大量元素的作用

大量元素的作用
大量元素的作用

大量元素

一.定义

生物正常生长发育需要量较多的元素。如碳、氢、氮等

植物需要量或含量较大的元素。包括碳、氢、氧、氮、磷、钾、钙、镁、硫和硅等。

大量元素指含量占生物总重量万分之一以上的元素,包括C、H、O、N、P、S、K、Ca、Mg等。其中C为最基本元素,C、H、O、N为基本元素,C、H、O、N、P、S这六种元素的含量占到了原生质总量的97%,称为主要元素。

二.大量元素的作用

C、H、O:

植株生长受到严重阻碍,株形矮瘦,分枝少、叶色淡黄、结实少,子粒不饱满,产量也降低。蛋白质是生物体的主要组成物质,有多种蛋白质的参加才使生物得以存在和延续。例如,有血红蛋白;有生物体内化学变化不可缺少的催化剂——酶(一大类很复杂的蛋白质);有承担运动作用的肌肉蛋白;有起免疫作用的抗体蛋白等等。各种蛋白质都是由多种氨基酸结合而成的。氮是各种氨基酸的一种主要组成元素。

P:

磷是细胞核和核酸的组成成分,核酸在植物生活和遗传过程中有特殊作用;磷脂中含有磷,而磷脂是生物膜的重要组成部分;三磷酸腺苷成分中有磷酸,而腺三磷是植物体内能量的中转站,积极参与能量代谢作用;磷是植物体内各项代谢过程的参与者,如参与碳水化合物的运输,蔗糖、淀粉及多糖类化合物的合成;磷有提高植物抗旱、抗寒等抗逆性和适应外界环境条件的能力。

S:

硫有利于植物蛋白质合成;存在于植物其它含硫化物,如葱油,芥子油。硫缺乏时新叶呈现淡黄色,叶型不变;严重时全株变黄。

K:

钾是细胞的生化反应缓液,使生理正常;光合作用中多种酶的活化剂,能提高酶的活性,因而能促进光合作用:钾能提高植物对氮素的吸收和利用,有利于蛋白质的合成;钾具有控制气孔开、闭的功能,因此有利于植物经济用水;钾能促进碳水化合物的代谢,并加速同化产物向贮藏器官中

运输;钾能增强植物的抗逆性,如抗旱、抗病等。植物缺乏钾时老叶生斑点(白色或黄色);斑点后期呈现坏疽。植物钾过多时易造成钙及镁缺乏病征;叶尖焦枯。

Ca:

钙是一种生命必需元素,也是人体中含量最丰富的大量金属元素,含量仅次于C、H、O、N,正常人体内含钙大约1~1.25kg。每千克无脂肪组织中平均含20~25g。钙是人体骨骼和牙齿的重要成分,它参与人体的许多酶反应、血液凝固,维持心肌的正常收缩,抑制神经肌肉的兴奋,巩固和保持细胞膜的完整性。缺钙会引起软骨病,神经松弛,抽搐,骨质疏松,凝血机制差,腰腿酸痛。人体每天应补充0.6~1.0g钙。

Mg:

镁是酶的激活剂,也是构成叶绿素唯一的金属元素。镁能影响植物呼吸,促进磷的吸收运输。植物镁缺乏时老叶黄化,初期由叶肉细胞变黄,叶缘仍保持绿色;严重时黄化部位转坏疽,落叶。镁过多时叶尖萎雕,叶片组织色泽叶尖处淡色,叶基部色泽正常。在绿色蔬菜(叶绿素中含有较丰富的镁)、豆类、虾蟹等中含量丰富。

其他:

【B】植物缺少硼会“花而不实”。

【Ca】动物缺少钙会发生抽搐。

【Mg】镁是植物叶绿素的重要组成元素。

【Fe】铁是血红蛋白的组成元素。

各种化学元素在钢中的作用

本文出自一本很不好买的书,相当全面,偶然整理,希望对大家学习有帮助 —————————————————————— 有几位选手把我给气乐了,话说这段文章来自我爷爷的手抄本(不过现在老人家现在改复印了,挺时髦的),原书我没看到过所以不知道书名(我们有时候还是比较喜欢上世纪的老版书,比较严谨,实验室王老有本金相可是他老人家的宝贝,轻易不示人)。话说我码字是自娱自乐,目标受众也是学材料的同门,你们一帮连论文都没写过的大神忽然跳出来跟我这指责不尊重知识产权,真是好笑。想讨论问题,我欢迎,想骂人,出门左转菜市场。 —————————————————————— 为了改善和提高钢的某些性能和使之获得某些特殊性能而有意在冶炼过程中加入的元素称为合金元素。常用的合金元素有铬,镍,钼,钨,钒,钛,铌,锆,钴,硅,锰,铝,铜,硼,稀土等。磷,硫,氮等在某些情况下也起到合金的作用。 (1)铬(Cr) 铬能增加钢的淬透性并有二次硬化的作用,可提高碳钢的硬度和耐磨性而不使钢变脆。含量超过12%时,使钢有良好的高温抗氧化性和耐氧化性腐蚀的作用,还增加钢的热强性。铬为不锈钢耐酸钢及耐热钢的主要合金元素。 铬能提高碳素钢轧制状态的强度和硬度,降低伸长率和断面收缩率。当铬含量超过15%时,强度和硬度将下降,伸长率和断面收缩率则相应地有所提高。含铬钢的零件经研磨容易获得较高的表面加工质量。 铬在调质结构中的主要作用是提高淬透性,使钢经淬火回火后具有较好的综合力学性能,在渗碳钢中还可以形成含铬的碳化物,从而提高材料表面的耐磨性。 含铬的弹簧钢在热处理时不易脱碳。铬能提高工具钢的耐磨性、硬度和红硬性,有良好的回火稳定性。在电热合金中,铬能提高合金的抗氧化性、电阻和强度。 (2)镍(Ni) 镍在钢中强化铁素体并细化珠光体,总的效果是提高强度,对塑性的影响不显著。一般地讲,对不需调质处理而在轧钢、正火或退火状态使用的低碳钢,一定的含镍量能提高钢的强度而不显著降低其韧性。据统计,每增加1%的镍约可提高强度29.4Pa。随着镍含量的增加,钢的屈服程度比抗拉强度提高的快,因此含镍钢的比可较普通碳素钢高。镍在提高钢强度的同时,对钢的韧性、塑性以及其他工艺的性能的损害较其他合金元素的影响小。对于中碳钢,由于镍降低珠光体转变温度,使珠光体变细;又由于镍降低共析点的含碳量,因而和相同的碳含量的碳素钢比,其珠光体数量较多,使含镍的珠光体铁素体钢的强度较相同碳含量的碳素钢高。反之,若使钢的强度相同,含镍钢的碳含量可以适当降低,因而能使钢的韧性和塑性有所提。镍可以提高钢对疲劳的抗力和减小钢对缺口的敏感性。镍降低钢的低温脆性转变温度,这对低温用钢有极重要的意义。含镍3.5%的钢可在-100℃时使用,含镍9%的钢则可在-196℃时工作。镍不增加钢对蠕变的抗力,因此一般不作为热强钢的强化元素。 镍含量高的铁镍合金,其线胀系数随镍含量增减而显著变化,利用这一特性,可以设计和生产具有极低或一定线胀系数的精密合金、双金属材料等。

