电化学原理.doc
电化学原理

电化学原理1.原电池(1)原电池的装置特点:利用氧化还原反应将化学能转化为电能。
(2)原电池的形成的一般条件:①电极;②电解质溶液;③形成闭合回路。
(3)反应原理负极:失去电子,向外电路提供电子,发生氧化反应。
正极:得到电子,从外电路获得电子,发生还原反应。
电极反应与电子流向:以铜锌原电池为例:总反应:Zn+H2SO4ZnSO4+H2↑(4)原电池正负极的判断判断原电池正负极最根本的方法是根据电极发生的氧化还原反应,即发生氧化反应的电极为负极,发生还原反应的电极为正极。
下列方法也可以作为一般的辅助判断方法。
原电池的正负极的判断:①根据电子流动方向判断。
在原电池中,电子流出的一极是负极;电子流入的一极是正极。
②根据两极材料判断。
一般活泼性较强的金属为负极;活泼性较弱的金属或能导电的非金属为正极。
③根据原电池里电解质溶液内离子的定向流动方向判断。
阳离子向正极移动,阴离子向负极移动。
④在电池总反应中,元素化合价升高的物质所在电极为负极,化合价降低的物质所在电极为正极⑤根据现象判断。
溶解的一极为负极,质量增加或放出气体的一极为正极。
例1某实验小组同学对电化学原理进行了一系列探究活动。
(1)如图为某实验小组依据氧化还原反应:(用离子方程式表示)________________________________。
设计的原电池装置,反应前,电极质量相等,一段时间后,两电极质量相差12 g,导线中通过______mol电子。
(2)其他条件不变,若将CuCl2溶液换为NH4Cl溶液,石墨电极反应式为________________________,这是由于NH4Cl溶液显______(填“酸性”、“碱性”或“中性”),用离子方程式表示溶液显此性的原因____________________________________,用吸管吸出铁片附近溶液少许置于试管中,向其中滴加少量新制饱和氯水,写出发生反应的离子方程式_________________________________,然后滴加几滴硫氰化钾溶液,溶液变红,继续滴加过量新制饱和氯水,颜色褪去,同学们对此做了多种假设,某同学的假设是:“溶液中的+3价铁被氧化为更高的价态。
电化学反应的基本原理和机理

电化学反应的基本原理和机理电化学反应是指在外加电势或电流作用下,电子转移或离子传递的化学反应。
这种化学反应的机理复杂,至关重要,涉及到许多领域,如物理、化学和生物学等。
本文将探讨电化学反应的基本原理和机理,以及这些原理和机理对各领域的应用。
一、基本原理电化学反应涉及两个基本概念:氧化还原反应和电位。
1. 氧化还原反应氧化还原反应是指在化学反应中原子失去或获得电子。
其中失去电子的原子被称为氧化剂,而获得电子的原子被称为还原剂。
这些反应的简化表示法是:氧化剂 + 电子→ 还原剂举个例子,钾(K)能够将氯(Cl)氧化成一价的离子。
这意味着钾离子(K+)失去了电子,而氯原子(Cl)获得了电子,变成了离子(Cl-)。
2. 电位每一种原子或离子都有一种电位,代表电子在那个离子周围运动时所需的能量。
这种电势通常被称为标准电位。
标准电位用Ox/Red表示,其中Ox代表氧化剂,Red代表还原剂。
在任何给定的条件下,例如溶液中的温度和浓度,氧化剂和还原剂具有一个标准电势差。
这个电势差越大,产生电流的能力的能力就越好。
二、机理1. 在电池中的反应电池可以定义为一个装置,可以通过将自由能转化为涉及自由电子的电能来生成电流。
电池由两个电极构成:阳极和阴极。
当电池中通有电流时,阴极和阳极上出现的反应产生了自由离子和自由电子。
在部分电极上,电子和离子结合起来形成新的物质。
这些反应是有向的,这意味着反应只能在一个方向上进行。
例如,在一个铜-锌电池中,铜的电极上的反应如下:Cu2+ + 2e- → Cu(s)在这个反应中,两个电子从铜2+原子中移除,并与周围的离子结合,形成了铜金属。
这就是电池中的还原反应。
同样,在锌的电极上的反应是:Zn(s) → Zn2+ + 2e-这个反应中,锌原子失去了两个电子,变成了离子。
这就是电池中的氧化反应。
2. 在电解质中的反应电解质是具有离子化能力的物质。
当这些物质被溶解在水中时,它们可以促进水中的电离,并在电池中产生电流。
电化学原理方法与应用

电化学原理方法与应用电化学是研究电子在化学反应中的转移和反应过程的学科。
它的原理方法和应用领域非常广泛,涵盖了能源、环境、材料科学等多个领域。
本文将介绍电化学的基本原理、常用方法以及其在各个领域中的应用。
一、电化学的基本原理电化学的基本原理建立在电荷转移的概念上。
在电化学反应中,电子会在电极表面进行转移,形成氧化和还原两个半反应。
同时,离子也会在电解质溶液中进行迁移。
这个过程是通过电压或电流来促进的。
常见的电化学反应包括腐蚀、电解、电池和电解质溶液的导电等。
二、常用的电化学方法1. 循环伏安法:循环伏安法是研究电化学反应动力学的重要手段。
通过在电极上施加连续变化的电位,可以得到电流-电压曲线,从而揭示反应的机理和动力学参数。
2. 电化学阻抗谱法:电化学阻抗谱法通过测量交流电位和电流之间的相位差和振幅,得到电化学系统的阻抗谱。
通过分析阻抗谱,可以得到电解质溶液的电导率、电极反应速率等信息。
3. 原位电化学扫描探针显微镜:原位电化学扫描探针显微镜(SECM)是一种结合了电化学和显微镜技术的方法。
它可以在原位观察电极表面的反应过程,并通过扫描探针的移动来测量电位、电流等参数。
4. 旋转圆盘电极法:旋转圆盘电极法是研究电极反应速率的一种方法。
通过将电极固定在旋转器上,控制旋转速度和电位,可以得到电流与旋转速度之间的关系,从而计算出电极反应的速率常数。
三、电化学在不同领域的应用1. 能源领域:电化学在能源领域有着广泛的应用,如燃料电池、锂离子电池和太阳能电池等。
这些应用利用电化学反应将化学能转化为电能,实现能源的高效利用。
2. 环境领域:电化学在环境领域中主要用于废水处理和大气污染控制。
电化学氧化和电化学还原技术可以有效降解有机污染物,并去除废水中的重金属离子。
3. 材料科学:电化学在材料科学中的应用主要集中在电化学沉积、阳极氧化和电化学腐蚀等方面。
这些方法可以制备多种功能性材料,并改善材料的表面性能。
4. 生物医学:电化学在生物医学领域的应用包括生物传感、电刺激和组织修复等。
电化学方法原理

