数学模型简单实例ppt课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纵观数学的发展历史,数千年来人类对于数学的研究
一直是沿着纵横两个方向进行的。
在纵向上,探讨客观世界在量的方面的本质和规律, 发现并积累数学知识,然后运用公理化等方法建构数学的 理论体系,这是对数学科学自身的研究。
在横向上,则运用数学的知识去解决各门科学和人类 社会生产与生活中的问题,这里首先要运用数学模型的方 法建构实际问题的数学模型,然后运用数学的理论和方法 导出结果,再返回原问题实现实际问题的解决,这是对数 学科学应用的研究。
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
由三元一次线性方程组解出x,y,z即得三根电 线的电阻。
说明:此问题的难点也是可贵之处是用方程 “观点”、”立场”去分析,用活的数学思想使 实际问题转到新创设的情景中去。
气象预报问题
在气象台A的正西方向300 km处有一台风中
心,它以40 km/h的速度向东北方向移动;根据台
风的强度,在距其中心250 km以内的地方将受到
影响,问多长时间后气象台所在地区将遭受台风
的影响?持续时间多长?
此问题是某气象台所遇到的实际问题,为了
搞好气象预报,现建立解析几何模型加以探讨。
以气象台A为坐标 原点建立平而直角坐标 系,设台风中心为B, 如图
问题杀羊方案 现有26只羊,要求7天杀完且每天必须杀奇数只,
问各天分别杀几只?
分析: 1). 这是一个有限问题,解决此类问题的一 类方法是枚举,你可以试试。
建模:
2). 依题意,设第 i天杀 2ki 1(ki为自然)只数,
则所提问题变为在自然数集上求解方程
7
(2ki 1) 26
i1
于是,我们有了该问题的数学语言表达——数学模型
分析 本题多少 有点象 数学中 解的存在 性条件 及证明,当 然 ,这里的情况要简单得多。
假如我们换一种想法,把第二天的返回改变成另一人在同 一天由B去A,问题就化为在什么条件下,两人至少在途中 相遇一次,这样结论就很容易得出了:只要任何一人的到 达时间晚于另一人的出发时间,两人必会在途中相遇。
(请自己据此给出严格证明)
了三十分钟到达该处,于是此人就沿着妻子来接他
的方向步行回去并在途中遇到了妻子,这一天,他
比平时提前了十分钟到家,问此人共步行了多长时
间?
换显一然种是想由法于,节问省题了就从迎 刃相而遇解点了到。会假合如点他,的又妻从子会遇合 到点他返后回仍相似载遇乎着点条他这件开一不往段够会路哦合的。地缘。 点故,,那故么由这相一遇天点他到就会不合会点提需 前开回5分家钟了。。而提此前人的提十前分了钟三时 间十从分何钟而到来达?会合点,故相遇 时他已步行了二十五分钟。
根据题意,A点的坐标为(-300,0), 常见心律失常心电图诊断的误区诺如病毒感染的防控知识介绍责任那些事浅谈用人单位承担的社会保险法律责任和案例分析现代农业示范工程设施红地球葡萄栽培培训材料 单位为km.台风中心的运动轨迹为直 线BC,这里的∠CBA=450,当台风 中心在运动过程中处于以A为圆心、 半径为250 km的圆内(即MN上)时, 气象台A所在地区将遭受台风的影响。
返回
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
例 37支球队进行冠军争夺赛,每轮比赛中出场的 每两支 球队中的胜者及轮空者进入下一轮,直至 比赛结束。问共需进行多少场比赛?
