的直线为y 轴建立空间直角坐标系,利用向量法能求出二面角A PB C --的大小.(3)假设点M 存在,其坐标为(x ,y ,)z ,BM 与平面PBC 所成的角为α,则存在(0,1)λ∈,有AM AP λ= ,利用向量法能求出在棱PA 上满足题意的点M 存在.【解答】证明:(1)1AB = ,2AD =,5BD =222AB AD BD ∴+=,AB AD ∴⊥,平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,AB ∴⊥平面PAD ,又PD ⊂ 平面PAD ,AB PD ∴⊥,又PD PA ⊥ ,PA AB A= PD ∴⊥平面PAB .解:(2)取AD 的中点O ,连结OP ,OC ,由平面PAD ⊥平面ABCD 知PO ⊥平面ABCD ,由AC CD =知OC OA ⊥,以O 为坐标原点,OC 所在的直线为x 轴,OA 所在的直线为y 轴建立空间直角坐标系如图示,则(2C ,0,0),(0P ,0,1),(0D ,1-,0),(0A ,1,0),(1B ,1,0)∴(1,1,1)PB =- ,(2,0,1)PC =- ,(0,1,1)PD =-- ,设平面PBC 的法向量为(,,)m a b c = ,由00m PB m PC ⎧⋅=⎪⎨⋅=⎪⎩ ,得020a b c a c +-=⎧⎨-=⎩,令1a =得1b =,2c =,∴(1,1,2)m = ,PD ⊥ 平面PAB ,∴(0DP = ,1,1)是平面PAB 的法向量,设二面角A PB C --大小为θ,则123cos 2||||62m DP m DP θ⋅==⋅⋅ ,0θπ ,∴二面角A PB C --的大小6πθ=.(3)假设点M 存在,其坐标为(x ,y ,)z ,BM 与平面PBC 所成的角为α,则存在(0,1)λ∈,有AM AP λ= ,即(x ,1y -,)(0z λ=,1-,1),(0M ,1λ-,)λ,则(1,,)BM λλ=-- ,从而211sin ||3||||612m BM m BM αλ⋅==⋅⋅+ ,[0λ∈ ,1],103λ∴=-,∴在棱PA 上满足题意的点M 存在.【点评】本题考查线面垂直的证明,考查二面角的求法,考查满足线面角的正弦值点是否存在的判断与求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.类型二展开问题【例1】【分析】将三棱柱展开两次如图,不难发现最短距离是六个矩形对角线的连线,正好相当于绕三棱柱转两次的最短路径.【解答】解:将正三棱柱111ABC A B C -沿侧棱展开,再拼接一次,其侧面展开图如图所示,在展开图中,最短距离是六个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得矩形的长等于6212⨯=,宽等于5,由勾股定理2212513d =+=.故选:C .【点评】本题考查棱柱的结构特征,考查空间想象能力和思维能力,考查数学转化思想方法,是中档题.【例2】【分析】画出解答几何体的部分侧面展开图,利用三角形的边的关系容易解得边长的值,从而得出其中的最小值.【解答】解:将三棱锥S ABC -沿侧棱SB 展开,其侧面展开图如图所示,由图中红色路线可得结论.根据余弦定理得,沿着三棱锥的侧面绕行一周回到点B 的最短路线的长为:14422232++⨯⨯⨯=故选:C .【点评】本题考查多面体和旋转体表面上的最短距离问题,空间想象能力,几何体的展开与折叠,是基础题.【变式2-1】【分析】(1)直三棱柱111ABC A B C -的表面积:1111112ABC ABB A BCC B ACC A S S S S S ∆=+++矩形矩形矩形.(2)将直三棱柱111ABC A B C -展开成矩形11ACC A ,如图,连结1AC ,交1BB 于D ,此时1AD DC +最小,当1AD DC +最小时,1BD =,此时三棱锥1D ABC -的体积:11D ABC C ABD V V --=,由此能求出结果.【解答】解:(1) 在直三棱柱111ABC A B C -中,1AB =,2BC =,13BB =,90ABC ∠=︒,∴此直三棱柱111ABC A B C -的表面积:1111112ABC ABB A BCC B ACC A S S S S S ∆=+++矩形矩形矩形121213231432=⨯⨯⨯+⨯+⨯++1135=+(2)将直三棱柱111ABC A B C -展开成矩形11ACC A ,如图,连结1AC ,交1BB 于D ,此时1AD DC +最小,1AB = ,2BC =,13BB =,90ABC ∠=︒,点D 为侧棱1BB 上的动点,∴当1AD DC +最小时,1BD =,此时三棱锥1D ABC -的体积:11D ABC C ABDV V --=1113ABD S B C ∆=⨯111132AB BD B C =⨯⨯⨯⨯1111232=⨯⨯⨯⨯13=.