各元素在植物的作用

各元素在植物的作用 1. 氮(N)的生理功能-----大量元素 生理功能:蛋白质、核酸、磷脂、酶、植物激素、叶绿素、维生素、生物碱、生物膜的组成成分。 氮素缺乏:株小,叶黄,茎红,根少,质劣,老叶先黄化。 氮素过量:贪青徒长,开花延迟,产量下降。 2. 磷(P)的生理功能-----大量元素 生理功能:植素、核酸、磷脂、酶、腺甘磷酸组成成分;促进糖运转;参与碳水化合物、氮、脂肪代谢;提高植物抗旱性和抗寒性 磷素缺乏:株小,根少,叶红,籽瘪,糖低,老叶先发病。 磷素过量:呼吸作用过强;根系生长过旺;生殖生长过快;抑制铁、锰、锌的吸收。 抗寒原理:提高植物体内可溶性糖含量(能降低细胞质冰点);提高磷脂的含量(增强细胞的温度适应性);缺磷叶片变紫的原理:碳水化合物受阻,糖分累积,形成花青素(紫色) 3. 钾(K)的生理功能-----大量元素 生理功能:以离子状态存在于植物体中,酶的活化剂,促进光合作用、糖代谢、脂肪代谢、蛋白质合成,提高植物抗寒性、抗逆性、抗病和抗倒伏能力。 钾素缺乏:老叶尖端和边缘发黄,进而变褐色,渐次枯萎,但叶脉两侧和中部仍为绿色;组织柔软易倒伏;老叶先发病。 钾素过量:会由于体内离子的不平衡而影响到其他阳离子(特别是镁)的吸收;过分木质化。 抗旱原理:钾离子的浓度可提高渗透势,利于水分的吸收;

抗倒伏原理:促进维管束木质化,形成厚壁组织; 抗病原理:促进植物体内低分子化合物向高分子化合物(纤维等)转变,减少病菌所需养分; 4. 钙(Ca)的生理功能-----中量元素 生理功能:细胞壁结构成分,提高保护组织功能和植物产品耐贮性,与中胶层果胶质形成钙盐,参与形成新细胞,促进根系生长和根毛形成,增加养分和水分吸收。 钙素缺乏:生长受阻,节间较短,植株矮小,组织柔软,幼叶卷曲畸形,叶缘开始变黄并逐渐坏死,幼叶先表现症状。钙素过剩:不会引起毒害,但是抑制Fe、Mn、Zn的吸收。 5. 镁(Mg)的生理功能-----中量元素 生理功能:叶绿素的构成元素,许多酶的活化剂; 镁素缺乏:根冠比下降;高浓度的K+、Al3+、NH4+可引起Mg缺乏; 镁素过量:茎中木质部组织不发达,绿色组织的细胞体积增大,但数量减少6. 硫(S)的生理功能-----中量元素 生理功能:蛋白质和许多酶的组成成分,参与呼吸作用、脂肪代谢和氮代谢和淀粉合成。组成维生素B1、辅酶A和乙酰辅酶A等生理活性物质。 硫素缺乏:籽粒中蛋白质含量降低;影响面粉的烘烤质量; 蛋白质合成受阻,与缺氮症状类似,但是先出现在幼叶。 7.铁(Fe)生理功能:微量元素 生理功能:叶绿素合成所必需;参与体内氧化还原反应和电子传递; 参与核酸和蛋白质代谢;参与植物呼吸作用;还与碳水化合物、有机酸和维生素的合成有关。

中国居民营养素参考摄入量表

中国居民膳食营养素参考摄入量 Chinese Dietary reference intakes (DRIs) DRIs是在RDAs基础上发展起来的一组每日平均膳食营养素摄入量的参考值,包括四项内容:平均需要量(EAR)、推荐摄入量(RNI)、适宜摄入量(AI)和可耐受最高摄入量(UL)。 一、平均需要量(EAR,Estimated Average Requirement) EAR是某一特定性别,年龄及生理状况群体中对某营养素需要量的平均值。摄入量达到EAR水平是可以满足群体中半数个体对该营养素的需要。而不能满足另外半数个体的需要。 EAR是RNI的基础。如果个体摄入量呈常态分布,一个人群的RNI=EAR+2SD。针对个体,可以检查其摄入不足的可能性。 二、推荐摄入量(RNI,Recommended Nutrient Intake) RNI相当于传统使用的RDA, 它可以满足某一特定群体中绝大多数(97%~98%)个体需要量的摄入水平,可以维持组织中有适当的储备。 RNI是健康个体的膳食营养素摄入标准,个体摄入量低于RNI时,并不一定表明该个体未达到适宜营养状态。如果个体的平均摄入量达到或超过了RNI,可以认为该个体没有摄入不足的危险。 三、适宜摄入量(AI,Adequate Intakes) AI是通过观察或实验获得的健康人群某种营养素的摄入量。AI能满足目标人群中几乎所有个体的需要。AI的准确性远不如RNI,可能显著高于RNI。 AI的主要作个体的营养素摄入目标,同时用作过多摄入的标准。当健康个体摄入量达到AI时,出现营养缺乏的危险性很小。如长期摄入超过AI,则有可能产生毒副作用。 四、可耐受最高摄入量(UL,Tolerable Upper Intake Level) UL是平均每日可以摄入某营养素的最高量。这个量对一般人群中的几乎所有个体都不至于损害健康。 UL的主要用途是检查个体摄入量过高的可能,避免发生中毒。当摄入量超过UL时,发生毒副作用的危险性会增加,在大多数情况下,UL包括膳食、强化食物或添加剂等各种来源的添加剂之和。