电化学方法原理电化学方法是研究和应用电化学原理与技术的一种科学方法。
它通过利用电化学反应来分析、合成和修饰物质,具有高选择性、高灵敏度、无污染等优点,在生物、化学、环境等领域得到广泛应用。
一、电化学基础原理1.1 电化学反应电化学反应是在电化学电池中发生的化学变化过程。
电池由阳极、阴极和电解质溶液组成。
在电解质溶液中,阳极是发生氧化反应的地方,而阴极则是发生还原反应的地方。
这两个反应通过电解质中的离子交换电荷来实现。
1.2 电位与电流电位是指电化学反应发生时电解质界面内的电势差。
电势差的大小表示了物质发生氧化或还原的趋势。
电势差越大,反应越容易发生。
而电流则是指单位时间内通过电极界面的电荷量,它与电势差相关联。
1.3 离子传递与扩散离子传递是指离子在电解质中通过迁移方式进行传递的过程。
在电化学反应中,正离子(如阳离子)从阴极迁移到阳极,负离子(如阴离子)则相反。
这种离子传递过程是通过电双层和溶液中的连续扩散来实现的。
二、电化学方法应用2.1 电化学分析电化学分析是利用电化学方法对物质进行定性和定量分析的一种技术。
常见的电化学分析方法包括电位滴定法、极谱法、循环伏安法等。
通过测量样品产生的电流或电势变化,可以得到目标物质的信息。
2.2 电化学合成电化学合成是指利用电流对物质进行氧化、还原等反应,从而合成新的化合物或材料的过程。
例如,电解水可以将水分解为氢气和氧气。
电化学合成具有高选择性、高纯度等优点,被广泛应用于有机合成、金属电沉积等领域。
2.3 电化学修饰电化学修饰是指利用电化学方法对材料表面进行改性或修饰,以改变其物理化学性质或增强其功能。
例如,通过电化学沉积方法在电极表面形成导电聚合物薄膜,可以提高电极的催化性能和稳定性。
三、电化学方法在环境保护中的应用3.1 废水处理电化学方法在废水处理中具有高效、无二次污染等优点。
例如,电化学氧化可以将有机废水中的有毒有害物质转化为无毒无害的物质。
电化学还原则可以将金属离子还原成金属,从而实现废水中金属的回收利用。
(完整word版)电化学原理简答题

电极极化:电化学反应步骤成为控制步骤时引起的电极极化叫电极极化。
3
平衡电位:可逆电极的电极电位
标准电位:标准状态下的平衡电位
稳定电位:电荷交换速度平衡而物质交换速度不平衡时界面的电极电位
极化电位:有电流通过时离平衡电位的的电极电位
过电位:在一定电流密度下,电极电位偏离平衡电位的差值
3.
静电作用和热运动。静电作用使符号相反的剩余电荷相互靠近,贴于电极表面排列,热运动使荷电粒子外散,在这两种作用下界面层由紧密层和分散层组成。
4.
距离电极表面d处的电位叫 电位。不能,因为不同的紧密层d的大小不同,而紧密层的厚度显然与电解质本性有关,所以不能说 电位的大小只取决于电解质总浓度而与电解质本性无关。当发生超载吸附时 电位的符号与双电层总电位的符号不一致。
三种传质方式的传质速度可用各自的电流密度J来表示:
对流流量:
扩散流量:
2.
当电极反应所消耗的反应粒子数和扩散补充来的反应粒子数相等,就可以达到一种动态平衡状态,即扩散速度与电极反应速度相平衡。这时反应粒子在扩散层中各点的浓度分布不再随时间变化而变化,而仅仅是距离的函数;扩散层的厚度不再变化;离子的浓度梯度是一个常数,这就是稳态扩散过程。
反应产物在电极表面或表面附近的液层中进行电化学反应后的转化过程,称为随后的表面转化。
反应产物生成新相,称为新相生成步骤。或反应产物可溶时,产物粒子自电极表面向溶液内部或液态电极内部迁移,成为反应后的液相传质步骤。
第五章
1.
电极界面附近的液层通常是指扩散层,可以同时存在着三种传质方式(电迁移、对流和扩散),但当溶液中含有大量局外电解质时,反应离子的迁移数很小,电迁移传质作用可以忽略不计,而且根据流体力学,电极界面附近液层的对流速度非常小,因此电极界面附近液层主要传质方式是扩散。
电化学原理知识点(完整资料).doc

【最新整理,下载后即可编辑】电化学原理第一章 绪论 两类导体: 第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子(或空穴)的导体,叫做电子导体,也称第一类导体。
第二类导体:凡是依靠物体内的离子运动而导电的导体叫做离子导体,也称第二类导体。
三个电化学体系:原电池:由外电源提供电能,使电流通过电极,在电极上发生电极反应的装置。
电解池:将电能转化为化学能的电化学体系叫电解电池或电解池。
腐蚀电池:只能导致金属材料破坏而不能对外界做有用功的短路原电池。
阳极:发生氧化反应的电极 原电池(-)电解池(+) 阴极:发生还原反应的电极 原电池(+)电解池(-) 电解质分类:定义:溶于溶剂或熔化时形成离子,从而具有导电能力的物质。
分类:1.弱电解质与强电解质—根据电离程度2.缔合式与非缔合式—根据离子在溶液中存在的形态3.可能电解质与真实电解质—根据键合类型 水化数:水化膜中包含的水分子数。
水化膜:离子与水分子相互作用改变了定向取向的水分子性质,受这种相互作用的水分子层称为水化膜。
可分为原水化膜与二级水化膜。
活度与活度系数: 活度:即“有效浓度”。
活度系数:活度与浓度的比值,反映了粒子间相互作用所引起的真实溶液与理想溶液的偏差。
ii i x αγ=规定:活度等于1的状态为标准态。
对于固态、液态物质和溶剂,这一标准态就是它们的纯物质状态,即规定纯物质的活度等于1。
离子强度I :离子强度定律:在稀溶液范围内,电解质活度与离子强度之间的关系为:注:上式当溶液浓度小于0.01mol ·dm-3 时才有效。
电导:量度导体导电能力大小的物理量,其值为电阻的倒数。
符号为G ,单位为S ( 1S =1/Ω)。
影响溶液电导的主要因素:(1)离子数量;(2)离子运动速度。
当量电导(率):在两个相距为单位长度的平行板电极之间,放置含有1 克当量电解质的溶液时,溶液所具有的电导称为当量电导,单位为Ω-1 ·cm2·eq-1。
电化学的原理