求解: 用Baidu Nhomakorabea证法容易证明本问题的解不存在。
返回
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
例 某人平时下班总是按预定时间到达某处,然
然后他妻子开车接他回家。有一天,他比平时提早
解法一: 将两天看作一天,一人两天的运动看作一天 两人同时分别从山下和山顶沿同一路径相反运功, 因为两人同时出发,同时到达目的地,又沿向一 路径反向运动,所以必在中间某一时刻t两人相遇, 这说明某人在两天中的同一时刻经过路途中的同 一地点。
解法二: 常见心律失常心电图诊断的误区诺如病毒感染的防控知识介绍责任那些事浅谈用人单位承担的社会保险法律责任和案例分析现代农业示范工程设施红地球葡萄栽培培训材料
一般思维:
3 6 1 8 1 0 4 2 1 1 9 8 5 2 1 1 36 2 2222
逆向思维: 每场比赛淘汰一名失败球队,只有一名冠军,即 就是淘汰了36名球队,因此比赛进行了36场。
返回
例 常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
从包汤圆(饺子)说起
通常,1公斤面, 1公斤馅,包100个汤圆(饺子) 今天,1公斤面不变,馅比 1公斤多了,问应多包几个 (小一些),还是少包几个(大一些)?
问题
圆面积为S的一个皮,包成体积为V的汤圆。若 分成n个皮,每个圆面积为s,包成体积为v。
S
s s … s (共n个)
vv
v
V
V和 nv 哪个大?
在地上),见图。对于那些黄灯亮时
已过线的车辆,则应当保证它们仍能
D
穿过马路。
L
马路的宽度 常见心律失常心电图诊断的误区诺如病毒感染的防控知识介绍责任那些事浅谈用人单位承担的社会保险法律责任和案例分析现代农业示范工程设施红地球葡萄栽培培训材料
D是容易测得
的,问题的关键在
于L的
确定。为确定 L,还应当将 L划分为两段:L1和L2。
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
数学建模
黔南民族师范学院 数学系 余吉东
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
以时间t
为横坐标,以沿上山路
线从山下旅店到山顶的
路程x为纵坐标,从山 下到山顶的总路程为d;
严格的数学论证: 常见心律失常心电图诊断的误区诺如病毒感染的防控知识介绍责任那些事浅谈用人单位承担的社会保险法律责任和案例分析现代农业示范工程设施红地球葡萄栽培培训材料 令
思考题:有一边界形状任意的蛋糕,兄妹俩都
模型 R ~大皮 的半径;r ~小皮的半径 Sns
Sk1R 2, Vk2R 3 VkS3/2 sk1r2, vk2r3 vks3/2
Vn3/2v
应用 V n(nv)nvV是 nv是 n 倍
若100个汤圆(饺子)包1公斤馅, 则50个汤圆(饺子) 可以包 1.公4 斤馅
返回
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
因为圆的方程为:
直线BC的方程为:
当台风中心处于圆内时,有:
其中参数t 为时间(单 位为h)。
解得
所以,大约在2h以后气象台A所在地区将会 遭受台风的影响,持续时间大约为6.6h。 返回
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
因此,建立数学模型或数学建模是发展科学和解决实 际问题首先需要解决的关键课题,其内容十分丰富、广泛, 目前已发展为一门新学科。
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
科学的数学化是当代科学发展的一个主要趋向,它已 经在不同的程度上涉及一切科学领域和人类活动的各个方 面。
数学模型是数学科学联结其他非数学科学的中介和桥 梁,它不仅是对实际问题的数学描述,而且是对实际问题 进行理论分析和科学研究的有力工具。
想吃,妹妹指着蛋糕上的一点P,让哥哥过点P切
开一人一半,能办到吗?
返回
例 在一摩天大楼里有三根电线从底层控制室 常见心律失常心电图诊断的误区诺如病毒感染的防控知识介绍责任那些事浅谈用人单位承担的社会保险法律责任和案例分析现代农业示范工程设施红地球葡萄栽培培训材料 通向顶楼,但由于三根电线各处的转弯不同而有 长短,因此三根电线的长度均未知。现在工人师 傅为了在顶楼安装电气设备,需要知道这三根电 线的电阻。如何测量出这三根电线的电阻?
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
例 某人早8时从山下旅店出发沿一条路径上 山,下午5时到达山顶并留宿,次日早8时沿同一 路径下山,下午5时回到旅店,则这人在两天中的 同一时刻经过途中的同—地点,为什么?