合金元素在钢中的作用完整版

了合金化而加入的合金元素,最常用的有硅、猛、珞、線、钳、鹄、帆,钛,锐、硼、铝等。现分别说明它们在钢中的作用。 1、硅在钢中的作用: (1)提高钢中固溶体的强度和冷加工硕化程度使钢的韧性和塑性降低。 (2)硅能显著地提高钢的弹性极限、屈服极限和屈强比,这是一般弹簧钢。(3)耐腐蚀性。硅的质量分数为15% — 20%的高硅铸铁,是很好的耐酸材料。含有硅的钢在氧化气氛中加热时,表面也将形成一层Si02薄膜,从而提高钢在高温时的抗氧化性。 缺点:(4)使钢的焊接性能恶化。 2、镭在钢中的作用 (1)镭提高钢的淬透性。 (2)镭对提高低碳和中碳珠光体钢的强度有显著的作用。 (3)镭对钢的高温瞬时强度有所提高。 镭钢的主要缺点是,①含猛较高时,有较明显的回火脆性现象;②镭有促进晶粒长大的作用,因此镭钢对过热较敬感t在热处理工艺上必须注意。这种缺点可用加入细化晶粒元素如钮、飢、钛等来克服:⑧当镭的质量分数超过1%时, 会使钢的焊接性能变坏,④镭会使钢的耐锈蚀性能降低。 3、珞在钢中的作用 (1)珞可提高钢的强度和硬度。 (2)珞可提高钢的高温机械性能。 (3)使钢具有良好的抗腐蚀性和抗氧化性 (4)阻止石墨化 (5)提高淬透性。 缺点:①辂是显著提高钢的脆性转变温度②辂能促进钢的回火脆性。4、W 在钢中的作用 (1)可提高钢的强度而不显著降低其韧性。 (2)银可降低钢的脆性转变温度,即可提高钢的低温韧性。 (3)改善钢的加工性和可焊性。 (4)银可以提高钢的抗腐蚀能力,不仅能耐酸,而且能抗碱和大气的腐8 /I 蚀。 5、钮在钢中的作用 (1)铝对铁素体有固溶强化作用。 (2)提高钢热强性 (3)抗氢侵蚀的作用。 (4)提高钢的淬透性。 缺点:钮的主要不良作用是它能使低合金钳钢发生石墨化的倾向。6、钩在钢中的作用 (1)提高强度 (2)提高钢的高温强度。 (3)提髙钢的抗氢性能。

各种元素对人体的作用

钠对人体的作用 1.钠离子和钾离子调节人体水、电解质平衡,维持人体pH,保证内环境稳态。在神经调节、细胞信号转导等方面发挥着重要的作用。 2.多喝骨头汤也行,但是补钙的同时要注意两点,一点就是,你补钙也要有所吸收,需要适当补充维生素D,或者调节适当的钙磷比;第二点就是在补钙的时候不可以忽略其他的补充! 钾对人体的作用 钾是人体内不可缺少的常量元素,一般成年人体内约含钾元素150克左右,其作用主要是维持神经、肌肉的正常功能。因此,人体一旦缺钾,正常的运动就会受到影响。 缺钾不仅精力和体力下降,而且耐热能力也会降低,使人感到倦怠无力。严重缺钾时,可导致人体内酸碱平衡失调、代谢紊乱、心律失常、全身肌肉无力、懒动。此时,有些人为了使自己少出汗而过量地饮用盐开水。殊不知,这样做又容易加重心脏负担,使体内钾、钠失调。 下面是一些含钾元素较高的食物,我们平时可要注意。 ①粮食作物中,以荞麦、玉米、红薯、大豆等含钾元素较高;②水果中,以香蕉含钾元素最丰富;③蔬菜中,菠菜、苋菜、香菜、油菜、甘蓝、芹菜、大葱、莴笋、土豆、山药、鲜豌豆、毛豆等含钾元素较高。④海藻类。 蛋白质对人体的作用 ①蛋白质是人体的建筑材料。②蛋白质是营养素的运输团队。③蛋白质为人体提供能量。④蛋白质参与生理功能的调节。⑤免疫作用。⑥修复人体组织。 钙对人体的作用 钙离子是维持机体细胞正常功能的非常重要的离子,它对于维持细胞膜两侧的生物电位,维持正常的神经传导功能。维持正常的肌肉伸缩与舒张功能以及神经-肌肉传导功能,还有一些激素的作用机制均通过钙离子表现出来。 它的主要生理功能均是基于以上的基本细胞功能,相关的生理功能主要有以下几点: 1.维持正常的肌细胞功能,保证肌肉的收缩与舒张功能正常。 2.对于心血管系统,钙离子通过细胞膜上的钙离子通道,进入胞内,通过一系列生化反应,主要是有加强心肌收缩力,加快心率,加快传导的作用。因而,细胞外钙离子浓度高则会升高血压,使心收缩力加强,每博输出量增大,因而血压也会相应增高。重要的抗高血压药物有一种便是钙离子拮抗剂,它使得钙离子通过细胞膜上的钙通道的数量减少,使得心肌收缩力减弱,心率降低,血压下降。 3.其他心血管系统疾病还有充血性心力衰竭、心律失常等,病因均与钙离子关系密切。 4.钙离子对与骨骼的生长发育有着重要的作用,在年轻时,这主要受激素(降钙素、甲状旁腺素等)的调节。老年人骨骼钙易流失,因此骨骼变脆,变得容易骨折。 铁对人体的作用 他是人体必须的无机盐类。没有他会造成缺铁性贫血而导致皮肤苍白,干燥,面无光泽,头发生长必须的营养物质,否则就会变黄,分叉的现象,尤以少女时期已来月经,来潮期每日损失铁2毫克,平时每日损失0.8毫克,故应加强含铁食物的食用,如动物肝脏,蛋黄,豆类,油菜,芹菜,莴苣等。 维生素对人体的作用 维生素(vitamin)是参与生物生长发育和代谢所必需的一类微量有机物质。这类物质由于体内不能合成或者合成量不足,所以必需由食物供给。在物质代谢中起重要作用。机体缺乏维生素时,引起维生素缺乏症。 特点:不参与机体构成;不是能源物质;需要量少;主要以辅酶形式广泛参与体内代谢;缺乏时产生缺乏症——危害很大;过量——中毒症。 分类:(根据溶解性不同)脂溶性维生素: A、D、E、K(不溶于水,溶于脂类及脂肪溶剂;在食物中与脂类共存,并随脂类一同吸收)。 水溶性维生素(维生素C和B族):C、B1、B2、B6、泛酸、烟酸、胆碱、B12、叶酸、生物素 (一)维生素A(视黄醇) 生化作用:①构成视觉细胞内感光物质。②参与糖蛋白合成。 缺乏症:夜盲症,干眼病,皮肤干燥 (二)维生素D 功能:维生素D的主要功能是调节钙、磷代谢,可促使小肠吸收钙,使血钙浓度增加,也可促使小肠吸收磷,使血磷浓度升高; ①有助于血液凝固。②降低神经兴奋的作用。 缺乏症:儿童——佝偻病,成人——软骨病 (三)维生素E(又称生育酚) 维生素E对氧十分敏感,极易被氧化而保护其他物质不被氧化,是动物和人体中最有效的抗氧化剂。 功能:①抗氧化、防衰老作用;②抗不育,维持生殖机能,防止流产;③促进血红素代谢,维持红细胞的正常形态和功能;④保护肌肉。 (四)维生素K 维生素K具有凝血活性。 (五)维生素C 维生素C能防治坏血病,故又称抗坏血酸。 功能:①羟化作用:促进胶原蛋白的合成;参与体内类固醇激素、儿茶酚、五羟色胺等合成过程中芳香环的羟化作用。②氧化还原作用:维生素C可脱H成为脱氢抗坏血酸,并参加多种生物氧化反应。③抗体的合成:需要维生素C的参与。④解毒作用:重金属导致巯基酶失去活性产生中毒,维生素C使氧化型谷胱甘肽转化为还原型而解毒。⑤促进造血作用。 缺乏症:缺乏时造成坏血病。 1