电化学的原理
电化学是研究电荷转移和电化学反应的科学领域。
它通过在电极之间施加电压,利用电解质溶液中的离子在电场作用下的迁移来产生电流。
电化学原理涉及两个重要的概念:电极和电解质。
电极是电化学反应发生的地方。
它由导电性材料制成,分为阳极和阴极。
阳极是电子的来源,它在反应中失去电子,变成阳离子。
阴极则是电子的接受者,它在反应中接受电子,形成阴离子。
这种电子的流动使电化学反应得以进行。
电解质是电化学反应必不可少的组成部分。
它是能在溶液中形成离子的物质,如盐、酸和碱。
在电场的作用下,正离子朝阴极迁移,负离子朝阳极迁移。
这个过程被称为电离。
在电化学反应中,发生两种类型的电荷转移:氧化和还原。
氧化是指物质失去电子的过程,它导致阳离子的生成。
还原则是指物质接受电子的过程,它导致阴离子的生成。
氧化和还原是互相对应的反应,称为氧化还原反应。
电化学反应的速率和方向取决于电势差。
电势差是电解池中两个电极之间的电压差。
它的大小和极性决定了电流的方向和强度。
如果电势差足够大,电化学反应就会发生,电流通过解决方案。
如果电势差不够大,电化学反应将不会发生,电流将停止流动。
电化学在很多领域具有重要应用,如电池、电解制氢和金属防
腐等。
通过深入研究电化学原理,我们可以更好地理解和控制这些电化学过程,从而推动科学技术的发展。
电化学的基本原理

电化学的基本原理
电化学是一门研究电现象与化学反应之间相互关系的学科。
其基本原理可以归纳为以下几点:
1. 电化学反应:电化学反应是指在电解质溶液中,由于电荷的转移引起的化学反应。
这些反应既可以是氧化还原反应(redox reaction),也可以是非氧化还原反应。
2. 电解质:电解质是指能够在溶液中分解成离子的化合物。
在电解质溶液中,正负离子会在电场的作用下迁移,形成电流。
3. 电极反应:在电解池中,电化学反应发生在电极上。
电极分为阴极和阳极,阴极是电子的还原(还原剂被氧化),阳极是电子的氧化(氧化剂被还原)。
在电解质溶液中,阴极处的电子流向阳极,离子则沿相反的方向迁移。
4. 电势和电动势:电势是指电荷在电场中具有的能力。
电动势是指电池或电解池中的电势差,是推动电荷在电路中流动的力量。
电动势可以通过两个电极之间的差异来测量。
5. 极化和电解过程:在电极表面,由于反应产物的聚积或生成速率不同,可能会导致电解过程受到一定的限制,形成电解质溶液中的电化学极化。
极化会影响电解质溶液的电导率和电化学反应速率。
6. 法拉第电解定律:法拉第电解定律是描述电化学反应中电流与物质的量之间的关系。
根据法拉第电解定律,电流的大小与
电化学反应的速率成正比,与物质的摩尔数之间也存在一定的比例关系。
总之,电化学研究了电解质溶液中的电化学反应以及电荷的转移过程。
了解这些基本原理对于理解电化学现象和应用电化学技术具有重要意义。
电化学的基本原理

电化学的基本原理
电化学是研究电与化学之间相互转换关系的学科。
它的基本原理包括以下几个方面:
1. 均匀电场原理:当两个电极之间施加电势差时,存在一个均匀的电场,电势随着距离的增加而线性变化。
2. 电离平衡原理:在电化学过程中,溶液中的物质可以发生电离,形成阳离子和阴离子。
当达到平衡时,离子的生成速率等于离子的消失速率。
3. 傅里叶法则:根据傅里叶法则,任何一个周期性的函数可以表示为若干个不同频率正弦波的叠加。
这个原理在电化学中用来解释频域电化学方法。
4. 动力学原理:根据动力学原理,电化学反应速率与电势差、温度、溶液浓度等因素有关。
动力学原理用来研究电极反应的速率和机理。
5. 线性电化学原理:线性电化学是研究电流与电势之间的线性关系的电化学分析方法。
它基于欧姆定律和法拉第定律,通过测量电流和电势的关系来计算溶液中物质的浓度。
这些基本原理为电化学提供了理论基础,使得我们能够理解和解释电化学现象,并应用于各种实际应用中,如电池、腐蚀、电解等。
电化学中的原理和应用

电化学中的原理和应用引言电化学是研究电荷在电解质溶液中随时间和空间的变化规律以及与化学反应之间的关系的学科。
它在能源领域、环境保护、材料科学、生命科学等诸多领域都有广泛的应用。
本文将介绍电化学的基本原理和常见的应用领域。
一、基本原理1.电解质溶液:电解质溶液是指溶解了离子的溶液,其中离子是电荷的载体。
常见的电解质溶液有盐酸、硫酸、氢氧化钠等。
2.电解质的电离和溶解度:电解质在溶液中通过电离过程将分子转化为离子,溶解度是指单位体积溶液中电解质的溶解量。
3.电势差与电动势:电势差是指单位电荷在电场中所受到的力,电动势是电池或电化学反应提供给电荷的能量。
二、电化学的应用领域1.能源领域•锂离子电池:锂离子电池是一种常见的可充电电池,它通过正极材料(如钴酸锂)和负极材料(如石墨)之间的锂离子来储存和释放能量。
•燃料电池:燃料电池利用化学反应直接将化学能转化为电能,其中常见的燃料电池有氢燃料电池和甲醇燃料电池。
2.环境保护•废水处理:电化学处理可以利用电解质溶液中的离子来去除废水中的有机物、重金属离子等污染物。
•大气污染控制:电化学脱硫和脱氮技术可以通过电化学反应将煤烟中的二氧化硫和氮氧化物转化为无害的硫酸和硝酸。
3.材料科学•电镀:电镀是利用电解质溶液和电流在导电物体表面镀上一层金属,用于保护材料表面、改善外观和增强耐磨性。
•电解金属提取:电解法可以将金属从矿石中提取出来,常见的例子有铝的电解提取。
4.生命科学•DNA测序:电化学测序技术利用DNA在电解质溶液中的电荷特性,通过电流变化来测定DNA序列。
•生物传感器:电化学传感器利用电化学原理测量生物体内的化学物质,广泛应用于生物医学和环境监测。
结论电化学作为一门综合性学科,具有广泛的应用前景。
它在能源领域的电池技术、环境保护、材料科学和生命科学中都发挥着重要的作用。
随着科学技术的不断进步,电化学的应用会越来越广泛,为人类的生活和社会发展带来更多的创新和便利。
电化学原理