从包汤圆(饺子)说起 杀羊方案
相遇问题
黄灯应当亮多久 砖块延伸 寻找黑匣子
测量电阻
舰艇的会合
比赛场次 气象预报问题
价格竞争 遗传模型
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
“科学技术是第一生产力”这一重要的科学论断被越 来越多的人所接受。
在西方国家的国民经济增长中百分之七十以上依靠新 科学技术。
定性分析
V比 nv大多少?
定量分析
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
从包汤圆(饺子)说起
假设 1. 皮的厚度一样 2. 汤圆(饺子) 的形状一样
其中 L1是司机在发现黄灯亮及判断应当刹车的反应
时间内驶过的路程 ,L2为刹车制动后车辆驶过的路程。
L1较容易计算,交通部门对司机的平均反应时间 t1早有
测算,反应时间过长将考不出驾照),而此街道的行驶速
•例 交通灯在绿灯转换成红灯时,有 一个过渡状态——亮一段时间的黄灯。 请分析黄灯应当亮多久。
设想一下黄灯的作用是什么,不
难看出,黄灯起的是警告的作用,意
思是马上要转红灯了,假如你能停住,
请立即停车。停车是需要时间的,在
这段时间内,车辆仍将向前行驶一段
距离 L。这就是说,在离街口距离为
L处存在着一条停车线(尽管它没被画
请思考一下,本题解答中隐含了哪些假设 ?
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
例 某人第一天由 A地去B地,第二天由 B 地沿原路返回 A 地。问:在什么条件下, 可以保证途中至少存在一地,此人在两天 中的同一时间到达该地。
我们所处的信息时代的一个重要特点是数学的应用向 一切领域渗透,高科技与数学的关系日益密切,产生了许 多与数学相结合的新学科,如数学化学、数学生物学、数 学地质学、数学社会科学等等。
当今社会日益数学化,一些有远见的科学家就曾深刻 指出:“信息时代高科技的竞争本质上是数学的竞 争。”“当今如此受到称颂的‘高技术’本质上是一种数 学技术”。
一直是沿着纵横两个方向进行的。
在纵向上,探讨客观世界在量的方面的本质和规律, 发现并积累数学知识,然后运用公理化等方法建构数学的 理论体系,这是对数学科学自身的研究。
在横向上,则运用数学的知识去解决各门科学和人类 社会生产与生活中的问题,这里首先要运用数学模型的方 法建构实际问题的数学模型,然后运用数学的理论和方法 导出结果,再返回原问题实现实际问题的解决,这是对数 学科学应用的研究。
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
由三元一次线性方程组解出x,y,z即得三根电 线的电阻。
说明:此问题的难点也是可贵之处是用方程 “观点”、”立场”去分析,用活的数学思想使 实际问题转到新创设的情景中去。
气象预报问题
在气象台A的正西方向300 km处有一台风中
心,它以40 km/h的速度向东北方向移动;根据台
风的强度,在距其中心250 km以内的地方将受到
影响,问多长时间后气象台所在地区将遭受台风
的影响?持续时间多长?
此问题是某气象台所遇到的实际问题,为了
搞好气象预报,现建立解析几何模型加以探讨。
以气象台A为坐标 原点建立平而直角坐标 系,设台风中心为B, 如图
问题杀羊方案 现有26只羊,要求7天杀完且每天必须杀奇数只,
问各天分别杀几只?
分析: 1). 这是一个有限问题,解决此类问题的一 类方法是枚举,你可以试试。
建模:
2). 依题意,设第 i天杀 2ki 1(ki为自然)只数,
则所提问题变为在自然数集上求解方程
7
(2ki 1) 26
i1
于是,我们有了该问题的数学语言表达——数学模型
分析 本题多少 有点象 数学中 解的存在 性条件 及证明,当 然 ,这里的情况要简单得多。
假如我们换一种想法,把第二天的返回改变成另一人在同 一天由B去A,问题就化为在什么条件下,两人至少在途中 相遇一次,这样结论就很容易得出了:只要任何一人的到 达时间晚于另一人的出发时间,两人必会在途中相遇。
(请自己据此给出严格证明)
了三十分钟到达该处,于是此人就沿着妻子来接他
的方向步行回去并在途中遇到了妻子,这一天,他
比平时提前了十分钟到家,问此人共步行了多长时
间?