∴当1AD DC +最小时,三棱锥1D ABC -的体积为13.【点评】本题考查几何体的表面积、体积的求法,考查空间中线线、线面、面面的位置关系等基础知识,考查推理论证能力、运算求解能力、空间思维能力,考查数数结合思想、函数与方程思想、化归与转化思想,是中档题.巩固练习1.【分析】在三棱锥D ABC -中,当且仅当DA ⊥平面ABC 时,三棱锥的体积达到最大,然后根据三棱锥的性质求出外接球的半径,进而可以求解.【解答】解:在三棱锥D ABC -中,当且仅当DA ⊥平面ABC 时,三棱锥的体积达到最大,此时,设外接球的半径为R ,球心为O ,球心O 到平面ABC 的投影点为F ,则有2222R OA OF AF ==+,又1522OF AD ==,1522AF AC ==,所以2225525()()222R =+=,所以球的表面积为22544502S R πππ==⨯=,故答案为:50π.【点评】本题考查了三棱锥的外接球的表面积问题,考查了学生的空间想象能力以及运算能力,属于中档题.2、【分析】(Ⅰ)由题意可证AC DO ⊥,又PO AC ⊥,即可证明AC ⊥平面PDO .(Ⅱ)当CO AB ⊥时,C 到AB 的距离最大且最大值为1,又2AB =,即可求ABC ∆面积的最大值,又三棱锥P ABC -的高1PO =,即可求得三棱锥P ABC -体积的最大值.(Ⅲ)可求22112PB PC +==,即有PB PC BC ==,由OP OB =,C P C B '=',可证E 为PB 中点,从而可求2626OC OE EC +'=+'=,从而得解.【解答】解:(Ⅰ)在AOC ∆中,因为OA OC =,D 为AC 的中点,所以AC DO ⊥,又PO 垂直于圆O 所在的平面,所以PO AC ⊥,因为DO PO O = ,所以AC ⊥平面PDO .(Ⅱ)因为点C 在圆O 上,所以当CO AB ⊥时,C 到AB 的距离最大,且最大值为1,又2AB =,所以ABC ∆面积的最大值为12112⨯⨯=,又因为三棱锥P ABC -的高1PO =,故三棱锥P ABC -体积的最大值为:111133⨯⨯=.(Ⅲ)在POB ∆中,1PO OB ==,90POB ∠=︒,所以22112PB =+=同理2PC =,所以PB PC BC ==,在三棱锥P ABC -中,将侧面BCP 绕PB 旋转至平面BC P ',使之与平面ABP 共面,如图所示,当O ,E ,C '共线时,CE OE +取得最小值,又因为OP OB =,C P C B '=',所以OC '垂直平分PB ,即E 为PB 中点.从而2626222OC OE EC '=+'=+=.亦即CE OE +的最小值为:262.【点评】本题主要考查了直线与直线、直线与平面的位置关系、锥体的体积的求法等基础知识,考查了空间想象能力、推理论证能力、运算求解能力,考查了数形结合思想、化归与转化思想,属于中档题.3.【分析】(1)取CD 中点为G ,连接MG ,FG ,//GM PD ,//FG AD ,进而可证平面//MFG 平面PAD ,可证//FM 平面PAD ;(2)根据条件选择①:由已知可证BA ⊥平面PAD ,PO ⊥平面ABCD ,以点O 为坐标原点,以OC 为x 轴,OD 为y 轴,OP 为z 轴,建立如图所示的空间直角坐标系,利用向量法平面ACE 与平面PAD 所成的锐二面角的余弦值.同理选择②,③可求平面ACE 与平面ABCD 所成的锐二面角的余弦值.【解答】(1)证明:取CD 中点为G ,连接MG ,FG ,则MG ,FG 分别为三角形CDE ,梯形ABCD 的中位线,//GM PD ∴,//FG AD ,MG FG G = ,∴平面//MFG 平面PAD ,FM ⊂ 平面MGF ,//FM ∴平面PAD ,(2)解:取AD 为O ,连接PO ,FG ,EG .选择①:因为()0BA PA PD ⋅+= ,2PA PD PO += ,所以0BA PO ⋅= ,即BA PO ⊥.又BA AD ⊥,AD PO O = ,所以BA ⊥平面PAD .连接AE ,EF ,所以AEF ∠即为EF 与平面PAD 所成的角.因为1tan AF AEF AE AE∠==,所以当AE 最小时,AEF ∠最大,所以当AE PD ⊥,即E 为PD 的中点,AE 最小.