电化学原理电化学是研究电与化学相互关系的学科,它是电学和化学的交叉领域,主要研究电能与化学能之间的相互转化和相互作用。
电化学原理是电化学研究的基础,它涉及电化学反应的基本原理、电化学过程的基本规律以及电化学方法的基本原理。
本文将从电化学反应、电化学过程和电化学方法三个方面来介绍电化学原理。
电化学反应是指在电场或电流的作用下,化学反应发生电子转移的过程。
电化学反应可以分为两类,氧化还原反应和非氧化还原反应。
氧化还原反应是指物质失去电子的过程称为氧化,而物质得到电子的过程称为还原。
非氧化还原反应是指在电场或电流的作用下,发生化学键的断裂和形成。
电化学反应的基本原理是电子转移和离子传递,它们是电化学反应发生的基础。
电化学过程是指电化学反应在电化学系统中的整个过程,包括电化学反应的进行、电荷传递和质量传递等。
电化学过程的基本规律是电化学动力学和电化学平衡。
电化学动力学研究电化学反应进行的速率和机理,它与电化学反应的速率常数、传递系数和极化等因素有关。
电化学平衡是指在电化学系统中,电化学反应达到平衡状态时的电荷分布和物质浓度分布。
电化学过程的基本规律是电化学反应进行的动力学规律和平衡规律。
电化学方法是指利用电化学原理和电化学技术来进行分析、检测和测量的方法。
电化学方法包括电位法、电导法、极谱法、电沉积法等。
电位法是利用电极电势来进行分析和检测的方法,它包括直接电位法、交流电位法和差分电位法等。
电导法是利用电解质溶液的电导率来进行分析和测量的方法,它包括导电度法、电导滴定法和电导比色法等。
极谱法是利用电极在电化学反应中的电流和电势来进行分析和测量的方法,它包括极谱分析法、极谱扫描法和极谱计时法等。
电沉积法是利用电化学沉积来进行分析和测量的方法,它包括电沉积分析法、电沉积滴定法和电沉积比色法等。
综上所述,电化学原理涉及电化学反应的基本原理、电化学过程的基本规律以及电化学方法的基本原理。
电化学原理是电化学研究的基础,它对于电化学的发展和应用具有重要意义。
电化学的基本原理与应用

电化学的基本原理与应用电化学是研究电子流动和电荷转移在化学反应中的应用的学科,涉及到电解过程、电池反应、腐蚀等方面。
本文将介绍电化学的基本原理以及其在实际应用中的一些例子。
一、电化学的基本原理1. 电化学反应的基本概念电化学反应是指电子或离子的流动引起的化学反应。
电化学反应可以分为两类:氧化还原反应和非氧化还原反应。
在氧化还原反应中,电子转移从一个物质到另一个物质;而在非氧化还原反应中,离子转移导致化学变化。
2. 电解过程电解是通过外加电势将电能转化为化学能的过程。
当电解质溶液中的离子被外加电势激发时,它们将参与到化学反应中。
电解过程可以用于合成化学物质或进行化学分析。
3. 电池反应电池是一种将化学能转化为电能的装置。
电池反应涉及到氧化还原反应和离子传递过程,通过将两种半反应隔离并连接起来,可以产生电子流动,从而产生电流。
4. 电极和电解质电极是在电化学反应中与电子或离子直接接触的位置。
电化学反应通常涉及两种电极:阳极和阴极。
阳极是发生氧化反应的电极,而阴极是发生还原反应的电极。
电解质是一个能够导电的物质,通常是电解质溶液。
二、电化学的应用1. 电镀电镀是通过电解沉积一层金属或合金在导电物体上的过程。
电镀可以提供防腐性、改善外观、增强材料硬度和耐磨性等优点。
常见的电镀方法包括镀银、镀金、镀铜等。
2. 电解污水处理电解污水处理是利用电解反应去除水中的污染物。
通过在电解池中加入适当的电极和电解质,可以将有害物质转化为无害的物质,并沉淀在电极上,从而净化污水。
3. 锂离子电池锂离子电池是目前电子设备中最常用的电池之一。
它利用锂离子在正负极之间的嵌入和脱嵌来存储和释放电能。
锂离子电池具有高能量密度、长循环寿命和较低的自放电率等优点。
4. 燃料电池燃料电池是一种将燃料直接转化为电能的设备。
它利用氢气或燃料与氧气发生氧化还原反应产生电子流动,并产生电能。
燃料电池具有高能量利用率、低污染排放和可再生能源利用等优点。
电化学原理李荻电子版