钢铁中的元素及作用

各种元素在钢铁中的作用 钢铁是铁与C(碳)、Si(硅)、Mn(锰)、P(磷)、S(硫)以及少量的其他元素所组成的合金。其中除Fe(铁)外,C的含量对钢铁的机械性能起着主要作用,故统称为铁碳合金。它是工程技术中最重要、用量最大的金属材料。 各种元素在钢铁中有什么作用 碳(Carbon) 存在于所有的钢材,是最重要的硬化元素。有助于增加钢材的强度,我们通常希望刀具级别的钢材拥有0.6%以上的碳,也成为高碳钢。 铬(Chromium) 增加耐磨损性,硬度,最重要的是耐腐蚀性,拥有13%以上的认为是不锈钢。尽管这么叫,如果保养不当,所有钢材都会生锈 锰(Manganese) 重要的元素,有助于生成纹理结构,增加坚固性,和强度、及耐磨损性。在热处理和卷压过程中使钢材内部脱氧,出现在大多数的刀剪用钢材中,除了A-2,L-6和CPM 420V。 钼(Molybdenum) 碳化作用剂,防止钢材变脆,在高温时保持钢材的强度,出现在很多钢材中,空气硬化钢(例如A-2,ATS-34)总是包含1%或者更多的钼,这样它们才能在空气中变硬。 镍(Nickle) 保持强度、抗腐蚀性、和韧性。出现在L-6\AUS-6和AUS-8中。 硅(Silicon) 有助于增强强度。和锰一样,硅在钢的生产过程中用于保持钢材的强度。 钨(Tungsten) 增强抗磨损性。将钨和适当比例的铬或锰混合用于制造高速钢。在高速钢M-2中就含有大量的钨。 钒(Vanadium) 增强抗磨损能力和延展性。一种钒的碳化物用于制造条纹钢。在许多种钢材中都含有钒,其中M-2,Vascowear,CPM T440V和420V A含有大量的钒。而BG-42与ATS-34最大的不同就是前者含有钒 按钢的用途分类 一、结构钢 (1)建筑及工程用结构钢简称建造用钢,它是指用于建筑、桥梁、船舶、锅炉或其他工程上制作金属结构件的钢。 (2)机械制造用结构钢--是指用于制造机械设备上结构零件的钢。这类钢基本上都是优质钢或高级优质钢,主要有优质碳素结构钢、合金结构钢、易切结构钢、弹簧钢、滚动轴承钢等 根据含碳量和用途的不同﹐这类钢大致又分为三类﹕ 1. 小于0.25%C为低碳钢﹐其中尤以含碳低于0.10%的08F﹐08Al等﹐由于具有很好的深冲性和焊接性而被广泛地用作深冲件如汽车﹑制罐……等﹐20G则是制造普通锅炉的主要材料﹐此外﹐低碳钢也广泛地作为渗碳钢﹐用于机械制造业﹐ 2. 0.25~0.60%C为中碳钢﹐多在调质状态下使用﹐制作机械制造工业的零件。调质多少22~34HRC,能得到综合机械性能,也便于切削. 3. 大于0.6%C为高碳钢﹐多用于制造弹簧﹑齿轮﹑轧辊等﹐根据含锰量的不同﹐又可

各元素在植物的作用(同名8940)

各元素在植物的作用(同名 8940) 各元素在植物的作用 1.氮(N)的生理功能-----大量元素 生理功能:蛋白质、核酸、磷脂、酶、植物激素、叶绿素、维生素、生物碱、生物膜的组成成分。 氮素缺乏:株小,叶黄,茎红,根少,质劣,老叶先黄化。 氮素过量:贪青徒长,开花延迟,产量下降。 2.磷(P)的生理功能-----大量元素 生理功能:植素、核酸、磷脂、酶、腺甘磷酸组成成分;促进糖运转;参与碳 水化合物、氮、脂肪代谢;提高植物抗旱性和抗寒性 磷素缺乏:株小,根少,叶红,籽瘪,糖低,老叶先发病。 磷素过量:呼吸作用过强;根系生长过旺;生殖生长过快;抑制铁、锰、锌的吸收。抗寒原理:提高植物体内可溶性糖含量(能降低细胞质冰点);提高磷脂的含量 (增强细胞的温度适应性);缺磷叶片变紫的原理:碳水化合物受阻,糖分累积, 形成花青素(紫色)

3.钾(K)的生理功能-----大量元素 生理功能:以离子状态存在于植物体中,酶的活化剂,促进光合作用、糖代谢、 脂肪代谢、蛋白质合成,提高植物抗寒性、抗逆性、抗病和抗倒伏能力。 钾素缺乏:老叶尖端和边缘发黄,进而变褐色,渐次枯萎,但叶脉两侧和中部仍为绿色;组织柔软易倒伏;老叶先发病。 钾素过量:会由于体内离子的不平衡而影响到其他阳离子(特别是镁)的吸收;过分木质化。 抗旱原理:钾离子的浓度可提高渗透势,利于水分的吸收; 抗倒伏原理:促进维管束木质化,形成厚壁组织; 抗病原理:促进植物体内低分子化合物向高分子化合物(纤维等)转变, 减少病菌所需养分; 4.钙(Ca)的生理功能-----中量元素 生理功能:细胞壁结构成分,提高保护组织功能和植物产品耐贮性,与中胶层果胶质形成钙盐,参与形成新细胞,促进根系生长和根毛形成,增加养分和水分吸收。 钙素缺乏:生长受阻,节间较短,植株矮小,组织柔软,幼叶卷曲畸形,叶缘开始变黄并逐渐坏死,幼叶先表现症状。钙素过剩:不会引起毒害,但是抑制Fe、Mn、Zn的吸收。 5.镁(Mg)的生理功能-----中量元素 生理功能:叶绿素的构成元素,许多酶的活化剂; 镁素缺乏:根冠比下降;高浓度的K+、AI3+、NH4+可引起Mg缺乏;镁素过量:茎中木质部组织不发达,绿色组织的细胞体积增大,但数量减少 6.硫(S)的生理功能-----中量元素