下面求二面角余弦值法一:BA ⊂ 平面ABCD ,∴平面ABCD ⊥平面PAD ,平面ABCD ⊥平面PAD ,平面ABCD ⋂平面PAD AD =,PO AD ⊥ ,PO ∴⊥平面ABCD ,以点O 为坐标原点,以OC 为x 轴,OD 为y 轴,OP 为z 轴,建立如图所示的空间直角坐标系,则(0A ,1-,0),1(0,2E ,(2C ,0,0).所以3(0,2AE = ,(2,1,0)AC = .设平面CAE 的法向量为111(,,)m x y z =,则111130,220y x y ⎧+=⎪⎨⎪+=⎩,令1z =,得1(,2m =- .由题意可知:平面ABCD 的法向量为(0,0,1)n = ,所以cos ,||||17m n m n m n ⋅〈〉==⋅ ,所以平面ACE 与平面PAD 所成的锐二面角的余弦值为25117.法二:在平面PAD 内,作ER AD ⊥,垂足为R ,则ER ⊥平面ABCD ,过R 作RK AC ⊥,连接EK ,由三垂线定理及逆定理知EKR ∠为平面ACE 与平面ABCD 所成的锐二面角的平面角,在EKR RT ∆中,易得2ER =,RK =,则EK =所以251cos 17RK EKR EK ∠==,所以平面ACE 与平面PAD.选择②:连接OC ,则2OC AB ==,OP =,因为PC =,222PC OP OC =+,所以BA PO ⊥.又BA AD ⊥,AD PO O = ,所以BA ⊥平面PAD .连接AE ,EF ,所以AEF ∠即为EF 与平面PAD 所成的角.因为1tan AF AEF AE AE∠==,所以当AE 最小时,AEF ∠最大,所以当AE PD ⊥,即E 为PD 的中点,AE 最小.下面求二面角余弦值,法一:BA ⊂ 平面ABCD ,∴平面ABCD ⊥平面PAD ,平面ABCD ⊥平面PAD ,平面ABCD ⋂平面PAD AD =,PO AD ⊥ ,PO ∴⊥平面ABCD ,以点O 为坐标原点,以OC 为x 轴,OD 为y 轴,OP 为z 轴,建立如图所示的空间直角坐标系,于是(0A ,1-,0),1(0,2E ,(2C ,0,0).所以3(0,2AE = ,(2,1,0)AC = .设平面CAE 的法向量为111(,,)m x y z = ,则111130,220y x y ⎧+=⎪⎨⎪+=⎩,令1z =,得1(,2m =- .由题意可知:平面ABCD 的法向量为(0,0,1)n = ,所以cos ,||||m n m n m n ⋅〈〉==⋅ ,所以平面ACE 与平面PAD.法二:在平面PAD 内,作ER AD ⊥,垂足为R ,则ER ⊥平面ABCD ,过R 作RK AC ⊥,连接EK ,由三垂线定理及逆定理知EKR ∠为平面ACE 与平面ABCD 所成的锐二面角的平面角,在EKR RT ∆中,易得ER =RK =,则EK =所以cos 17RK EKR EK ∠==,选择③:因为点P 在平面ABCD 的射影在直线AD 上,所以平面PAD ⊥平面ABCD .因为平面PAD ⋂平面ABCD CD =,OP ⊂平面PAD ,AD PO ⊥,所以OP ⊥平面ABCD ,所以BA PO ⊥.又BA AD ⊥,AD PO O = ,所以BA ⊥平面PAD .连接AE ,EF ,所以AEF ∠即为EF 与平面PAD 所成的角.因为1tan AF AEF AE AE∠==,所以当AE 最小时,AEF ∠最大,所以当AE PD ⊥,即E 为PD 中点,AE 最小.下面求二面角余弦值,法一:BA ⊂ 平面ABCD ⊥,∴平面ABCD ⊥平面PAD ,平面ABCD ⋂平面PAD ,平面ABCD ⋂平面PAD AD =,PO AD ⊥ ,PO ∴⊥平面ABCD ,以点O 为坐标原点,以OC 为x 轴,OD 为y 轴,OP 为z 轴,建立如图所示的空间直角坐标系,于是(0A ,1-,0),1(0,2E ,(2C ,0,0).所以3(0,2AE = ,(2,1,0)AC = .设平面CAE 的法向量为111(,,)m x y z = ,则1111330,2220y z x y ⎧+=⎪⎨⎪+=⎩,令1z =,得1(,2m =- .由题意可知:平面ABCD 的法向量为(0,0,1)n = ,所以cos ,||||m n m n m n ⋅〈〉==⋅ ,所以平面ACE 与平面PAD所成的锐二面角的余弦值为17.法二:在平面PAD 内,作ER AD ⊥,垂足为R ,则ER ⊥平面ABCD ,过R 作RK AC ⊥,连接EK ,由三垂线定理及逆定理知EKR ∠为平面ACE 与平面ABCD 所成的锐二面角的平面角,在EKR RT ∆中,易得ER =RK =,则EK =所以cos 17RK EKR EK ∠==,【点评】本题考查线面平行的证明,以及面面角的求法,属中档题.4.