电化学原理李荻电子版一、电化学原理1、电化学的定义及原理:电化学是指通过化学反应改变物质形态和组成,产生电流;或通过电流来改变化学物质的形态和组成。
电化学定律是指总能量和电荷守恒定律,其中总能量是指电荷以及反应物和产物实际热量(包括活化能)的总和,它表明在化学反应中,电荷是守恒的。
2、电化学反应:电化学反应由电解质和电荷守恒定律构成,是指电解质发生溶解作用,由此产生电话,甚至改变化学物质的形态和组成的现象。
电化学反应的性质可以用反应偏活性来表示,它是有机化学反应中的一种基本反应。
3、电化学电池:电化学电池是指通过电解质和反应物的电子交换反应的物质改变,产生无极性的自发电流的装置。
它是由阳极,阴极和电解液构成的电解电池。
电池工作原理即电解质发生溶解作用,从而产生电流,或者反向运行,即电流通过电池,产生电化学反应,最终变化物质的形态和组成。
4、电化学反应的应用:电化学的应用极为广泛,其中以冶金为主,如用电流改变合金的成分组成,以及用来开发新材料、新装备、新药物和新冶金工艺。
此外,电化学还有多种实用应用,如在制造精密机械制品、电器、特种催化剂、化学试剂、工业材料等方面,都得到了有效和广泛的运用。
二、李荻电化学1、李荻电化学:李荻电化学是由克里金学派在20世纪初发展出来的新理论,它以李荻(Liimuian)学派的思想为基础,将化学反应物经电动力的驱动,转变为电磁力的支配,发展了一套完整的新的电化学理论。
它由李荻派的思想、其他学者的研究成果和近代行业实践融会而出。
2、李荻电化学原理:李荻电化学是一种化学与物理相结合的理论,它认为所有化学反应都源自于原子间的电磁作用力;用克里金原理可以对电化学反应拟合等效电路,并用来计算等效上阻和下阻;另外,还可以借助等效电路计算其他非电化学反应,从而扩展出量子化学领域,开始研究由宇宙的精神属性引发的反应。
3、李荻电化学的应用:李荻电化学的实际应用有:一是用新发展的李荻电化学理论指导及优化电化学活性,使用克里金方法来设计电池、电极、电解质及电解液;二是研究催化剂的电化学响应,即催化剂中电子的迁移及反应应力;三是用李荻电化学的原理指导电化学的应用,比如金属的抗蚀性、合金的电化学性质等;四是研究混杂体中电磁隔离性对反应的影响、与电解质容量及电势的关系、极电位的调。
电化学原理

电化学原理
电化学原理是研究电化学现象的理论基础,主要包括电化学反应原理、电化学动力学和电化学热力学。
电化学反应原理:电化学反应是指在电场的作用下,电荷转移的化学反应。
电化学反应可分为两类:氧化还原反应和非氧化还原反应。
氧化还原反应是指电子的转移,非氧化还原反应是指离子的转移。
电化学反应的特点是通过在电极上进行电子的转移,实现物质的氧化或还原。
电化学动力学:电化学反应的速率与反应体系中电势差、浓度等因素有关,电化学动力学是研究这些因素对反应速率的影响。
电化学反应速率受到电极表面活化能的影响,而电极表面活化能与电极表面状态有关。
电化学动力学主要研究电化学反应速率的控制因素、速率方程和速率常数等。
电化学热力学:电化学热力学是研究电化学反应的热力学特性,包括反应焓、反应熵和反应自由能等。
根据电化学热力学,可以判断电化学反应是否可逆、反应的方向和反应产物的稳定性等。
1
电化学原理在很多领域中有重要应用,如电池、电解等。
电池是一种将化学能转化为电能的装置,利用电化学反应产生电流。
电解是利用外加电压将化学反应逆向进行,将电能转化为化学能的过程。
2。
电化学原理 书

电化学原理书
电化学原理是研究与化学变化有关的电流流动现象的科学,涉及电化学反应、电化学平衡和电化学动力学等基本原理。
电化学反应指的是在电解质溶液中,电荷载体(离子或电子)在外加电场的作用下发生的化学变化。
电化学平衡是指在电化学反应过程中,电荷载体的浓度和电势之间达到平衡的状态。
电化学动力学则研究电化学反应速率及其与反应条件之间的关系。
在电化学反应中,发生氧化反应的称为氧化剂,而发生还原反应的称为还原剂。
凡电化学反应都包括氧化与还原两个过程,因此被称为氧化还原反应。
常见的电化学反应有电解、电池反应和电化学腐蚀等。
电化学平衡是指在电化学反应过程中,由于反应物的浓度和溶液的电势之间的相互作用,使得反应物的浓度和电势趋向于一定的平衡状态。
在电化学平衡中,溶液的电位称为标准电势,它与反应物的浓度呈一定的关系,可用标准电极电势表进行预测和计算。
电化学动力学研究的是电化学反应速率及其与反应条件之间的关系。
电化学动力学理论主要分为两大部分:电荷传递理论和电化学方程理论。
电荷传递理论主要研究电流在电极电解质界面上的传递机理和速率,而电化学方程理论则是通过电极反应的速率方程描述电化学反应速率与浓度、温度等因素之间的关系。
总之,电化学原理是研究与化学变化有关的电流流动现象的科
学,涉及电化学反应、电化学平衡和电化学动力学等重要原理。
在实际应用中,电化学原理被广泛应用于化学分析、电池技术、腐蚀防护等领域,具有重要的科学价值和实际应用意义。
电化学反应的原理和应用

电化学反应的原理和应用电化学反应是指在电解质溶液中,由于电流的作用下所发生的化学反应。
它是电子迁移与离子迁移相结合的特殊反应过程,主要包括电解质溶液中的氧化还原反应和电离反应。
电化学反应的原理和应用广泛,对于理解能量转化和储存、电化学分析以及电化学合成等方面具有重要意义。
一、电化学反应的基本原理1.1 氧化还原反应氧化还原反应是电化学反应的核心内容。
在氧化还原反应中,质子(H+)和电子(e-)的迁移同时进行,发生氧化的物质被称为还原剂,接受电子的物质被称为氧化剂。
氧化还原反应可以分为两个部分:氧化反应和还原反应。
氧化反应指的是物质失去电子的过程,而还原反应指的是物质获得电子的过程。
1.2 电解质溶液中的离子迁移在电解质溶液中,由于电流的通过,正离子和负离子会在电场的作用下向电极迁移。
正离子向阴极迁移,负离子向阳极迁移。
这种离子迁移的过程称为离子迁移现象。
离子迁移既包括阳离子的迁移,也包括阴离子的迁移。
离子迁移的速度取决于离子的迁移率和电场的强度。
二、电化学反应的应用2.1 能量转化和储存电化学反应在能量转化和储存领域有着广泛的应用。
例如,电池利用化学能转化为电能,而燃料电池则实现了将燃料的化学能直接转化为电能的过程。
此外,光伏电池通过光生电化学反应将太阳能转化为电能,电动汽车则利用电池储存电能实现驱动。
2.2 电化学分析电化学分析是利用电化学原理和方法进行化学分析的一种手段。
电化学分析可以通过测量电流、电位和电荷等参数,对化学物质进行定量和定性分析。
常见的电化学分析方法包括电位滴定、电导法和极谱法等。
电化学分析在环境监测、食品安全和药物分析等领域得到了广泛应用。
2.3 电化学合成电化学合成是利用电化学反应进行有机物和无机物的合成。
通过控制电流和电势条件,可以实现对化学精细合成的控制。
例如,电解水可以得到氢气和氧气,电流通过金属溶液可以进行电镀和电刻的过程。
电化学合成在化学工业中具有重要地位,可以高效且可控地合成特定的化合物。
电化学原理及其应用(习题及答案)