换显一然种是想由法于,节问省题了就从迎 刃相而遇解点了到。会假合如点他,的又妻从子会遇合 到点他返后回仍相似载遇乎着点条他这件开一不往段够会路哦合的。地缘。 点故,,那故么由这相一遇天点他到就会不合会点提需 前开回5分家钟了。。而提此前人的提十前分了钟三时 间十从分何钟而到来达?会合点,故相遇 时他已步行了二十五分钟。
根据题意,A点的坐标为(-300,0), 常见心律失常心电图诊断的误区诺如病毒感染的防控知识介绍责任那些事浅谈用人单位承担的社会保险法律责任和案例分析现代农业示范工程设施红地球葡萄栽培培训材料 单位为km.台风中心的运动轨迹为直 线BC,这里的∠CBA=450,当台风 中心在运动过程中处于以A为圆心、 半径为250 km的圆内(即MN上)时, 气象台A所在地区将遭受台风的影响。
返回
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
例 37支球队进行冠军争夺赛,每轮比赛中出场的 每两支 球队中的胜者及轮空者进入下一轮,直至 比赛结束。问共需进行多少场比赛?
求解: 用Baidu Nhomakorabea证法容易证明本问题的解不存在。
返回
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
例 某人平时下班总是按预定时间到达某处,然
然后他妻子开车接他回家。有一天,他比平时提早
解法一: 将两天看作一天,一人两天的运动看作一天 两人同时分别从山下和山顶沿同一路径相反运功, 因为两人同时出发,同时到达目的地,又沿向一 路径反向运动,所以必在中间某一时刻t两人相遇, 这说明某人在两天中的同一时刻经过路途中的同 一地点。
解法二: 常见心律失常心电图诊断的误区诺如病毒感染的防控知识介绍责任那些事浅谈用人单位承担的社会保险法律责任和案例分析现代农业示范工程设施红地球葡萄栽培培训材料
一般思维:
3 6 1 8 1 0 4 2 1 1 9 8 5 2 1 1 36 2 2222
逆向思维: 每场比赛淘汰一名失败球队,只有一名冠军,即 就是淘汰了36名球队,因此比赛进行了36场。
返回
例 常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
从包汤圆(饺子)说起
通常,1公斤面, 1公斤馅,包100个汤圆(饺子) 今天,1公斤面不变,馅比 1公斤多了,问应多包几个 (小一些),还是少包几个(大一些)?
问题
圆面积为S的一个皮,包成体积为V的汤圆。若 分成n个皮,每个圆面积为s,包成体积为v。
S
s s … s (共n个)
vv
v
V
V和 nv 哪个大?
在地上),见图。对于那些黄灯亮时
已过线的车辆,则应当保证它们仍能
D
穿过马路。
L
马路的宽度 常见心律失常心电图诊断的误区诺如病毒感染的防控知识介绍责任那些事浅谈用人单位承担的社会保险法律责任和案例分析现代农业示范工程设施红地球葡萄栽培培训材料
D是容易测得
的,问题的关键在
于L的
确定。为确定 L,还应当将 L划分为两段:L1和L2。
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
数学建模
黔南民族师范学院 数学系 余吉东
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
以时间t
为横坐标,以沿上山路
线从山下旅店到山顶的
路程x为纵坐标,从山 下到山顶的总路程为d;
严格的数学论证: 常见心律失常心电图诊断的误区诺如病毒感染的防控知识介绍责任那些事浅谈用人单位承担的社会保险法律责任和案例分析现代农业示范工程设施红地球葡萄栽培培训材料 令
思考题:有一边界形状任意的蛋糕,兄妹俩都
模型 R ~大皮 的半径;r ~小皮的半径 Sns
Sk1R 2, Vk2R 3 VkS3/2 sk1r2, vk2r3 vks3/2
Vn3/2v
应用 V n(nv)nvV是 nv是 n 倍
若100个汤圆(饺子)包1公斤馅, 则50个汤圆(饺子) 可以包 1.公4 斤馅
返回
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
因为圆的方程为:
直线BC的方程为:
当台风中心处于圆内时,有:
其中参数t 为时间(单 位为h)。
解得
所以,大约在2h以后气象台A所在地区将会 遭受台风的影响,持续时间大约为6.6h。 返回
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
因此,建立数学模型或数学建模是发展科学和解决实 际问题首先需要解决的关键课题,其内容十分丰富、广泛, 目前已发展为一门新学科。
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
科学的数学化是当代科学发展的一个主要趋向,它已 经在不同的程度上涉及一切科学领域和人类活动的各个方 面。
数学模型是数学科学联结其他非数学科学的中介和桥 梁,它不仅是对实际问题的数学描述,而且是对实际问题 进行理论分析和科学研究的有力工具。
想吃,妹妹指着蛋糕上的一点P,让哥哥过点P切
开一人一半,能办到吗?
