一、结构的受力分析
钢结构设计中的构件受力分析
钢结构设计中的构件受力分析一、引言钢结构是一种重要的建筑结构形式,其具有高强度、轻质、抗震能力强等特点,被广泛应用于工业厂房、商业建筑、桥梁等领域。
在钢结构设计中,构件的受力分析是一个关键环节,它直接关系到结构的安全可靠性。
本文将从静力学的角度出发,探讨钢结构设计中构件受力分析的基本原理和方法。
二、构件受力的基本原理构件受力是指构件在外力作用下所受到的力和力矩。
根据静力学原理,构件在平衡状态下,合力和合力矩等于零。
对于钢结构构件而言,可以将受力分为内力和外力两个方面。
1. 内力:构件内部受力主要包括轴力、弯矩和剪力。
轴力是指构件上的拉力或压力,弯矩是指构件上的弯曲力矩,剪力是指构件上的剪切力。
通过对构件的截面分析,可以确定构件所受内力的大小和分布情况。
2. 外力:外力是指施加于构件上的力和力矩,包括重力、风载、地震力等。
根据静力学的原理,外力应该平衡在构件上,以确保结构的平衡和稳定。
三、构件受力分析的方法在钢结构设计中,构件受力分析是一个复杂的过程,需要综合考虑各种因素,如结构的几何形态、材料的性质以及受力条件等。
以下介绍几种常用的构件受力分析方法。
1. 截面法:截面法是一种重要的分析方法,它通过对构件截面进行简化,将构件看作点、线或面上等效的力,从而简化分析过程。
通过对截面进行力学分析,可以得到构件所受的内力大小和分布情况。
2. 变位法:变位法是一种基于位移理论的分析方法,它假设构件在受力过程中产生微小的位移,并根据位移的平衡条件进行力学分析。
通过变位法可以得到构件所受的内力和位移。
3. 有限元法:有限元法是一种数值计算方法,适用于复杂结构的受力分析。
它将结构分割成有限个小单元,通过数值模拟和计算,得到构件受力的数值解。
四、构件受力分析的应用案例钢结构设计中构件受力分析的应用案例有很多,以下仅以桥梁结构为例进行说明。
在桥梁设计中,主梁是承担桥梁荷载的主要构件之一。
主梁的受力分析需要考虑荷载和桥墩的支座情况。
结构力学的名词解释
结构力学的名词解释结构力学是一门研究物体在受力作用下变形、应力分布和破坏形态的学科。
它应用于工程学、建筑学以及材料科学等领域,为设计和分析各种结构提供基础理论与方法。
在本文中,将对结构力学的一些重要概念进行解释。
1. 受力分析受力分析是结构力学的起点,它通过确定受力体系来研究物体在受力作用下的力学行为。
受力分析通常包括力的方向、大小和作用点等方面的确定,以及力的平衡和不平衡情况的分析。
受力分析可以通过数学模型、实验测试和计算机仿真等方法进行。
2. 变形与应变当物体受到外力作用时,会发生变形,即物体的形状、大小或位置发生改变。
变形可以分为弹性变形和塑性变形两种类型。
弹性变形是指物体在外力作用下,发生变形后能恢复到原始形态的现象;而塑性变形则是指物体在外力作用下,发生变形后无法完全恢复的现象。
应变则是衡量变形程度的物理量,表示单位长度或单位体积的变化量。
3. 应力与应力分析应力是指物体内部受到的力的效果,具体来说,是单位面积上的力的大小。
应力通常包括拉应力、压应力和剪应力三种类型。
拉应力是物体在被拉伸时的应力,压应力是物体在被压缩时的应力,而剪应力则是物体在受到切变力时的应力。
应力分析的目的是确定物体内部的应力状态,以便评估结构的稳定性和安全性。
4. 强度与刚度强度是指物体抵抗外力破坏的能力,可以分为压缩强度、拉伸强度和剪切强度等。
刚度则是衡量物体抵抗变形的性质,即物体对外力作用下的变形程度的抵抗能力。
强度和刚度是结构设计的重要考虑因素,旨在确保结构的安全性和稳定性。
5. 破坏形态破坏形态是指物体在受到过大的外力作用时,发生的结构破坏的现象。
根据物体材料和加载条件的不同,破坏形态可以分为拉断、压碎、断裂和屈服等。
破坏形态的分析有助于理解物体在极限条件下的行为,以及设计和改进结构的可靠性。
6. 力学模型与分析方法为了更好地研究和分析结构的力学行为,结构力学使用了多种力学模型和分析方法。
其中,有限元方法是一种常用的数值计算方法,通过将结构离散成许多小单元,利用数值计算的方式模拟和分析结构的应力和变形。
结构是怎样受力的(单杠的受力和变形分析 ) PPT
1、棚室荷载与立柱受力
思考1:棚室屋架受哪些力?
棚室屋下边的梁,立柱和墙共同组成了荷 载的主要支撑系统。荷载分为恒载和活载
对于立柱和墙来说,屋面,梁檩的质量属 于不随时间变化而变化的称为永久性荷载即 恒载 雪载,风载等属于随情况变化而变化的为可 变性荷载即活载
例如,桥的荷载有人、车及载重物、冰雪、大 风等。因此桥除了承受拉力、压力、弯曲力之 外,还要承受因荷载分布不均、不对称而产生 的扭力
又如,梯子的横梁,除了承受压力、弯 曲力之外,载横梁与支柱的两个交接处 还要承受剪切力。大坝与此类似,除承 受河水作用的压力外,由于水深的变化 还要承受剪切力
课堂小结:
运动员在杠体上转动,其侧视图 与单摆类似:杠体相当于固定点, 人相当于小球。
所以,任意时刻,人对杠体的作 用力方向都是指向人重心所处的 瞬间位置。
结论一:
杠体总是朝着人体所在的瞬间
位置的方向上发生弯曲。
杠体和立柱的上端相连,人的作用 力通过杠体作用于立柱,将可能发 生弯曲变形,如果要向前发生弯曲, 请问同学们有什么方法可以抵消这 种弯曲呢?