电化学原理及其应用(习题及答案)一、电化学原理概述电化学是研究化学反应与电现象之间关系的科学。
电化学反应涉及电子的转移,是化学能与电能之间的转化过程。
电化学原理广泛应用于电镀、电池、电解、电合成等领域。
1. 电化学反应的基本概念电化学反应包括氧化还原反应和电解质溶液中的离子反应。
氧化反应是指物质失去电子的过程,还原反应是指物质获得电子的过程。
电解质溶液中的离子反应是指阳离子和阴离子在电极上发生反应。
2. 电极与电解质电极是电化学反应中传递电子的导体,分为阳极和阴极。
阳极是电子流出的地方,阴极是电子流入的地方。
电解质是能在水溶液中导电的物质,包括酸、碱、盐等。
3. 电动势与电极电位电动势是指电池两极间的电位差。
电极电位是指电极在电解质溶液中的电位。
根据电极电位可以判断氧化还原反应的方向。
二、电化学应用1. 电池电池是利用电化学反应将化学能转化为电能的装置。
电池分为一次性电池和可充电电池。
一次性电池包括碱性电池、锌碳电池等;可充电电池包括铅酸电池、镍氢电池、锂电池等。
以下为几个习题及答案:习题1:碱性电池的正极材料是什么?答案:碱性电池的正极材料是二氧化锰(MnO2)。
习题2:铅酸电池的负极材料是什么?答案:铅酸电池的负极材料是海绵铅(Pb)。
2. 电解电解是利用电化学反应将电能转化为化学能的过程。
电解广泛应用于电镀、电解铝、电解水制氢等领域。
习题3:电解水制氢时,阳极产生的气体是什么?答案:电解水制氢时,阳极产生的气体是氧气(O2)。
习题4:电解铝时,阴极产生的物质是什么?答案:电解铝时,阴极产生的物质是铝(Al)。
3. 电镀电镀是利用电解原理在金属或非金属表面沉积一层金属或合金的过程。
电镀广泛应用于防护、装饰、修复等领域。
习题5:电镀过程中,阳极材料是什么?答案:电镀过程中,阳极材料是待镀金属。
习题6:电镀过程中,阴极材料是什么?答案:电镀过程中,阴极材料是待镀物体。
4. 电合成电合成是利用电解原理将两个或多个反应物在电极上发生化学反应,生成目标产物。
电化学的原理与应用

电化学的原理与应用电化学是研究电荷在物质界面上转移的科学,它在能源转换、环境保护、材料合成等领域具有广泛的应用。
本文将介绍电化学的基本原理、电化学(电池、电解)过程以及电化学在能源领域的应用。
一、电化学的基本原理电化学研究的基本原理可概括为电解质溶液中电荷转移的过程。
在电解质溶液中,正离子和负离子在外加电势的作用下迁移,形成电流。
这种电流的形成一方面受电解质溶液中的离子浓度、电荷数以及移动迁移率的影响,另一方面受电极电位的影响。
二、电化学过程1. 电池过程电池是将化学能转换为电能的装置。
典型的电池包括原电池(一次性电池)和蓄电池(可充电电池)。
原电池由两种不同金属通过电解质连接而成,在这个体系中化学反应产生电子转移到外部电路,从而产生电能。
蓄电池利用可逆电化学反应,可通过外部电能源进行反应逆向过程,从而将电能存储为化学能。
2. 电解过程电解是利用电能使电解质溶液中的化学物质发生还原和氧化反应。
在电解池中,电解质溶液通过两个电极与外部电源相连,外部电源提供电子或吸收电子,使溶解在电解质溶液中的离子发生还原和氧化反应,从而使溶液中的物质发生化学变化。
三、电化学在能源领域的应用1. 燃料电池燃料电池是一种将化学能直接转化为电能的装置,其基本原理是利用氢气和氧气在电解质中的电化学反应来产生电能。
燃料电池具有高效、无污染、静音等特点,被广泛应用于交通运输、航空航天以及家用电力等领域。
2. 电化学储能技术电化学储能技术主要包括超级电容器和锂离子电池等。
超级电容器以电吸附和电离子迁移为基础,在电化学双层和赝电容发生储能反应。
超级电容器具有高能量密度、长循环寿命和快速充放电等特点,在储能领域有广泛应用。
锂离子电池则以锂离子在电极材料中的嵌入和脱嵌为基础,具有高能量密度和长循环寿命等特点,在手机、电动车等领域得到广泛应用。
3. 电解水制氢电解水制氢是指利用电解水技术将水分解为氢气和氧气的过程。
在这个过程中,外部电源提供电能,使水发生电解反应。
电化学方法原理及应用