返回
例 在一摩天大楼里有三根电线从底层控制室 常见心律失常心电图诊断的误区诺如病毒感染的防控知识介绍责任那些事浅谈用人单位承担的社会保险法律责任和案例分析现代农业示范工程设施红地球葡萄栽培培训材料 通向顶楼,但由于三根电线各处的转弯不同而有 长短,因此三根电线的长度均未知。现在工人师 傅为了在顶楼安装电气设备,需要知道这三根电 线的电阻。如何测量出这三根电线的电阻?
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
例 某人早8时从山下旅店出发沿一条路径上 山,下午5时到达山顶并留宿,次日早8时沿同一 路径下山,下午5时回到旅店,则这人在两天中的 同一时刻经过途中的同—地点,为什么?
从包汤圆(饺子)说起 杀羊方案
相遇问题
黄灯应当亮多久 砖块延伸 寻找黑匣子
测量电阻
舰艇的会合
比赛场次 气象预报问题
价格竞争 遗传模型
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
“科学技术是第一生产力”这一重要的科学论断被越 来越多的人所接受。
在西方国家的国民经济增长中百分之七十以上依靠新 科学技术。
定性分析
V比 nv大多少?
定量分析
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
从包汤圆(饺子)说起
假设 1. 皮的厚度一样 2. 汤圆(饺子) 的形状一样
其中 L1是司机在发现黄灯亮及判断应当刹车的反应
时间内驶过的路程 ,L2为刹车制动后车辆驶过的路程。
L1较容易计算,交通部门对司机的平均反应时间 t1早有
测算,反应时间过长将考不出驾照),而此街道的行驶速
•例 交通灯在绿灯转换成红灯时,有 一个过渡状态——亮一段时间的黄灯。 请分析黄灯应当亮多久。
设想一下黄灯的作用是什么,不
难看出,黄灯起的是警告的作用,意
思是马上要转红灯了,假如你能停住,
请立即停车。停车是需要时间的,在
这段时间内,车辆仍将向前行驶一段
距离 L。这就是说,在离街口距离为
L处存在着一条停车线(尽管它没被画
请思考一下,本题解答中隐含了哪些假设 ?
常见心律失常心电图诊断的误区诺如 病毒感 染的防 控知识 介绍责 任那些 事浅谈 用人单 位承担 的社会 保险法 律责任 和案例 分析现 代农业 示范工 程设施 红地球 葡萄栽 培培训 材料
例 某人第一天由 A地去B地,第二天由 B 地沿原路返回 A 地。问:在什么条件下, 可以保证途中至少存在一地,此人在两天 中的同一时间到达该地。
我们所处的信息时代的一个重要特点是数学的应用向 一切领域渗透,高科技与数学的关系日益密切,产生了许 多与数学相结合的新学科,如数学化学、数学生物学、数 学地质学、数学社会科学等等。
当今社会日益数学化,一些有远见的科学家就曾深刻 指出:“信息时代高科技的竞争本质上是数学的竞 争。”“当今如此受到称颂的‘高技术’本质上是一种数 学技术”。