结构是怎样受力的 (单杠的受力和变形分析 )
从力学角度出发,对结构理解为:结构是可承受一定 力的架构形态,结构可以抵抗引起形态和大小变化的 力。这也是结构的本质。
把单杠看成结构,构件有:杠体、立柱、拉杆。
单摆实验示意图
F
球
小球对固定点的作用力的方向,从固定 点指向小球球心所处的瞬间位置。
阻止梁过分弯曲的最简单方法,是在梁的下 面增加支撑点,这样梁传递下来的力就被分 摊了
3、拱结构的应用
分析为什么要采用拱结构(从受力角度 分析)
拱结构:中间高四周低呈弧形的曲面。 拱结构对承受荷载有利,荷载压力作用于拱 上, 圆拱再把力传到其四周的支撑上。 拱结构优点;利于承载,美观
结构设计原理简介
结构设计原理简介结构设计原理是指在建筑、土木工程等领域中,根据工程要求和结构特点,通过科学的方法和理论,确定结构的形式、尺寸、材料等方面的设计原则。
它是建筑和土木工程的核心内容之一,对于保证工程的安全、稳定和经济性具有重要作用。
本文将简要介绍结构设计原理的基本概念、主要内容和应用。
一、结构设计原理的基本概念结构设计原理是指在建筑和土木工程中,根据结构的力学性能和工程要求,通过合理的设计方法和原则,确定结构的形式、尺寸、材料等方面的基本规定。
它是建筑和土木工程设计的基石,对于工程的安全性、可靠性和经济性具有决定性的影响。
二、结构设计原理的主要内容1. 结构的受力分析:结构设计的第一步是进行受力分析,确定结构所受到的外力以及结构内部受力的大小和方向。
通过受力分析,可以确定结构的受力状态,为后续的设计提供依据。
2. 结构的形式选择:根据工程要求和结构特点,选择合适的结构形式。
常见的结构形式包括梁、柱、桁架等,每种结构形式都有其适用的范围和特点。
3. 结构的尺寸设计:确定结构的尺寸,包括截面尺寸、跨度、高度等。
结构的尺寸设计需要考虑结构的受力性能、变形控制和施工要求等因素。
4. 结构的材料选择:选择合适的材料用于结构的建造。
常见的结构材料包括钢材、混凝土、木材等,每种材料都有其特点和适用范围。
5. 结构的连接设计:设计结构的连接方式和连接件,确保结构的稳定性和可靠性。
连接设计需要考虑结构的受力传递、变形控制和施工要求等因素。
三、结构设计原理的应用结构设计原理广泛应用于建筑和土木工程领域。
在建筑设计中,结构设计原理被用于确定建筑物的结构形式、尺寸和材料,确保建筑物的安全和稳定。
在土木工程中,结构设计原理被用于设计桥梁、隧道、水坝等工程结构,确保工程的安全和经济性。
结构设计原理的应用还涉及到结构的优化设计、抗震设计、防火设计等方面。
通过科学的结构设计原理,可以提高工程的安全性、经济性和可持续性,满足人们对于建筑和土木工程的需求。
结构的计算简图及受力分析—支座的简化(建筑力学)
支座的简化
3 固定(端)支座 既限制构件沿任何方向移动,又限制构件转动的支座。
固定端支座计算简图
支座反力
正交方向的两个力: FAx、FAy限制移动
一个反力偶:
MA限制转动
支座的简化
3 固定(端)支座 如图所示的钢筋混凝土柱:
将柱的下端插入杯形基础预留的杯口中后,用细石混凝土浇筑填实, 当柱插入杯口深度符合一定要求时,可认为柱脚是固定在基础内的, 限制柱脚的水平移动、竖向移动和转动, 因此可简化为固定(端)支座,其简图及支座反力如右图所示。
常见约束类型及约束反力
(3)圆柱铰链约束 约束力作用线通过销钉中心与接触点。 接触点的位置一般不能预先确定, 铰链的约束力方向不定, 通常用两个正交分力表示。
支座的简化
支座:是将结构物与基础或地面连接在一起的装置或构造 支座的作用是把结构物与基础或地面连接起来,使结构物能稳固在地基上 对结构物或构件来说,支座实质上也是一种约束 在对具体结构物进行分析时,当一个构件支承于另一个构件时,其连接处 对前一构件来说也称为支座。 实际结构中,基础对结构的支承形式多种多样,但根据支座的实际构造和约 束特点,在平面杆系结构的计算简图中,支座通常可简化为:固定铰支座、 活动铰支座、固定端支座和定向支座4种基本类型。
支座的简化
1 固定铰支座 用圆柱铰链把结构或构件与支座底板连接,并将底板固定在支承物上构成的支座。 固定铰支座计算简图
固定铰支座能限制构件在垂直于销钉平面内任意方向的移动, 而不能限制构件绕销钉的转动。 对构件的支座反力如图所示:——正交方向的两个分力
支座的简化
1 固定铰支座
在房屋建筑中,构造要求各不相同,但只要它具有约束两个方向的移动的 性能,而不约束转动,即可视为固定铰支座。
建筑结构的稳定性分析
建筑结构的稳定性分析在建筑工程中,结构的稳定性是一个重要的考量因素。
一个稳定的建筑结构可以保证建筑物在各种力的作用下都能保持良好的性能和安全性。
本文将从静力学的角度来分析建筑结构的稳定性,并介绍一些评估和加固结构稳定性的方法。
一、静力学基础建筑结构的稳定性分析是建立在静力学原理之上的。
静力学是研究物体在静止状态下受力平衡的学科。
在建筑工程中,我们通常使用平衡方程和力的平衡条件来分析建筑结构的稳定性。
建筑结构中的力通常可以分为重力和外部荷载两部分。
二、建筑结构的受力分析在进行建筑结构的稳定性分析之前,我们首先需要了解结构的受力情况。
建筑结构受到的力包括竖向重力、风荷载、地震力等。
通过分析每一个结构构件所受的力和力的方向,我们可以确定结构的受力情况,并评估结构的稳定性。
三、结构的稳定性评估1. 建筑结构的稳定性评估是指通过对结构进行力学分析,判断结构是否能够抵抗外部荷载,保持稳定和安全。