化学元素对人体的重要性

化学元素对人体的重要性 水是生命之源,是自然界最普通的物质,是人类环境的重要组成部份。人们日常生活需要水,水是人体中含量最多的一种物质。人体内的水分大约占体重的60%~70%,由于各个器官功能不同,水占的比重也不同,肌肉里70%是水,即使骨骼也占有20%的水。在占体重60%~70%的水中,有40%在细胞内,20%在组织细胞间,5%在血液里。 水是沟通组织细胞之间,机体与外界环境之间的媒介。生物体内有许多化学反应,按一定的规律无时无刻不在连续不断地进行着,参加这些化学反应的不仅有生物大分子,如蛋白质、脂类、核酸等,而更多和更重要的还是小的分子和离子,其中水分子至关重要,如果没有水,不能移动的生物分子就不会产生巧夺天工的生物化学反应,生命活动便会停止,生物就会死亡。水既是组成各类细胞的重要物质,又是消化液,淋巴液的主要构成成分;既能帮助消化食物,吸收营养,又能输送废物并排出体外;既参加呼吸、循环的过程,又起体温调节作用;既是细胞内外电解质的平衡者,又是非电解质的传递者;既有润滑眼球的作用,又有滋润、丰满体表皮肤的功能,等等。人如果3~7天连续不喝水,人体缺水达20%时,血液就会高度浓缩,就无法进行氧化、还原、分解、合成等生命活动,就会导致死亡[1]。从医学观点看,人类为维持正常生存,每人每天至少需要饮两升水,加上卫生方面的需要,全部生活用水量约需40~50升/日·人。因此水与人类

有非常密切的关系,可以说,没有水就没有生命。 一、维持人类生命和健康的水,应是洁净的水 (一)我国生活饮用水卫生标准规定,生活饮用水应满足如下要求[2] (1)要保持感官性状良好水必须是透明、无色、无臭、无异味,不存在肉眼可见的物质。为此对能产生颜色和异味的铜、锌、铁、锰等元素的含量制定了具体的限量。 (2)要保证流行病学上的安全在水中不得含有病源微生物和寄生虫卵,以免引起“介水传染病”,为此对细菌总数,大肠杆菌群数,消毒后供水管网末端的余氯有明确的限量。 (3)要保证化学组成上无害因此要严格限制水里的一些有毒化学物质,如镉、汞、铅、铬、氰化物、挥发酚……等,以免造成人体的急性、慢性中毒。 (二)水环境对人类健康的影响 俗话说:“一方水土养一方人”,说的是在自然条件下,不同的地区往往有不同的水土环境,这种差异不仅表现在不同地域的水文地质等特征方面,还在于水土化学组成上的不同。水不仅是维持生命和人体健康不可缺少的物质,而且还是人体从环境中摄取无机矿物质的途径之一,水环境中某些化学元素含量过多或过少时、都能对人群健康产生损害作用,同时水中的有毒物质也能通过各种途径进入人体而危害人体健康。 人体中已发现了近六十种元素,其中氧、碳、氢、氮、钙、磷、钾、硫、钠、氯和镁等十一种元素占人体重量组成的99.9%,余下不

微量元素对植物生长的作用

微量元素对植物生长的作用 汤美巧 (江西农业大学,江西南昌 330045) 摘要目前被世界公认的微量元素有Fe、Mn、Zn、Cu、B、Mo、Cl 7种元素。微量元素在作物体内含量虽少,但由于它们大多数是酶或辅酶的组成部分,与叶绿素的合成有直接或间接的关系。在作物体内非常活跃,具有特殊的作用,是其它元素不可替代的。 关键词微量元素植物体内叶绿素的合成不可替代 1 植物生长的必需元素 地球上自然存在的元素有82种,其余的为人工合成,然而植物体内却有60余种化学元素。植物必需的营养元素有16种:碳(C)、氢(H)、氧(O)、氮(N)、磷(P)、钾(K)、钙(Ca),镁(Mg)、硫(S)、铁(Fe)、硼(B)、锰(Mn)、铜(Cu)、锌(Zn)、钼(Mo)、氯(CL)。各必需植物营养元素在植物体内含量差别很大,一般可根据植物体内含量的多少而划分为大量营养元素和微量营养元素。大量营养元素一般占植物干物质重量的0.1%以上,有碳、氢、氧、氮、磷、钾、钙、镁和硫共9种;微量营养元素的含量一般在0.1%以下,最低的只有 0.lmg/kg(0.lppm),它们是铁、硼、锰、铜、锌、钼和氯7种。 2 微量元素的重要性 微量元素在作物体内含量虽少,但它对植物的生长发育起着至关重要的作用,是植物体内酶或辅酶的组成部分,具有很强的专一性,是作物生长发育不可缺少的和不可相互代替的。因此当植物缺乏任何一种微量元素的时候,生长发育都会受到抑制,导致减产和品质下降。当植物在微量元素充足的情况下,生理机能就会十分旺盛,这有利于作物对大量元素的吸收利用,还可改善细胞原生质的胶体化学性质,从而使原生质的浓度增加,增强作物对不良环境的抗逆性。 3 微量元素对植物生长的作用 3.1 硼 3.1.1 硼对植物生长的作用 土壤的硼主要以硼酸(H 3BO 3 或B(OH) 3 )的形式被植物吸收。它不是植物体 内的结构成分,但它对植物的某些重要生理过程有着特殊的影响。硼能参与叶片光合作用中碳水化合物的合成,有利其向根部输送;它还有利于蛋白质的合成、提高豆科作物根瘤菌的固氮活性,增加固氮量;硼还能促进生长素的运转、提高植物的抗逆性。它比较集中于植物的茎尖、根尖、叶片和花器官中,能促进花粉萌发和花粉管的伸长,故而对作物受精有着神奇的影响。 3.1.2 缺硼症状