【分析】(1)推导出//EF AB 且3DE =,AD EF ⊥,DE PE ⊥,AD PE ⊥,由此能证明AD ⊥平面PEF ,从而平面PEF ⊥平面ABFD .(2)过点P 作PH EF ⊥交EF 于H ,由平面垂直性质定理得PH ⊥平面ABFD ,过点P 作PO DF ⊥交DF 于O ,连结OH ,则OH DF ⊥,从而POH ∠为二面角P DF E --的平面角,由此能求出二面角P DF E --的正弦值.【解答】证明:(1)E 、F 分别为AD ,BC 的中点,//EF AB ∴且3DE =,在矩形ABCD 中,AD AB ⊥,AD EF ∴⊥,由翻折的不变性,2,3PD PF CF DE ===,7DF =又1PE =,有222PD PE DE =+,DE PE ∴⊥,即AD PE ⊥,又PE EF E = ,PE ,EF ⊂平面PEF ,AD ∴⊥平面PEF ,AD ⊂ 平面ABFD ,∴平面PEF ⊥平面ABFD .解:(2)过点P 作PH EF ⊥交EF 于H ,由平面垂直性质定理得PH ⊥平面ABFD ,过点P 作PO DF ⊥交DF 于O ,连结OH ,则OH DF ⊥,POH ∴∠为二面角P DF E --的平面角.222PE PF EF += ,90EPF ∴∠=︒,由等面积法求得322127PH PO ==.在直角POH ∆中,7sin 4PH POH PO ∠==,即二面角P DF E --的正弦值为74.【点评】本题考查面面垂直的证明,考查二面角的正弦值的求法,考查运算求解能力,考查函数与方程思想,考查化归与转化思想,是中档题.。
立体图形的展开与折叠(教案)
立体图形的展开与折叠(教案)第一章:立体图形的概念教学目标:1. 了解立体图形的定义和特点;2. 能够识别和描述常见的立体图形;3. 理解立体图形与平面图形之间的关系。
教学内容:1. 立体图形的定义和特点;2. 常见的立体图形及其特征;3. 立体图形与平面图形的关系。
教学活动:1. 引入立体图形的概念,让学生通过观察和描述来理解立体图形的特点;2. 展示常见的立体图形,如正方体、长方体、圆柱体、球体等,让学生观察和描述它们的特征;3. 引导学生思考立体图形与平面图形之间的关系,如正方体可以展开成六个正方形等。
第二章:立体图形的展开教学目标:1. 学会如何将立体图形展开成平面图形;2. 能够理解展开图与立体图形之间的关系;3. 培养学生的空间想象能力和动手能力。
教学内容:1. 立体图形的展开方法;2. 展开图与立体图形之间的关系;3. 培养学生的空间想象能力和动手能力。
教学活动:1. 介绍立体图形的展开方法,如切割法、展开法等;2. 让学生通过实际操作,将立体图形展开成平面图形,并观察展开图与立体图形之间的关系;3. 引导学生思考如何通过展开图来还原立体图形,培养学生的空间想象能力和动手能力。
第三章:立体图形的折叠教学目标:1. 学会如何将平面图形折叠成立体图形;2. 能够理解折叠过程与立体图形之间的关系;3. 培养学生的空间想象能力和动手能力。
教学内容:1. 立体图形的折叠方法;2. 折叠过程与立体图形之间的关系;3. 培养学生的空间想象能力和动手能力。
教学活动:1. 介绍立体图形的折叠方法,如折叠法、剪切法等;2. 让学生通过实际操作,将平面图形折叠成立体图形,并观察折叠过程与立体图形之间的关系;3. 引导学生思考如何通过折叠过程来理解立体图形的结构,培养学生的空间想象能力和动手能力。
第四章:立体图形的展开与折叠的应用教学目标:1. 能够运用展开与折叠的方法来解决实际问题;2. 培养学生的实际应用能力和创新能力;3. 培养学生的空间想象能力和动手能力。
展开与折叠
B
祝 福万国岁
祖
C
祝福祖 国万岁
D
规律3
A
B
B A
A和B为相对的两个面
间一、“Z”端是对面
规律总结
总结:
(1)一线不过四,田凹应弃之。 (2)间二、拐角邻面知; (3)间一、“Z”端是对面。
小结
正方体的平面展开图共有以下11种:
圆柱与圆锥
圆柱体 展开 长方形
侧面
圆锥体 展开 侧面
扇形
思考
( A)
A.① B.② C.③ D.④
基础巩固
6.如图,该表面展开图按虚线折叠成正方体后,相对面上的两个
数互为相反数,则(x+y)的值为( C )
A.-2
B.-3
C.2
D.1
基础巩固
7.把正方体的表面沿某些棱剪开展成一个平面图形(如图),请根
据各面上的图案判断这个正方体是( )C
A.