评估结构的稳定性可以采用静力学方法,如平衡方程和力的平衡条件。
此外,还可以使用专业软件对结构进行数值模拟和分析。
2. 结构的稳定性评估还可以考虑结构的刚度和承载能力。
结构的刚度是指结构对于外部荷载的抵抗能力,而承载能力是指结构能够承受的最大力。
通过评估结构的刚度和承载能力,可以判断结构在不同工作状态下的稳定性和安全性。
四、结构稳定性的增强方法为了增强建筑结构的稳定性,我们可以采取以下一些方法:1. 加强结构的连接部位。
连接部位是结构中容易发生断裂和失稳的地方,通过加强连接部位的设计和施工,可以提高结构的稳定性和安全性。
2. 增加结构构件的尺寸和截面积。
结构构件的尺寸和截面积直接影响结构的刚度和承载能力,通过增加构件的尺寸和截面积,可以提高结构的稳定性和安全性。
3. 使用高强度材料。
高强度材料具有较高的抗拉强度和抗压强度,可以增加结构的承载能力和稳定性。
在设计和施工过程中,选择适当的材料对于增强结构的稳定性至关重要。
结论建筑结构的稳定性是建筑工程中的一个重要问题,直接关系到建筑物的安全性和使用寿命。
结构的计算简图及受力分析
结构的计算简图及受力分析3.1 荷载的分类实际的建筑结构由于其作用和工作条件不同,作用在它们上面的力也显示出多种形式。
如图3.1所示的工业厂房结构,屋架所受到的力有:屋面板的自重传给屋架的力,屋架本身的自重,风压力和雪压力以及两端柱或砖墙的支承力等。
图3.1在建筑力学中,我们把作用在物体上的力一般分为两类:一类是主动力,例如重力、风压力等;另一类是约束力,如柱或墙对梁的支承力。
通常把作用在结构上的主动力称为荷载。
荷载多种多样,分类方法各不相同,主要有以下几种分类方法:(1)荷载按其作用在结构上的空间范围可分为集中荷载和分布荷载作用于结构上一点处的荷载称为集中荷载。
满布在体积、面积和线段上的荷载分别称为体荷载、面荷载和线荷载,统称为分布荷载。
例如梁的自重,用单位长度的重力来表示,单位是N/m或kN/m,作用在梁的轴线上,是线荷载。
对于等截面匀质材料梁,单位长度自重不变,可将其称为线均布荷载,常用字母q表示(图3.2)。
当荷载不均匀分布时,称为非均布荷载,如水对水池侧壁的压力是随深度线性增加的,呈三角形分布。
图3.2(2)荷载按其作用在结构上的时间分为恒载和活载恒荷载是指永久作用在结构上的荷载,其大小和位置都不再发生变化,如结构的自重。
活荷载是指作用于结构上的可变荷载。
这种荷载有时存在、有时不存在,作用位置可能是固定的也可能是移动的,如风荷载、雪荷载、吊车荷载等。
各种常用的活荷载可参见《建筑结构荷载规范》。
(3)荷载按其作用在结构上的性质分为静力荷载和动力荷载静力荷载是指荷载从零缓慢增加到一定值,不会使结构产生明显冲击和振动,因而可以忽略惯性力影响的荷载,如结构自重及人群等活荷载。
动力荷载是指大小和方向随时间明显变化的荷载,它使结构的内力和变形随时间变化,如地震力等。
3.2 约束与约束反力1)约束和约束反力的概念所谓约束,是指能够限制某构件位移(包括线位移和角位移)的其他物体(如支承屋架的柱子,见图 3.1)。
土木工程结构力学基本知识解析
土木工程结构力学基本知识解析土木工程结构力学是土木工程中一门重要的基础学科,主要研究各种结构的力学性能和力学行为。
本文将对土木工程结构力学的基本知识进行解析,包括力的基本概念、应力与变形的关系、结构受力分析、应力分析和变形分析等方面的内容。
一、力的基本概念力是物体相互作用的结果,是描述物体受力情况的物理量。
力的基本概念包括力的大小、方向和作用点等要素。
在土木工程中,我们通常关注结构所受到的外力和内力。
外力是作用于结构上的力,包括静力学的重力、支反力以及动力学的风荷载、地震力等。
设计土木工程结构时,需要对这些外力进行合理估计和计算,以保证结构的安全性。
内力是结构内部各点之间相互作用的结果,是力学分析的重要内容。
常见的内力有轴力、剪力和弯矩。
了解结构内部的内力分布情况,可以帮助工程师评估结构的抗力能力,从而优化结构设计。
二、应力与变形的关系应力和变形是结构力学分析中的两个重要概念,它们之间存在密切的关系。
应力是单位面积上的力,是描述结构内部力学行为的物理量。
常见的应力有压应力、拉应力和剪应力。
应力的分布情况会直接影响结构的承载能力和稳定性。
变形是结构在受力作用下发生的尺寸、形状或位置的改变。
结构的变形既包括弹性变形,也包括塑性变形。
弹性变形是结构在受力作用下能够恢复原状的变形,而塑性变形则是结构受力超过其塑性极限时发生的不可恢复的变形。
应力与变形之间的关系可以通过应变来描述。
应变是描述物体变形程度的物理量,可以用应变率表示。
根据材料力学性质的不同,应力与应变之间存在不同的本构关系,如胡克定律等。
三、结构受力分析结构受力分析是土木工程结构设计的基础,它主要研究结构所受到的外力和内力的计算和分析。
在结构受力分析中,首先需要确定结构所受的外力,包括静力学和动力学的作用力。
然后,根据结构的几何形状、材料特性和内力分布等信息,采用静力学、动力学和能力法等方法对结构进行受力分析。
通过受力分析,可以计算出结构各点的内力和应力分布情况。
结构力学(I)-结构静力分析篇
受力明确
静定结构的内力分布和支座反力 可唯一确定,与结构刚度无关。
各类静定结构的受力性能比较
01
02
03
04
梁式结构
主要承受弯矩和剪力,适用于 较小跨度的桥梁、房屋等建筑 。
拱式结构
在竖向荷载作用下会产生水平 推力,适用于承受较大荷载的 大跨度建筑。
刚架结构