电化学方法原理及应用电化学方法是一种利用电极反应进行物质变化和分析的技术手段。
它基于电化学原理,通过控制电子传递和离子传输来实现对物质的检测、合成和改变。
本文将介绍电化学方法的基本原理和常见应用。
一、电化学方法的基本原理在电化学方法中,电极是核心概念。
电极分为阳极和阴极,它们通过电解质溶液或电极间的界面与溶液相互作用。
当外加电压施加到电极上时,电极上会发生氧化与还原反应。
这些反应可以通过电解质中的离子传输来平衡,并通过电子在电极之间的转移来实现电路的闭合。
电化学方法主要通过测量电化学反应中的电流、电位和电量变化来分析物质的性质和含量。
常用的电化学方法包括电位法、电流法和电导法等。
1. 电位法:电位法是通过测量电化学反应过程中产生的电位差来分析物质的含量和性质。
例如,通过测量电解池两个电极上的电势差可以确定物质浓度的改变。
2. 电流法:电流法是通过测量电化学反应中的电流变化来分析物质的含量和性质。
例如,通过测量电极表面的电流密度来确定物质在电极上的反应速率。
3. 电导法:电导法是通过测量电解质溶液的电导率来分析物质的含量和性质。
电导率与物质的浓度和离子活动度有关,可以用来测量物质的浓度。
二、电化学方法的应用电化学方法在生物、环境、材料和能源等领域都有广泛的应用。
以下将介绍几个典型的应用案例。
1. 腐蚀与防腐蚀:电化学方法可以用于研究金属的腐蚀机理和评估材料的抗腐蚀性能。
通过测量腐蚀电流和电位变化,可以确定腐蚀速率和腐蚀产物的形成。
2. 电化学传感器:电化学传感器是一种基于电化学原理设计的传感器,可用于检测生物和环境样品中的目标物质。
例如,著名的pH电极和氧气传感器,可以测量生物和环境样品中的酸碱度和氧气浓度。
3. 电解水制氢:电解水是一种重要的制氢方法。
通过在电解池中施加电压,可将水分解为氢气和氧气。
电化学方法可以用于控制水的电解过程,提高制氢效率。
4. 锂离子电池:锂离子电池是一种重要的电能储存设备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电化学原理第一章绪论两类导体:第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子(或空穴)的导体,叫做电子导体,也称第一类导体。
第二类导体:凡是依靠物体内的离子运动而导电的导体叫做离子导体,也称第二类导体。
三个电化学体系:原电池:由外电源提供电能,使电流通过电极,在电极上发生电极反应的装置。
电解池:将电能转化为化学能的电化学体系叫电解电池或电解池。
腐蚀电池:只能导致金属材料破坏而不能对外界做有用功的短路原电池。
阳极:发生氧化反应的电极原电池( -)电解池( +)阴极:发生还原反应的电极原电池( +)电解池( -)电解质分类:定义:溶于溶剂或熔化时形成离子,从而具有导电能力的物质。
分类:1.弱电解质与强电解质—根据电离程度2.缔合式与非缔合式—根据离子在溶液中存在的形态3.可能电解质与真实电解质—根据键合类型水化数:水化膜中包含的水分子数。
水化膜:离子与水分子相互作用改变了定向取向的水分子性质,受这种相互作用的水分子层称为水化膜。
可分为原水化膜与二级水化膜。
活度与活度系数:活度:即“有效浓度” 。
活度系数:活度与浓度的比值,反映了粒子间相互作用所引起的真实溶液与理想溶液的偏差。
i ix i规定:活度等于 1 的状态为标准态。
对于固态、液态物质和溶剂,这一标准态就是它们的纯物质状态,即规定纯物质的活度等于1。
离子强度 I:1 m i z i2I2离子强度定律:在稀溶液范围内,电解质活度与离子强度之间的关系为:log A I 注:上式当溶液浓度小于0.01mol · dm-3 时才有效。
电导:量度导体导电能力大小的物理量,其值为电阻的倒数。
符号为 G,单位为 S ( 1S =1/Ω )。
GA L影响溶液电导的主要因素:( 1)离子数量;( 2)离子运动速度。
当量电导(率):在两个相距为单位长度的平行板电极之间,放置含有 1 克当量电解质的溶液时,溶液所具有的电导称为当量电导,单位为Ω -1· cm2· eq-1。
与 K 的关系:KV与 c N 的关系:1000kc N当λ 趋于一个极限值时,称为无限稀释溶液当量电导或极限当量电导。
离子独立移动定律:当溶液无限稀释时,可以完全忽略离子间的相互作用,此时离子的运动000是独立的,这时电解质溶液的当量电导等于电解质全部电离后所产生的离子当量电导之和:同一离子在任何无限稀溶液中极限当量电导值不变!离子淌度:单位场强(V/cm)下的离子迁移速度,又称离子绝对运动速度。
V VU UE E离子迁移数:某种离子迁移的电量在溶液中各种离子迁移的总电量中所占的百分数。
i i Q It i z I u i c it i 1或t iQ I z i u i c ii i第二章电化学热力学相间:两相界面上不同于基体性质的过度层。
相间电位:两相接触时,在两相界面层中存在的电位差。
产生电位差的原因:荷电粒子(含偶极子)的非均匀分布。
形成相间电位的可能情形:1.剩余电荷层:带电粒子在两相间的转移或利用外电源向界面两侧充电;2.吸附双电层:阴、阳离子在界面层中吸附量不同,使界面与相本体中出现等值反号电荷;3.偶极子层:极性分子在界面溶液一侧定向排列;4.金属表面电位:金属表面因各种短程力作用而形成的表面电位差。
相间电位的类型:外电位差(伏打电位差): B A内电位差(伽尔伐尼电位差): B ABA电化学位差:电化学位:nF nF原电池电解池腐蚀电池能量转化方向化学能→电能电能→化学能化学能→热能反应动力G 0 G 0 G 0功能能量发生器物质发生器破坏物质电极极性阳(-)阳(+)阳(-)阴(+)阴(-)阴(+)结构阴、阳极不直接接触阴、阳极短路,绝对电位:金属(电子导电相)与溶液(离子导电相)之间的内电位差。
例: E Zn SS Cu Cu Zn若电极材料不变,M R 不变;若令S R 不变,则:E M S相对(电极)电位:研究电极与参比电极组成的原电池电动势称为该电极的相对(电极)电位,用ψ表示。
符号规定:研究电极在原电池中发生还原反应0 :研究电极在原电池中发生氧化反应:0 氢标电位:标准氢电极作参比电极时测得的电极相对电位。
如:Pt|H2,H+||Ag2+|Ag 0.799V液体接界电位 :相互接触的两个组成不同或浓度不同的电解质溶液之间存在的相间电位。