B.
C.
D.
那么在该正方体中,和“您”相对的字是 ( B )
A.新 B.年 C.愉 D.快
基础巩固
4.一个几何体的表面展开图如图所示,则这个几何体是( A)
A.四棱锥 B.四棱柱 C.三棱锥
D.三棱柱
基础巩固 5.图1和图2中所有的正方形都全等,将图1的正方形放在图2中 的①②③④某一位置,所组成的图形不能围成正方体的位置是
下列图形中是什么多面体的展开图?
(1)
长方体
(2)
五棱锥
(3)
三棱柱
练习
1、想一想: 下面几个图形是一些常见几何体的展开图, 你能正确说出这些几何体的名字么?
基础巩固
1.下列几何体中,其侧面展开图为扇形的是( C )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
了!
太棒
你们
KEY: 棒
2、“坚”在下面,“就”在后面, 胜利在哪里?
坚 持就是
胜 利
2、如下图是一个正方体的展开图,图中 已标出三个面在正方体中的位置,F: 前面;R:右面;D:下面。试判定另外 三个面A、B、C在正方体中的位置。
a
A
b
c
d
BCD
f
r
FR
3、如下图是一个正方体的展开图,每个
面内部都标注了字母,请根据要求填空:
第一类,中间四连方,两侧各一 个,共六种。
“141”型
第二类,中间三连方,两侧各有 一、二个,共三种。
“231”型
第三类,中间二连方,两侧各有二 个,只有一种。 “222”型
第四类,两排各三个,只有一种。
“33”型
将相对的两个面涂上相同的颜色,正方 体的平面展开图共有以下11种:
以上是一个立方体的11种平面展开图。虽 然一个立方体可能还会有更多的展开图,但 从上面这些图中,我们基本可以看出它的规 律。
1)如果D面在左面,那么F面在
;
2)如果B面在后面,从左面看是D面,
那么上面是
。
D
E
DE
A
B
AB
C
C
F
F
4、把下图折起来,它会变成正方体
(
)
A
B
C
D
展开与折叠
把一个正方体的表面沿某些棱 剪开,展成一个平面图形,能 得到哪些平面图形?请与同桌 进行交流。
上
前
左下右
后
注意事项
把正方体展成一个平面, 是指正方体中的6个面展成平 面图形,所得到的6个正方形中, 每一个至少有一条边和其它正 方形的某条边相连。
议一议: 怎样把所得到的 正方体表面展开图进行 分类?
1、一个立方体的表面展开图必定6个正 方形连接组成,缺一不可,多一个也不对, 展开图折叠后,必须覆盖立方体的6个表面。
2、展开图沿横、竖方向展开时,一个方 向必定由4个正方形组成,而另一个方向必须 是3个正方形(一种例外)。
3.相对的面不相连
想一想:下列的图形都是正方体的展开图吗?
(3) (1)
(2)(√)(√)源自(4)(5)(√) (6)
(√)
(×)
(×)
把一个长方体的盒子沿棱剪 开,想一想:它的展开图是什 么样子?
上 后 左下 右 前
下图中的那些图形可以沿虚线折叠成长 方体包装盒,先想一想,再折一折。
下列图形哪个不是长方体的表面 展开图?
A C
B D
考考你
如果“你”在前面,那么谁在后面?