由梁和柱刚性连接而成,整体 刚度大,适用于工业厂房、仓 库等建筑。
间接荷载作用下的影响线
01
间接荷载定义
指通过其他构件传递到目标构件上的荷载,如楼面活荷载、风荷载等。
02
作图方法
首先确定间接荷载的作用位置和大小,然后根据结构静力学原理求解出
目标构件上的内力或位移表达式,最后在坐标系中绘制出影响线图形。
03
注意事项
在考虑间接荷载作用时,需要充分了解荷载的传递路径和分配方式,以
用静力法作单跨静定梁的影响线
静力法基本原理
利用结构静力学原理,通过平衡方程求解出结构上某一点在移动荷 载作用下的内力或位移表达式。
作图步骤
首先确定荷载作用位置和大小,然后根据平衡方程求解出内力或位 移表达式,最后在坐标系中绘制出影响线图形。
注意事项
在作图过程中,需要保证荷载作用位置和大小的准确性,同时要注意 内力或位移表达式的正确性和完整性。
三铰拱
拱的受力特点
三铰拱是一种具有水平推 力的结构,其内力分布与 荷载类型、矢高和跨度有 关。
内力计算
采用截面法求解三铰拱的 弯矩、剪力和轴力,注意 水平推力的影响。
稳定性分析
三铰拱在受到荷载作用时, 需考虑其稳定性问题,如 失稳形态和临界荷载等。
静定平面桁架
桁架的受力特点
静定结构的受力分析(一)
静定结构的受力分析(一)(总分:90.00,做题时间:90分钟)一、{{B}}判断题{{/B}}(总题数:7,分数:4.00)1.除荷载外,其他因素例如支座移动、温度变化等也会使结构产生位移,因而也就有可能使静定结构产生内力。
(分数:2.00)A.正确B.错误√解析:2.下图所示桁架杆件AB、AF、AG内力都不为零。
A.正确B.错误√解析:本题为静定结构,根据静定结构的性质:在荷载作用下,如果仅靠结构某一局部就能够平衡外荷载时,则仅此局部受力,其余部分没有内力。
知杆件A、AF、AG内力都为零。
3.下图所示桁架,各杆EA为常数,仅AB杆有轴力,其他杆的轴力为零。
A.正确B.错误√解析:本题是一对平衡力作用在超静定部分ADBC上,故整个超静定部分ADBC都会产生内力。
倘若本题为静定桁架,则只有AB杆受力。
4.若某直杆段的弯矩为0,则剪力必定为0;反之,若剪力为0,则弯矩必定为0。
(分数:2.00)A.正确B.错误√解析:由弯矩和剪力的微分关系[*]可知,剪力为零,但弯矩不一定必为零。
比如,受纯弯曲的杆段。
5.下图所示桁架结构杆1的轴力为零。
A.正确√B.错误解析:将原荷载分成正对称和反对称(见下图),两图中杆1轴力均为零,答案正确。
[*]6.下图所示三铰拱,轴线方程为,受均布竖向荷载q作用,则拱内任一截面的弯矩等于零。
A.正确√B.错误解析:7.如下图所示拱在荷载作用下,N DE为30kN。
A.正确B.错误√解析:二、{{B}}填空题{{/B}}(总题数:17,分数:34.00)8.内力M与F Q的微分关系是 1。
(分数:2.00)填空项1:__________________ (正确答案:[*])解析:9.静定结构满足平衡方程的内力解答有 1种。
(分数:2.00)填空项1:__________________ (正确答案:一)解析:10.在跨度不变的前提下,对应某竖向荷载的三铰拱的合理拱轴线有 1。
工程结构分析的方法
工程结构分析的方法工程结构分析是研究和评估工程结构在负载作用下的力学特性和稳定性的过程。
它涉及工程结构的设计、建造和维护,并对结构的安全性和可靠性提出要求。
在工程实践中,有许多不同的方法可以用于进行结构分析。
下面将介绍常用的几种工程结构分析方法。
一、静力分析静力分析是最基本的结构分析方法之一。
它基于牛顿第二定律和力平衡原理,假设结构在负载作用下保持静止。
通过计算结构中各个部位的受力情况,可以评估结构的强度、刚度和稳定性。
静力分析方法可以使用解析方法或数值方法进行计算,常见的解析方法有力法、位移法和弹性法,数值方法有有限元法和有限差分法。
静力分析的主要优点是计算简单、直观,并且可以在设计和施工过程中提供快速的结果。
然而,它的缺点是忽略了结构的动态效应和材料的非线性行为。
二、动力分析动力分析是一种考虑结构在振动或冲击负载作用下的分析方法。
它适用于对结构的动态响应进行评估,从而确定结构是否具有足够的刚度和稳定性来抵抗动力负载。
动力分析方法可以分为自由振动分析和强迫振动分析。
在自由振动分析中,结构受到一个初始扰动后开始自由振动,通过求解结构的振动模态和固有频率,可以得到结构的固有振动特性。
在强迫振动分析中,结构受到外部激励力的作用,通过求解结构的强迫响应和频率响应函数,可以评估结构在动力负载下的振动状况。
动力分析的优点是能够考虑结构的动态特性,对于受到动力负载的结构具有更准确的评估。
然而,动力分析的计算复杂度较高,通常需要使用数值方法进行求解。
三、塑性分析塑性分析是一种考虑结构的塑性变形和屈服破坏的分析方法。
它适用于对材料塑性变形和结构破坏的问题进行评估。
塑性分析方法可以分为弹塑性分析和完全塑性分析。
在弹塑性分析中,结构中的材料被假定为在一定范围内具有线性弹性行为,超过该范围时为塑性行为。
通过计算结构在负载作用下的延性变形和塑性区域的分布,可以评估结构在塑性变形作用下的安全性和可靠性。
在完全塑性分析中,结构中的材料被假定为完全塑性,在达到材料的屈服强度后,将继续产生塑性变形。
1.2_典型结构受力分析——结构是怎样受力的
--结构是怎样受力的
• 上节回顾
• 1、什么是架构? 物体的主体框架与构造形式 • 2、结构的定义,什么是构件?