人体所需各种维生素和微量元素的作用及其缺乏症

创作编号:BG7531400019813488897SX 创作者:别如克*

现在医学上发现的维生素主要有: 脂溶性维生素 维生素A :维持正常视力,预防夜盲症;维持上皮细胞组织健康;促进生长发育; 增加对传染病的抵抗力;预防和治疗干眼病。 维生素D :调节人体内钙和磷的代谢,促进吸收利用,促进骨骼成长。 维生素E :维持正常的生殖能力和肌肉正常代谢;维持中枢神经和血管系统的完整。 维生素K :止血。它不但是凝血酶原的主要成分,而且还能促使肝脏制造凝血酶原。小儿维生素K 缺乏症 水溶性维生素 维生素B1:保持循环、消化、神经和肌内正常功能;调整胃肠道的功能;构成 脱羧酶的辅酶,参加糖的代谢;能预防脚气病。 维生素B2:又叫核黄素。核典素是体内许多重要辅酶类的组成成分,这些酶能 在体内物质代谢过程中传递氢,它还是蛋白质、糖、脂肪酸代谢和宫机能衰 退等等。 维生素F (亚麻油酸、花生油酸) 防止动脉中胆固醇的沉积,治疗心脏病。帮助腺体发挥作用,使钙能被细胞利用,从而增进健康和成长,也有助于皮肤和毛发健康生长。 心血管疾病等等。 植物油(由 亚麻、葵花 子、大豆、 花生等榨取的油)以及花生、葵花 子、核桃等 坚果类食 品。 维生素H (生物素) 合成维生素C 的必要物质,是脂肪和蛋白质正常代谢不可或缺的物质;还具有防止白发和脱发,保持皮肤健康的作用。 白发,脱 发,皮肤 干裂等 等。 牛奶、牛肝、蛋黄、动物肾脏、水果、糙米中。 维生素L 促进乳汁的分泌。 乳汁分泌不足等等。 牛肝、蹲鱼、酵母、野菜。 维生素K 与凝血作用相关,许多凝血因子的合成与维生素K 有关。 体内不正常出血。 主要食物来 源:椰菜花、椰菜、西兰花、蛋黄、 肝、稞麦等。 维生素P (生物类黄酮) 防止维生素C 被氧化而受到破坏,增强维生素功效;增加毛细血管壁强度,防止瘀伤。有助于牙龈出血的预防和治疗,有助于因内耳疾病引起的浮肿或头晕的治疗等。 与维生素C 缺乏症类似。 主要食物来 源:橙、柠檬、杏、樱桃、玫瑰果实以及荞麦 粉

中国居民膳食营养素参考摄入量(完整版)

前言 人体每天都需要从膳食中获取各种营养物质,来维持其生存、健康和社会生活.如果长期摄取某种营养素不足或过多就可能发生相应的营养缺乏或过剩的危害.为了帮助人们合理的摄入各种营养素,从20世纪早期营养学家就开始建议营养素的参考摄入量,从40年代到80年代,许多国家都制定了各自的推荐的营养素供给量。我国自1955年开始制定"每日膳食中营养素供给量(RDA)"作为设计和评价膳食的质量标准,并作为制订食物发展计划和指导食品加工的参考依据。 随着科学研究和社会实践的发展,特别是强化食品及营养补充剂的发展,国际上自20世纪90年代初期就逐渐开展了关于RDA的性质和适用范围的讨论。欧美各国先后提出了一些新的概念或术语,逐步形成了比较系统的新概念--膳食营养素参考摄入量(Dietary reference intakes)简称DRIs。 中国营养学会研究了这一领域的新进展,认为,制定中国居民DRIs的时机已经成熟.遂于1998年成立了制定中国居民膳食营养素参考摄入量专家委员会(简称Chinese DRIs委员会)及秘书组.并在DRIs委员会的领导下组成5个工作组,分别负责5个部分的营养素和其他膳食成分的工作.经过两年多的努力,于2000年 10月出版了《中国居民膳食营养素参考摄入量Chinese DRIs》.在该书的编著过程中得到了中国达能营养中心的大力协助,罗氏(中国)有限公司提供了很有价值的参考资料。 《中国居民膳食营养素参考摄入量Chinese DRIs》是一部营养学科的专著.它分别对各种营养素的理化性质、生理功能、营养评价及主要食物来源等方面,都进行了系统的论述,尤其对于各营养素的参考值都提供了丰富的科学研究依据,是营养学研究、教学和专业提高的重要参考书.为了适应广大的基层及相关学科的专业人员的需要,DRIs委员会根据原书进行了简编,从中选择对广大读者可能是最有用的内容,适当简化,编写了这个简要本。 《中国居民膳食营养素参考摄入量(简要本)》是针对基层营养卫生工作者及医药、食品、农业、教育等相关学科读者的需要编写的。它简明扼要,便于使用。但欲对有关问题进行深入的了解或研究,还应以原书为依据。 中国营养学会理事长 葛可佑 2001年1月 概要 一、膳食营养素参考摄入量(DRIs,Dietary Reference Intakes) DRIs 是在RDAs基础上发展起来的一组每日平均膳食营养素摄入量的参考值,包括4项内容:平均需要量(EAR)、推荐摄入量(RNI)、适宜摄入量(AI)和可耐受最高摄入量(UL)。

合金元素在钢中的主要作用

简述几种常见合金元素在钢中的主要作用 为了改善和提高钢的某些性能和使之获得某些特殊性能而有意在冶炼 过程中加入的元素称为合金元素。常用的合金元素有铬,镍,钼,钨,钒,钛,铌,锆,钴,硅,锰,铝,铜,硼,稀土等。磷,硫,氮等在某些情况下也起到合金的作用。 (1)铬(Cr) 铬能增加钢的淬透性并有二次硬化的作用,可提高碳钢的硬度和耐磨性而不使钢变脆。含量超过12%时,使钢有良好的高温抗氧化性和耐氧化性腐蚀的作用,还增加钢的热强性。铬为不锈钢耐酸钢及耐热钢的主要合金元素。 铬能提高碳素钢轧制状态的强度和硬度,降低伸长率和断面收缩率。当铬含量超过15%时,强度和硬度将下降,伸长率和断面收缩率则相应地有所提高。含铬钢的零件经研磨容易获得较高的表面加工质量。 铬在调质结构中的主要作用是提高淬透性,使钢经淬火回火后具有较好的综合力学性能,在渗碳钢中还可以形成含铬的碳化物,从而提高材料表面的耐磨性。 含铬的弹簧钢在热处理时不易脱碳。铬能提高工具钢的耐磨性、硬度和红硬性,有良好的回火稳定性。在电热合金中,铬能提高合金的抗氧化性、电阻和强度。 (2)镍(Ni) 镍在钢中强化铁素体并细化珠光体,总的效果是提高强度,对塑性的影响不显著。一般地讲,对不需调质处理而在轧钢、正火或退火状态使用的低碳钢,一定的含镍量能提高钢的强度而不显著降低其韧性。据统计,每增加1%的镍约可提高强度。随着镍含量的增加,钢的屈服程度比抗拉强度提高的快,因此含镍钢的比可较普通碳素钢高。镍在提高钢强度的同时,对钢的韧性、塑性以及其他工艺的性能的损害较其他合金元素的影响小。对于中碳钢,由于镍降低珠光体转变温度,使珠光体变细;又由于镍降低共析点的含碳量,因而和相同的碳含量的碳素钢比,其珠光体数量较多,使含镍的珠光体铁素体钢的强度较相同碳含量的碳素钢高。反之,若使钢的强度相同,含镍钢的碳含量可以适当降低,因而能使钢的韧性和塑性有所提。镍可以提高钢对疲劳的抗力和减小钢对缺口的敏感性。镍降低钢的低温脆性转变温度,这对低温用钢有极重要的意义。含镍%的钢可在-100℃时使用,含镍9%的钢则可在 -196℃时工作。镍不增加钢对蠕变的抗力,因此一般不作为热强钢的强化元素。 镍含量高的铁镍合金,其线胀系数随镍含量增减而显著变化,利用这一特性,可以设计和生产具有极低或一定线胀系数的精密合金、双金属材料等。 此外,镍加入钢中不仅能耐酸,而且也能抗碱,对大气及盐都有抗蚀能力,镍是不锈耐酸钢中的重要元素之一。 (3)钼(Mo)

