土木工程流体力学实验报告实验分析 与讨论答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

管路沿程阻力系数测定实验

1. 为什么压差计的水柱差就是沿程水头损失?如实验管道安装成倾斜,是否影

响实验成果?

现以倾斜等径管道上装设的水银多管压差计为例说明(图中A —A 为水平线): 如图示O —O 为基准面,以1—1和2—2为计算断面,计算点在轴心处,设21v v =,∑=0j h ,由能量方程可得

这表明水银压差计的压差值即为沿程水头损失,且和倾角无关。

2.据实测m 值判别本实验的流动型态和流区。

f h l

g ~v lg 曲线的斜率m=1.0~1.8,即f

h 与8.10.1-v 成正比,表明流动为层流(m=1.0)、紊流光滑区和紊流过渡区(未达阻力平方区)。

3.本次实验结果与莫迪图吻合与否?试分析其原因。 通常试验点所绘得的

曲线处于光滑管区,本报告所列的试验值,也是如此。但是,有的实验结果

相应点落到了莫迪图中光滑管区的右下方。对此必须认真分析。

如果由于误差所致,那么据下式分析

d 和Q 的影响最大,Q 有2%误差时,就有4%的误差,而d 有2%误差时,可产生10%的误差。Q 的误差可经多次测量消除,而d 值是以实验常数提供的,由仪器制作时测量给定,一般< 1%。如果排除这两方面的误差,实验结果仍出现异常,那么只能从细管的水力特性及其光洁度等方面作深入的分析研究。还可以从减阻剂对水流减阻作用上作探讨,因为自动水泵供水时,会渗入少量油脂类高分子物质。总之,这是尚待进一步探讨的问题。

管路局部阻力系数测定实验

三、实验分析与讨论

1.结合实验成果,分析比较突扩与突缩在相应条件下的局部损失大小关系:

1)不同R e 的突扩ξe 是否相同?

2)在管径比变化相同的条件下,其突扩ξe 是否一定大于突缩ξs ?

由式

表明影响局部阻力损失的因素是v 和21d d 。由于有 突扩:2

211⎪⎪⎭⎫ ⎝

⎛-=A A e ζ 突缩:⎪⎪⎭⎫ ⎝⎛-=2115.0A A s ζ 则有

当 5.021〈A A

时,突然扩大的水头损失比相应的突然收缩的要大。在本实验最大流量Q 下,突然扩大损失较突然缩小损失约大一倍,即817.160.3/54.6==js je h h 。

21d d 接近于1时,突然扩大的水流形态接近于逐渐扩大管的流动,因而阻力损失显著减小。

2.结合流动仪演示的水力现象,分析局部阻力损失机理何在?产生突扩与突缩局部阻力损失的主要部位在哪里?怎样减小局部阻力损失?

流动演示仪1-7型可显示突扩、突缩、渐扩、渐缩、分流、合流、阀道、绕流等三十多种内、外流的流动图谱。据此对于局部阻力损失的机理分析如下:

从显示的图谱可见,凡流道边界突变处,形成大小不一的漩涡区。漩涡是产生损失的主要根源。由于水质点的无规则运动和激烈的紊动,相互磨擦,便消耗了部分水体的自储能量。另外,当这部分低能流体被主流的高能流体带走时,还须克服剪切流的速度梯度,经质点间的动能交换,达到流速的重新组合,这也损耗了部分能量。这样就造成了局部阻力损失。

从流动仪可见,突扩段的漩涡主要发生在突扩断面以后,而且与扩大系数有关,扩大系数越大,漩涡区也越大,损失也越大,所以产生突扩局部阻力损失的主要部位在突扩断面的后部。而突缩段的漩涡在收缩断面均有。突缩前仅在死角区有小漩涡,且强度较小,而突缩的后部产生了紊动度较大的漩涡环区。可见产生突缩水头损失的主要部位是在突缩断面后。

从以上分析可知,为了减小局部阻力损失,在设计变断面管道几何边界形状时应流线型化或昼接近流线形,以避免漩涡的形成,或使漩涡区尽可能小。如欲减小管道的局部阻力,就应减小管径比以降低突扩段的漩涡区域;或把突缩进口的直角改为圆角,以消除突缩断面后的漩涡环带,可使突缩局部阻力系数减小到原来的21~101。

突然收缩实验管道使用年份长以后,实测阻力系数减小,主要原因也在这里。

流体静力学实验

三、实验分析与讨论

1.同一静止液体内的测压管水头线是根什么线? 测压管水头指p z +,即静水力学实验仪显示的测压管液面至基准面的垂直高度。测压管水头线指测压管液面的连线。实验直接观察可知,同一静止液面内的测压管水头线是一根水平线。

2.当p B <0时,试根据记录数据确定水箱内的真空区域。

0〈B p ,相应容器的真空区域包括以下三个部分:

(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占区域,均为真空区域。

(2)同理,过箱顶小不杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。

(3)在测压管5中,自水面向下深度某一段水柱亦为真空区域。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。

3.若再箅一根直尺,试采用另外最简便的方法测定0γ。

最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h 和0h ,由式00h h w w γγ= ,从而求得0γ。

4.如测压管太细,对测压管液面的读数将有何影响?

设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算

式中,σ为表面张力系数;γ为液体容量;d 为测压管的内径;h 为毛细升高。常温的水,m N 073.0=σ,3

0098.0m N =γ。水与玻璃的浸润角θ很小,可以认为0.1cos =θ。于是有

d h 7.29= (h 、d 均以mm 计)

一般来说,当玻璃测压管的内径大于10mm 时,毛细影响可略而不计。另外,当水质不洁时,σ减小,毛细高度亦较净水小;当采用有机下班玻璃作测压管时,浸润角θ较大,其h 较普通玻璃管小。

如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。

5.过C 点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部液体是同一等压面?

不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。因为只有全部具有下列5个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。而管5与水箱之间不符合条件(4),相对管5和水箱中的液体而言,该水平面不是水平面。

6.用图1.1装置能演示变液位下的恒定流实验吗?

相关文档
最新文档