结构是指物体各个组成部分之 间的搭配和排列。 构件:结构的各组成部分。
• 3、结构的本质是什么? 结构的本质是承受力、抵抗变形
• 4、结构分为哪三种常见类型?
• (1)实心结构 • (2)框架结构 • (3)壳体结构
例子:拉面、油条、拉力器
(3)趁热打铁——
压力:挤压物体的力,产生压缩变形 。
例子:压订书机、坐板凳、压路机压路
(4)修理草坪——
剪切力:两个距离很近,大小相等,方向相 反, 且作用于同一物体上的平行的力。 例 子:剪刀剪纸、钢丝钳钳钢丝
(5)拧干衣服——
扭转力:反方向向物体两端均匀施力,使 物体发生扭转形变的力。
• 5、实心,框架,壳体结构的特征和受 力特点? (1)实体结构:能承受较大的压力 (2)框架结构:几何外形比较复 杂,能承受垂直和水平荷载 (3)壳体结构:壳体内空,形态稳 定,受力合理
阅读材料
• 构件受外力作用时,要发生形状或大小的 改变,这种改变称为变形。 • 第一节的实例中,吊车的吊绳承受的力是 拉力,拉力所产生的形变为拉伸,组成材 料的粒子被拉开;板凳腿承受的外力是压 力,压力所产生的变形为压 缩,组成材料 的粒子被推近。拉力和压力都是荷载作用 的结果。
• 当杆件受到与杆纵轴线相垂直的外力作用时, 杆件 产生的弯曲,发生弯曲变形时的构件 称为梁。 • 当板凳很长时,櫈面可视为梁。此种櫈面在 人的体重等外力的作用下,会发生弯曲变形。 只是这种变形可能很小,肉眼不易看出来。 而跳水的跳板发生的弯曲变形,却是非常明 显。弯曲变形如图:
结构力学主要研究内容
结构力学主要研究内容
结构力学是固体力学的一个分支,是一门研究工程结构受力和传力的规律和方法的学科。
其主要研究内容包括以下几个方面:
1. 结构的组成和分类:研究结构的基本组成元素,如杆、梁、板、壳等,以及它们的分类和特点。
2. 结构的受力分析:研究结构在各种载荷作用下的内力、变形和应力分布,包括静力学分析和动力学分析。
3. 结构的稳定性分析:研究结构在载荷作用下的稳定性问题,如屈曲、失稳等。
4. 结构的振动分析:研究结构在振动载荷作用下的振动特性,如固有频率、振型等。
5. 结构的优化设计:研究如何在满足结构的功能和使用要求的前提下,使结构的重量最轻、成本最低。
6. 结构的可靠性分析:研究结构在使用过程中的可靠性问题,如疲劳寿命、强度储备等。
7. 结构的数值分析方法:研究如何利用数值方法求解结构的受力和变形问题,如有限元法、边界元法等。
总之,结构力学是一门涉及多个学科领域的综合性学科,它的研究内容涵盖了工程结构设计、施工、使用和维护等各个方面,对于提高工程结构的安全性、可靠性和经济性具有重要的意义。
建筑结构中的受力分析方法
建筑结构中的受力分析方法在建筑结构中,受力分析是一项至关重要的任务。
它通过对各种受力因素的深入研究和分析,来确保建筑物在正常使用和特殊情况下的安全性和稳定性。
本文将介绍建筑结构中常见的受力分析方法,并探讨它们的应用。
一、静力学方法静力学方法是最基础和常用的受力分析方法之一。
它假设结构在受力过程中处于静止状态,不考虑时间因素和动态影响。
静力学方法主要包括受力平衡方程和杆系分析。
1. 受力平衡方程受力平衡方程是基础的受力分析工具。
它根据牛顿力学定律,通过平衡力的大小和方向来描述结构的受力状态。
在受力平衡方程中,通常需要考虑外力、内力和支座反力等因素,以确保结构在各个方向上处于平衡状态。
2. 杆系分析杆系分析是一种将结构简化为杆件的方法。
它通过将复杂结构分解为杆件系统,并对每个杆件进行受力分析,来研究结构的整体受力行为。
杆系分析可以用于分析梁、柱、桁架等结构,并结合受力平衡方程进行综合分析。
二、有限元法有限元法是一种数值计算方法,广泛应用于复杂结构的受力分析。
它将结构划分为小的单元,并建立该单元与其相邻单元之间的力学关系方程。
通过求解这些方程,可以得到结构的受力分布情况。
有限元法的优势在于可以考虑结构的非线性和动态特性,并且适用于各种复杂边界条件和荷载情况。
在实际应用中,有限元法广泛用于建筑物的承载力分析、振动分析以及变形分析等方面。
三、弹性力学方法弹性力学方法是一种基于弹性力学理论的受力分析方法。
它假设结构具有线弹性行为,并通过弹性力学理论建立结构的受力方程。
弹性力学方法主要包括应力分析、弹性平衡方程和变形分析。
1. 应力分析应力分析是利用应力张量和变形张量来描述结构受力状态的方法。
它通过计算各个点的应力大小和方向,来研究结构的应力分布情况。
应力分析可以用于分析结构的强度和稳定性等关键参数。
2. 弹性平衡方程弹性平衡方程是基于弹性力学理论和受力平衡原理的方程。
它通过平衡结构的内力和外力,来确定结构的静态平衡状态。
建筑结构设计中的力学分析方法
建筑结构设计中的力学分析方法建筑结构设计是一门综合性学科,旨在确保建筑物能够在不同的力学荷载下保持结构稳定和安全。
力学分析是建筑结构设计中的关键环节之一,它通过深入研究和分析不同荷载对建筑结构产生的影响,以确定和优化结构的设计。
1. 引言在建筑结构设计中,力学分析是一项至关重要的技术。
通过运用力学原理和方法,可以预测建筑结构在外界荷载作用下的响应,为设计提供可靠的基础和指导。
本文将介绍建筑结构设计中常用的力学分析方法。
2. 静力分析静力分析是建筑结构设计中最基本的分析方法之一。
它基于力和力的平衡原理,通过计算建筑结构受力情况来确定结构的承载能力和稳定性。
静力分析常用的方法包括受力图法、弯矩计算、剪力计算等。
这些方法能够准确地描述结构在静力荷载下的受力状态。