钠元素对植物的危害和钾元素对植物的作用

钠元素对植物的危害和钾元素对植物的作用 以下是钠元素对植物的危害和钾元素对植物的作用详解。 一.钠离子对植物的危害 盐碱对植物可造成两种危害:一是毒害作用,当植物吸收进较多的钠离子或氯离子时,就会改变细胞膜的结构和功能。例如,植物细胞里的钠离子浓度过高时,细胞膜上原有的钙离子就会被钠离子所取代,使细胞膜出现微小的漏洞,膜产生渗漏现象,导致细胞内的离子种类和浓度发生变化,核酸和蛋白质的合成和分解的平衡受到破坏,从而严重影响植物的生长发育。同时,因盐分在细胞内的大量积累,还会引起原生质凝固,造成叶绿素破坏,光合作用率急剧下降。此外,还会使淀粉分解,造成保卫细胞中糖分增多、膨压增大,最终导致气孔扩张而大量失水。这些危害,都会造成植物死亡。二是提高了土壤的渗透压,给植物根的吸收作用造成了阻力,使植物吸水发生困难。结果植物体内出现严重缺水,光合作用和新陈代谢无法进行;同时,还会出现细胞脱水、植株萎蔫,最后导致植物死亡。 二.钾对植物的作用 1、酶类活化 在化学反应过程中,酶起着催化剂的作用。酶将各种分子聚集在一起,促成化学反应的进行。植物生长过程所涉及的60多种不同类型的酶均需要钾加以“活化”。钾可改变酶分子的物理构型,使适宜的化学活性位置暴露出来,参加反应。细胞的含钾量可决定酶的活化量,进而决定化学反应的速度,因此,钾进入细胞的速度可控制某一反应进行的速度。钾对酶的活化作用或许是钾在植物生长过程中最重要的功能之一。 2、水分利用 钾在植物根系内积累从而产生渗透压梯度,使水分吸入根系。缺钾植株吸水能力减弱,遇供水不足时,较易遭受胁迫。植株亦依靠钾素来调节其气孔(叶片与大气交换二氧化碳、水蒸汽和氧气的孔隙)的启闭。气孔作用的正常发挥有赖于供钾充足。当钾进入气孔两侧的保卫细胞时,细胞因充水而膨胀,孔隙张开,使气体能自由进出。当供水不足时,钾则被泵出保卫细胞外,孔隙关闭,以防水分亏损。若供钾不足,气孔将变得反应迟钝,造成水蒸汽逸损;反之,供钾充足的植株则不易遭受水分胁迫。 3、光合作用 利用太阳能将二氧化碳和水化合成糖分这一过程最初形成的高能物质是三磷酸腺苷(ATP),ATP 继而作为能源用于其他化学反应。钾离子可以使ATP生成位置的电荷保持平衡状态。当植株缺钾时,光合作用和ATP 生成速度均减慢,因而所有依靠ATP的过程都受到抑制。钾在光合作用中的作用较为复杂,但在调节光合作用方面,钾对酶的活化和在ATP制造过程的作 用比它对气孔的调节作用更为重要。 4 、糖分运输 植物通过韧皮部将光合作用产生的糖分运输到植物的其他部位供利用或贮藏起来。植物的运输系

人体所需各种维生素和微量元素的作用及其缺乏症图文精

现在医学上发现的维生素主要有: 脂溶性维生素 维生素A:维持正常视力,预防夜盲症;维持上皮细胞组织健康;促进生长发育;增加对传染病的抵抗力;预防和治疗干眼病。 维生素D:调节人体内钙和磷的代谢,促进吸收利用,促进骨骼成长。 维生素E:维持正常的生殖能力和肌肉正常代谢;维持中枢神经和血管系统的完整。 维生素K:止血。它不但是凝血酶原的主要成分,而且还能促使肝脏制造凝血酶原。小 儿维生素K缺乏症

水溶性维生素 维生素B1:保持循环、消化、神经和肌内正常功能;调整胃肠道的功能;构成脱羧酶的辅酶,参加糖的代谢;能预防脚气病。 维生素B2:又叫核黄素。核典素是体内许多重要辅酶类的组成成分,这些酶能在体内物质代谢过程中传递氢,它还是蛋白质、糖、脂肪酸代谢和能量利用与组 成所必需的物质。能促进生长发育,保护眼睛、皮肤的健康。 泛酸(维生素B5:抗应激、抗寒冷、抗感染、防止某些抗生素的毒性,消除术后腹胀。 维生素B6:在蛋白质代谢中起重要作用。治疗神经衰弱、眩晕、动脉粥样硬化等。 维生素B12:抗脂肪肝,促进维生素A在肝中的贮存;促进细胞发育成熟和机体代谢; 治疗恶性贫血。 维生素B13(乳酸清。 维生素B15(潘氨酸:主要用于抗脂肪肝,提高组织的氧气代谢率。有时用来治疗冠 心病和慢性酒精中毒。 维生素B17:剧毒。有人认为有控制及预防癌症的作用。 对氨基苯甲酸:在维生素B族中属于最新发现的维生素之一。在人体内可合成。