产生的原因:各种离子具有不同的迁移速率而引起。
盐桥:饱和 KCl 溶液中加入 3%琼脂。
作用:由于 K+、 Cl-的扩散速度接近,液体接界电位可以保持恒定。
电池进行可逆变化必须具备两个条件:1.电池中的化学变化是可逆的,即物质的变化是可逆的;2.电池中能量的转化是可逆的,即电能或化学能不转变为热能而散失。
原电池电动势 :原电池短路时的端电压(即两电极相对电位差)。
E注意:只有可逆电池有 E ,电池不可逆时只能测到 V 。
基本关系式:GnFE注:只适用于可逆电池, G 表示可以做的最大有用功(电功) 。
Nernst 方程 :EERT 反ERTln K (标准状态下的电动势)ln,nF生nF对反应: OneRRT ln 氧化态 0的含义:标准状态下的平衡电位电极的分类 :nF还原态1.可逆电池阳离子(第一类)可逆: 金属在含有该金属离子的可溶性盐溶液中所组成的电极。
M M n 可溶性盐溶液阴离子(第二类) 可逆:金属插入其难溶盐和与该难溶盐具有相同阴离子的可溶性盐溶液中。
或M MAn 0RT lnM n固 , AnF氧化还原可逆电极:铂或其它惰性金属插入同一元素的两种不同价态离子溶液中,如:n 1nRTnFlnn 0,RTAlnM nnFPt M , MRTln nFM nM n 1气体电极:气体吸附在铂或其它惰性金属表面与溶液中相应的离子进行氧化还原反应并达到平衡,如:0 RT2P H 2Hln HPt , H 2H2F PH 22.不可逆电极第一类不可逆电极:金属在不含该金属离子的溶液中形成的电极。
如:M 能溶解 M的无 M n溶液第二类不可逆电极: 标准单位较正的金属在能生成该金属难溶盐或氧化物的溶液中形成的电 极。
如:Cu NaOH第三类不可逆电极:金属浸入含有某种氧化剂的溶液中形成的电极。
如:Fe HNO 3 不可逆气体电极: 一些具有较低氢过电位的金属在水溶液中, 尤其在酸中, 形成的电极。
如: Fe HCl 水溶液影响电极电位的因素 :1.电极的本性2.金属表面的状态3.金属的机械变形和内应力4.溶液的 PH 值5.溶液中氧化剂的存在6.溶液中络合剂存在7.溶剂的影响第三章 电极 / 溶液界面的结构与性质理想极化电极 :在一定电位范围内, 有电量通过时不发生电化学反应的电极体系称为理想极化电极。
比较 :理想极化电极是在一定条件下电极上不发生电极反应的电极,通电时电极反应速度跟不上电子运动速度, 不存在去极化作用, 流入电极的电荷全部在电极表面不断积累, 只起到改变电极电位,即改变双电层结构的作用,如滴汞电极。
反之,如果电极反应速度很大,以至于去极化作用于极化作用接近于平衡, 有电流通过时电极电位几乎不变化, 即电极不出现极化现象,就是理想不极化电极,如电流密度很小时的饱和甘汞电极。
零电荷电位0 :电极表面剩余电荷为零时的电极电位。
与不同原因:剩余电荷的存在不是形成相间电位的唯一原因。
零标电位:相对于零电荷电位的相对电极电位,以零电荷电位作为零点的电位标度。
吸附 :某物质的分子、原子或离子在界面富集(正吸附)或贫乏(负吸附)的现象。
分类:静电吸附;非特性吸附;特性吸附(物理吸附 +化学吸附)。
电毛细现象 :界面张力 б 随电极电位变化的现象。
电毛细曲线 :界面张力与电极电位的关系曲线 。
微分电容: 引起电位微小变化时所需引入电极表面的电量,也表征了界面在电极电位发生微小变化时所具备的贮存电荷的能力。
电毛细曲线及微分电容曲线研究界面性质和结构的优缺点比较:(仅供参考)(1)电毛细曲线法的主要应用: 判断电极表面带电状况(符号) ;求电极表面剩余电荷密度 q ;求离子表面剩余量 。
i(2)微分电容曲线的主要应用:利用 0 判断 q 正负;研究界面吸附 ;求 q 、 C i : ( 3)用微分电容法求 q 值比电毛细曲线法更为精确和灵敏,电毛细曲线的直接测量只能在液态金属(汞、镓等)电极上进行,微分电容还可以在固体电极上直接进行。
应用微分电容发往往需要应用电毛细曲线法确定零电荷电位。
斯特恩模型 :电极 / 溶液界面的双电层由紧密层和分散层两部分组成。
电位分布特点:紧密层——线性分布 分散层——曲线分布1 电位:离子电荷能接近电极表面的最小距离处的平均电位。
紧密层结构对 Stern 模型的两点重要修正:a 紧+ 分=a11水偶极子定向及对结构的影响( “电极水化” ) 短程作用引起的吸附(特性吸附) 。
无离子特性吸附:OHP :距离电极表面为 d 的液层,即最接近电极表面的水化阳离子电荷中心所在液层称 为外紧密层或外 Helmholtz 平面。
有离子特性吸附 :IHP :阴离子电荷中心所在的液层称为内紧密层平面或内 Helmholtz 平面。
“电极 / 溶液”界面模型概要(总结) :由于界面两侧存在剩余电荷 (电子及离子电荷) 所引起的界面双电层包括紧密层和分散层两部分;分散层 是由于离子电荷的热运动引起的,其结构 (厚度、 电势分布等 )只与温度、电解质浓度(包括价型)及分散层中的剩余电荷密度有关,而与离子的个别特性无关; 紧密层的性质决定于界面层的结构,特别是两相中剩余电荷能相互接近的程度; 能在电极表面“特性吸附”的阴离子往往在电极表面上“超载吸附” 。
此时界面结构及其中电势分布具有“三电层”形式。
特性吸附 :无机阴离子的特性吸附对~ 的影响:使界面张力下降;使max负移。
有机分子的特性吸附对 C d ~的影响:使C d下降;出现电容峰。
第四章电极过程概述极化:有电流通过时,电极电位偏离平衡电位的现象过电位:在一定电流密度下,电极电位与平衡电位的差值极化值:有电流通过时的电极电位(极化电位)与静止电位的差值极化曲线:过电位(或电极电位)随电流密度变化的关系曲线。
极化度:极化曲线上某一点的斜率。
极化图:把表征电极过程特征的阴极极化曲线和阳极极化曲线画在同一个坐标系中,这样组成的曲线图叫极化图。
电极过程的基本历程:1.液相传质步骤2.前置的表面转化步骤简称前置转化3.电子转移步骤或称电化学反应步骤4.随后的表面转化步骤简称随后转化5.新相生成步骤或反应后的液相传质步骤速度控制步骤:串连的各反应步骤中反应速度最慢的步骤。
浓差极化:液相传质步骤成为控制步骤时引起的电极极化。
电化学极化:由于电化学反应迟缓而控制电极过程所引起的电极极化。