3. 动力分析动力分析是一种更为复杂的分析方法,适用于考虑到地震、风载等动力荷载的建筑结构。
动力分析主要包括静力等效法、模态超静力法和时程分析等。
其中,静力等效法和模态超静力法都是基于模态分析的思想,并在考虑动力荷载的情况下简化了计算过程。
时程分析是一种更为精确的方法,通过模拟荷载和结构之间的相互作用来评估结构的响应。
4. 有限元分析有限元分析是一种广泛应用于建筑结构设计领域的数值分析方法。
它将结构划分为有限个单元,利用数学模型和计算机技术模拟结构的受力行为。
有限元分析可以综合考虑结构的几何形状、材料性质和边界条件等因素,对结构的受力性能进行精确分析。
由于有限元分析具有较高的计算精度和灵活性,因此在复杂建筑结构的设计和优化中得到广泛应用。
5. 非线性分析非线性分析是一种针对具有非线性特征的结构进行分析的方法。
在许多情况下,建筑结构在受到极限荷载或变形限制时会发生非线性响应。
非线性分析通过考虑结构材料的非线性特性、几何非线性和接触非线性等因素,准确地描述结构的受力性能,并提供合理的设计参考。
6. 结构优化方法结构优化方法在建筑结构设计中发挥着重要的作用。
结构受力分析
4、梁的变形和其剖面尺寸有关。梁的变形量和水平 方向尺寸成反比,和垂直方向尺寸的立方成反比。
因此,若要加强梁的抗变形能力,将材料加在高 度上,会比加在宽度上有效。
结构受力分析
5、梁的抗变形能力和材料有关,为防止混凝土梁 裂变,通常将钢筋安排在梁受拉力一侧。 6、梁的变形与荷载位置有关。荷载越靠近中央, 变形量越大。
结构受力分析
结构自重、雪 P1
风载
后坡板 梁
前坡面
立柱
M
后墙
立柱
P2
弯矩示意图
棚室屋架结构示意图
荷载中的风载,情况比较复杂,它与风的大小,
方向有关。将风载生成的作用力分解为沿立柱轴线
和垂直于立柱轴线的两个方向的分力后,其受力情
况如图所示。 M为受到垂直于立柱方向的力而形成
的弯矩。
通过合理设计,立柱将会抵抗压缩与弯曲两类
结构受力分析
柱、杆(索)、梁的受力
结构受力分析
二、【案例分析1】单杠结构与受力
1、单杠的结构 (构件)? 杠体、立柱、拉杆
结构受力分析
单杠结构示意图
杠体
立柱 拉杆
2、杠体的受力与变形
单杠的杠体可视为梁,运动员在杠体上作各
种动作时,对杠体施加了外力,包括人体质量和 回转运动产生的离心力,使杠体产生弯曲变形。
3、棚室屋面受力: 棚室屋面采用
了拱形结构,所承 载的荷载主要是雪、 风产生的活载。
后坡板 梁
后墙
立柱
前坡面
拱结构的应用:
棚室屋架结构示意图
拱结构即中间高四周低的弧形的曲面。这种
结构对承受荷载有利,荷载作用于拱上,圆拱再
把力传到其四周的支撑(梁)上。拱结构的屋面
结构的计算简图及受力分析—荷载的简化(建筑力学)
3 按荷载作用的范围分 分布荷载 满布在结构的整个体积内或表面上的的荷载
体积分布荷载,N/m3或kN/m3 作用于整个体积内的分布荷载——结构自重
面分布荷载,N/m2或kN/m2 作用于结构表面的分布荷载——压力
集中荷载 当荷载的分布范围面积远小于结构的尺寸时,则可认为此荷载作 用在结构的一点。单位是N,常用字母F表示。
荷载的分类
荷 载:作用在结构上的主动力 荷载与支座反力都是其他物体作用在结构上的力,统称为作用在结构上的外力。 在外力作用下,结构内各构件之间将产生相互作用的力——内力。 结构或构件的承载能力都直接与内力有关,而内力又是由外力所引起和确定的。 在结构设计中,首先要分析和计算作用在结构上的外力,然后计算结构的内力。 因此,确定结构所受的荷载是对进行受力分析的前提,必须慎重对待。 如将荷载估计过大,则设计的结构尺寸将偏大,造成浪费;如将荷载估计过小, 则设计的结构不够安全。
荷载的分类
在工程实际中,结构所受到的荷载是多种多样的,为了便于分析,将从不 同的角度对荷载进行分类。 1 按作用在结构上的时间分 恒 载 ——长期作用在结构上的不变荷载
恒载的大小和作用位置都不发生变化。如结构的自重、土压力、预应力等。
活 载 ——暂时作用在结构上的可变荷载。 如列车、汽车、吊车、人群、风、雪荷载等。
荷载的简化
作用于实际结构上的荷载可分为体积力和表面力两大类 体积力是作用在构件整个体积内每一点处的,如自重或惯性力等。 表面力则是由其他物体通过接触面传给结构的作用力,如土压力、车辆的轮压力等。 在杆系结构的计算简图中,将杆件简化为轴线,因此不管是体积力还是表面力都简 化为作用在轴线上的力。 荷载按分布情况可简化成线分布荷载、集中荷载和集中力偶。
结构的受力概念
结构的受力概念结构的受力概念是指在实际工程中,结构承受外力作用下的力学响应和变形情况。
了解结构的受力概念对于设计、分析和评估各类工程结构的安全性、稳定性和可靠性非常重要。
下面将从结构受力的基本概念、力的类型、受力分析的方法和结构的变形等方面进行论述。
首先,结构受力的基本概念包括受力对象、外力和内力。
受力对象是指受外力作用的物体或者其组合,可以是整体结构也可以是结构中的某个部分。
外力是指作用在结构上的来自于外部的力或者力矩,可以是重力、风力、水荷载、地震力等。
内力是指结构内部的应力分布情况,可以是拉力、压力、剪力等。
其次,受力概念中有多种类型的力,包括单个力、力矩、分布力和集中力。
单个力是指作用在结构上的一个点力,具有大小、方向和作用点。
力矩是指力对作用点产生的转动效果,由力的大小、作用点位置和力臂长度决定。
分布力是指作用在结构上的连续分布的力,如重力或者压力。
集中力是指作用在结构上的有限个数的力,如点荷载或者集中力矩。