肌醇:维生素B族中的一种,和胆碱一样是亲脂肪性的维生素。 维生素C:连接骨骼、牙齿、结缔组织结构;对毛细血管壁的各个细胞间有粘合功能; 增加抗体,增强抵抗力;促进红细胞成熟。 维生素P。 维生素PP(烟酸:在细胞生理氧化过程中起传递氢作用,具有防治癞皮病的功效。 叶酸(维生素M:抗贫血;维护细胞的正常生长和免疫系统的功能。 维生素T:帮助血液的凝固和血小板的形成。 维生素U:治疗溃疡上有重要的作用。 详解各种维生素的功效Array 维生素A--眼睛的朋友 维生素A又叫视黄醇或脱氢视黄醇,是一种可溶于脂肪的脂溶性维生素,耐高温,在空气中易氧化。 一、维生素A的主要生理功能 1.维生素A是合成视紫质的原料,该物质是一种感光物质,存在于视网膜内。缺乏维 生素A就不能合成足够的视紫质,将导致夜盲症。 2. 有助于保护皮肤、鼻、咽喉、呼吸器官的内膜,消化系统及泌尿生殖道上皮组织的

钢铁中五大元素的作用与危害及其分析方法

钢铁中五大元素的作用与危害及其分析方法 作者:刘张50905022010 应化2班 钢铁是铁与C(碳)、Si(硅)、Mn(锰)、P(磷)、S(硫)以及少量的其他元素所组成的合金。其中除Fe(铁)外,C的含量对钢铁的机械性能起着主要作用,故统称为铁碳合金。它是工程技术中最重要、用量最大的金属材料。钢铁生产流程包括:矿山开采→选矿→烧结→炼铁→炼钢→连铸→轧钢等。 钢铁工业是最重要的基础工业,是其他工业发展的物质基础。有了钢铁,就使得中国国民经济的技术改造成为可能。同时,钢铁工业的发展也有赖于煤炭工业、采掘工业、冶金工业、动力、运输等工业部门的发展。由于钢铁工业与其他工业的关系十分密切,因此许多国家都把发展钢铁工业放在十分重要的地位,并把这种发展与国民经济各部门的发展互相协调起来,保持正常的比例关系。针对此块精英人才,也是目前我国最稀缺的。 五大元素是特指钢铁中的碳、硫、硅、磷、锰五种元素。 五大元素各个化学元素对钢的性能有以下的影响:1、碳(C) 碳是钢铁的主要成分之一它直接影响着钢铁的性能。碳是区别铁与钢,决定钢号、品级的主要标志。碳是对钢性能起决定作用的元素。碳在钢中可作为硬化剂和加强剂,正是由于碳的存在,才能用热处理的方法来调节和改善其机械性能,钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。2、硅(Si):由原料矿石引入或脱氧及特殊需要而有意加入,在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。如果钢中含硅量超过0.50-0.60%,硅就算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。3、锰(Mn):少量由原料矿石中引入,主要是在冶炼钢铁过程中作为脱硫脱氧剂有意加入,钢铁中主要以MnS状态存在,如S含量较低,过量的锰可能组成MnC、MnSi、FeMnSi等,成固熔体状态存在,在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。4、磷(P):由原料中引入,有时也为了特殊需要而有意加入,以Fe2P或Fe3P状态存在,在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。5、硫(S):主要由焦炭或原料矿石引入钢铁,主要以MnS或FeS状态存在,硫在通常情况下也是有害元素。使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性能也不利,降低耐腐蚀性。所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。 检测钢铁中碳、硫、锰、磷、硅五大元素的方法:碳元素采用气体容量法硫元素采用碘量法锰元素采用银盐--过硫酸铵氧化光度法。磷元素采用氟化钠--氯化亚锡钼蓝光度法硅元素采用亚铁还原--硅钼蓝光度法钢铁中碳、硫、锰、磷、硅五大元素测量范围:C:0.020~6.000%;S:0.0030~2.000%;Mn:0.010~20.500% ;P:0.0005~1.0000%;Si:0.010~18.000%。

农作物需要各种元素的情况

农作物生长所需的各种必需元素 一、各种元素的作用 氮:是蛋白质、核酸、叶绿素、植物酶维生素、生物碱的重要成分。促进细胞的分裂与增长,使作物叶面积大,浓绿色。缺氮时,生长缓慢,植株矮小,叶片薄小,发黄;禾木科植物表现为分孽少,短小穗,子粒不饱满;双子叶植物表现为分枝少,易早衰。过量的氮素会使细胞壁变薄且肥大,柔软多汁,易受病虫侵袭,对恶劣天气失去抗性,导致生育期延长,贪青晚熟;对一些块根、块茎作物,只长叶子,不易结果。 磷:促进根系发育及新生器官形成,有利于作物内干质的积累,谷物子粒饱,块根、块茎作物淀粉含量高,瓜、果、菜糖分提高,油料作物产量和出油率提高;使作物具抗旱、抗寒特性。缺磷:生长缓慢,根系发育不良,叶色紫红,上部叶子深绿发暗,分孽少,生育期推迟,出现穗小、粒少、子秕,玉米秃顶,油菜脱荚,棉花落花落蕾,成桃少,吐絮晚。过磷:作物呼吸作用强烈,消耗大量糖分和能量,无效分孽增多,秕子增多,叶色浓绿,叶片厚密,节间过短,植株矮小,生长受阻,因早熟而产量降低;蔬菜纤维含量高,烟草燃烧性差;能引起锌、铁、镁等元素的缺乏,加重可对作物的不利影响。 钾:促进光合作用。适宜钾量的光合速率是钾量低的2倍以上。促进植株对氮的利用,对根瘤菌的固氮能力提高2—3倍。对粒数和粒重有良好的作用。增强植物的抗性如干旱、低温、含盐量、病虫危害、倒伏等。能减轻水稻胡麻叶斑病、稻瘟病、赤枯病、玉米茎腐病、棉花红叶茎枯病、烟草花叶病等危害。缺钾:叶边缘呈焦枯状,叶卷曲、赫黄色斑点、或坏死。 钙:形成细胞壁,促进细胞分裂,促进根系发育,增强植物的吸收能力,并能消除某种离子毒害的作用。缺钙:幼叶卷曲,粘化烂空,根尖细胞腐烂死亡。 镁:它是叶绿素的组成部分,许多酶的活化剂,能促进磷的转化吸收。还能合成维生素A、C以及对钙、钾、铵、氢等离子有拮抗作用。 硫:能促进氮的吸收,对呼吸有重要作用。硫还是某些植物油的成分。缺硫时叶绿素含量降低,根瘤形成少。 铁:是叶绿素的成分,对呼吸和代谢有重要作用,缺铁时上部叶子出现失绿症。 硼:能促进碳水化合物及生长素的正常运转。促进生殖器官的正常发育。还能调节水分吸收和氧化还原过程。缺硼:生长点和维管束受损。过硼:叶形发皱,叶色发白。

相关文档
最新文档