受力分析是进行结构受力的重要方法,可以通过平衡条件、相互制约条件和弹性力学等原理进行分析。
平衡条件要求结构受力在平衡状态下,力的合力和力矩为零。
相互制约条件是指结构受力过程中,受力对象间的约束和平衡关系。
弹性力学是研究结构的变形和应力分布的学科,通过应力、应变和弹性模量之间的关系,可以计算结构受力过程中的变形情况。
最后,结构的变形是结构受力过程中的重要现象,主要包括平移、转动和变形。
平移是指结构整体沿着受力方向发生的位移。
转动是指结构某个部分围绕某一点或者轴线旋转的变形。
变形是指结构长度、形状和大小的改变,可以通过应变和形变来描述。
结构变形会影响结构的稳定性和安全性,需要进行适当的设计和分析。
总之,结构的受力概念是指在实际工程中,结构承受外力作用下的力学响应和变形情况。
了解结构的受力概念对于设计、分析和评估各类工程结构的安全性、稳定性和可靠性非常重要。
通过受力分析和结构变形的研究,可以有效地提高结构的设计和施工质量,确保结构的可持续运行。
钢筋混凝土框架结构的受力机理分析
钢筋混凝土框架结构的受力机理分析随着城市化的加速,越来越多的高层建筑如雨后春笋般的涌现,而钢筋混凝土框架结构也已经成为目前高层建筑的主流结构形式之一。
钢筋混凝土框架结构运用了混凝土的优点与钢筋的优势,在建筑受力过程中发挥着重要的作用。
在现代建筑结构中,钢筋混凝土框架结构已经成为不可或缺的构造模式,本文旨在对钢筋混凝土框架结构的受力机理进行分析。
1. 钢筋混凝土框架结构的定义和特点钢筋混凝土框架结构,简称RC框架结构,是一种常见的高层建筑结构模式。
该结构由水平的梁、垂直的柱和地基组成,梁和柱均由混凝土与钢筋组成。
钢筋混凝土框架结构的优点在于其稳定性较高,适应不同强度要求。
钢筋混凝土框架结构还具有刚度高、耐久性好等特点,可以应用于高层建筑等需求高承重性结构建筑,因此在实际生产中的使用非常广泛。
2. 钢筋混凝土框架结构的受力机理钢筋混凝土框架结构的受力是由荷载引起的,荷载使结构体发生变形,当变形达到一定程度时,结构体就会发生破坏。
因此,如何正确的理解钢筋混凝土框架结构的受力机理对了解和掌握结构的性能与力学性能及实际应用具有重要意义。
(1)纵向受力的分析钢筋混凝土框架结构中,柱承受纵向荷载,其承载力主要由混凝土承受压力和钢筋的拉应力共同决定。
由于混凝土及钢筋的材料强度受其受力方向的影响,故柱受压承载力大于受拉承载力。
因此,在钢筋混凝土框架结构中,将柱都设计成受压构件是比较合理的。
(2)横向受力的分析钢筋混凝土框架结构中,梁承受横向荷载,其承载力主要由混凝土的剪切强度和钢筋的张力共同决定。
当荷载作用于梁时,梁会发生弯曲变形,上部受拉,下部受压。
因此,在梁的设计和施工过程中,需要合理地设置钢筋布置与箍筋的选用以提高梁的承载能力和抗震性。
(3)建筑物整体受力分析在钢筋混凝土框架结构中,每个单元(包括柱、梁)都需要承受纵向和横向荷载,并在承受荷载的过程中相互影响。
当荷载作用于整个建筑物时,其承受力主要由基础和整体钢筋混凝土框架结构共同决定。
《结构力学》_龙驭球_第3章_静定结构的受力分析(1)
例:用简易作图法作图示梁的内力图。 [分析] 该梁为简支梁,内力控制截面 为:A、C、D、F、G、B。 解: 先计算支座反力 ⑴
F=8kN
A C D
q=4 kN/m
E
m=16kNm
F G B
1m 1m
FyA 17kN
2m
2m
MB 0, FRA 8 8 7 (4 4) 4 16 0
40k N A 2m B 2m 2m 40 k N C 20 50
80 kN· m
C D
1m 2m 40 80k N· m 40 80 k N· m 2m E 1m F
20 k N/m G 4m 40 20 F 20k N/m 10 G H 2m H
构造关系图
50
A
B
40 k N
20 20
40
20 20 F 20k N/m G 85 40 10 H
q
C x l D
AB跨跨中弯矩 ME 为: 1 q M E q (l x ) 2 8 A E BD跨支座C负弯矩MC 为: 1 1 q(l-x)/2 M C q(l x ) x qx 2 2 2 令 ME = MC 得: 1 1 1 q(l x )2 q(l x ) x qx 2 8 2 2
2、力偶作用点 M图有一突变,力矩 为顺时针向下突变; F Q 图没有变化。
3、均布荷载作用段 M图为抛物线,荷载向 下曲线亦向下凸; F Q 图为斜直线,荷载向 下直线由左向右下斜
五、内力图形状特征
1、在自由端、铰支座、铰结点处,无集中力偶作用,截面弯矩等于零,有 集中力偶作用,截面弯矩等于集中力偶的值。
xA
xB
梁上任意两截面的剪力差等 于两截面间载荷图所包围的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拱形结构
举例:我们的祖先很早就发现拱形物体最能承受外来压力这一性质, 并且把它运用到建筑上去,创造了举世闻名的筑拱技术。
拱形结构
通用技术
课堂总结:
结构、载荷、应力、内力、 物体所受应力的计算方法、壳体 结构、拱形结构的受力。
通用技术
通用技术学科的奥秘是无穷的,它的 魅力就在于它渗透在我们的日常生活之中 方方面面,在我们身边到处都能找到它的 影子,只要你有一双善于发现的眼睛,说 不定哪一天你就会和它不期而遇。你也可 以成为一个探索通用技术奥秘的超级神探。
01 乌龟壳
壳体结构的受力分析
思考:观察乌龟壳的结构,想想这 种结构给乌龟带来什么好处?
乌龟外壳属于壳体结构,它能承受较大的压 力,保护身体不受损坏。
学生讨论:进入工地时总是被要求戴上安全帽,为什么?
举例:头盔、汽车飞机外壳、饮水杯、文具盒、装甲车、 油罐、鸡蛋、核桃、瓜子、西瓜、锅碗瓢盆等。
壳体结构
我们用力拉弹簧,弹簧会伸长,同 时手会感觉到弹簧在拉我们的手。
这个反作用力是怎样产生的?
弹簧各个部分或分子之间存在拉力或引力。
结构的受力分析
这种存在于物体各个部分 或粒子之间相互作用力叫做内 力。
内力
外力
内力反映了材料抗破坏的 能力,即强度的大小。
结构受力分析
同样大小的外力,作用在材料一样粗细不同 的几根绳子上,哪一根容易断?
通用技术
技术与设计 2
第二节 结构是如何承受应力的
一、结构的受力分析
教师:邱博
搭纸桥
(小试验)准备几张A4打印纸,一盒粉笔,几本厚书。 按照图中所示的方法将打印纸展平、弯曲、曲折后架在 两摞书中间,将粉笔轻轻放在纸上,看哪种结构可以承 受更多的粉笔。
结构的形状影响结构的受力
搭纸桥
结构的受力分析
细绳容易断,因为单位面积上承受的拉力更大。
内力在材料界面上的聚集程度。在工程上我们把 单位面积上的内力称为应力。
应力
应力的法定计量单位是帕斯卡(Pa),简称帕。
1Pa=1N/m2
但在工程上我们习惯用兆帕(MP)作为应力计量单位。
1MPa=106Pa
应力
应力可以作为表示结构强度和刚度的基本指标。
鸡蛋能承受多大压力?
为什么鸡蛋能承受这么大压力?
鸡蛋是壳体结构,受到压力被均匀分散到蛋壳表面。 压 力
壳体结构的受力分析
壳体结构:通常是指层状的结构。
壳体结构的受力特点:外力作用在结构体的表面上。 (通过壳型来传递力和承受荷载,特别是在顶部受 到压力时,它能将力均匀扩散)
思考:日常生活中你见过的壳体结构的例子。
捏鸡蛋
01 分散载荷
02 集中载荷
在工程结构设计中总是希望载荷能在受力对象内 均匀分布,尽量避免载荷集中。
简单拉伸和压缩的受力
拉力
P
轴向拉伸 压力
P
轴向压缩
PP PP
σ
拉应力
σ
压应力
应力
现在要计算杆件内部的应力,首先假设沿轴向的应力是均匀分布的。 这样杆件所受的应力就可以按下面的式子来计算:
σ=P/A
σ=P/A
01 解法一
σ=P/A σ=180/4=45N/mm2 小于极限应力值50N/mm2 所以不会被破坏
02 解法二
σ=P/A P=σ*A P=50*4=200N 大于外力冲击产生的内力180N 所有不会被破坏。
壳体结构和拱形结构
1、壳体结构
壳体结构
鸡蛋小试验
将四个一半的鸡蛋壳放在桌子上,呈长方形 的四角摆放,不断将书轻轻放在四个鸡蛋壳上, 直到鸡蛋壳破碎。
壳体结构和拱形结构
2、拱形结构
拱形结构的受力分析
拱形结构的受力分析
拱形结构的受力特点:在外力作用下, 拱主要产生压力,使构件摆脱了弯曲变形, 把受到的压力分解成向下的压力和向外的 推力。
思考:日常生活中你见过的拱形结构的例子。
举例:拱桥,窑洞,凯旋门,隧道,城楼门,蔬菜大棚, 亭子,屋顶,人体胸廓。
强度 =抵抗材料破坏
刚度 =抵抗材料变形
• 强度越大结构受破坏的可能性越小 • 刚度(有时也叫刚性)越大结构越稳定
拉伸
指物体承受拉力
应力
压缩
指承受压力
变形
外力在力学中又叫做载荷
捏鸡蛋
捏鸡蛋,有两名同学分别按照图一和图二捏鸡蛋,看哪 名同学能够捏碎鸡蛋。
思考:为什么用很大力气握不碎鸡蛋,但两根手指 一捏就碎了呢?
P是拉伸或者压缩载荷,单位是N。
A是拉伸或者压缩的截面面积,单位是mm2。
σ是拉伸或者压缩应力,单位是MPa。
简单拉伸和压缩的受力
通过试验可以测出每一种材料的极限应力值,也就是材料的抗拉 强度,其大小可以表征材料抵抗变形或破坏的能力。
已知物体的极限应力值为50N/mm2,截面积4mm2, 外力冲击产生的内力为180N,请问结构会被破坏吗?