15秒数显声响倒计时器设计报告

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

任务书:数显声响倒计时电路设计

一.任务及要求

设计并制作一个数显声响式倒计时电路。要求如下:

1.电路具有10—99秒可预置定时功能。

2.有两个数码管显示计时时间,用一只LED指示计时开始与结束。按预置(开始)按钮,数码管显示定时时间,LED灯不亮;再按预置(开

始)按钮,LED亮,倒计时开始。

3.倒计时结束时,计数器停止计数,LED灯不亮。

4.电路具有开机预置数功能。

5.电路具有最后三秒报时功能,要求响半秒停半秒,共三次。用压控陶瓷蜂鸣器作为电声元件。

6.自制本电路所用得直流电源和一秒信号源。

二.参考资料

《数字电子技术实验任务书》实验四及实验六

《电子技术基础》课程设计资料

1.整体设计电路

1.1整体设计思路

总体思路:选用2个74LS192,它是加、减十进制计数器,并且选用了555多谐振荡器,它的作用是产生一个1Hz的方波信号来作为秒脉冲,作为它的cp脉冲。又因为我们要选用2片计数器构成2位计数的状态,固要采用计数器的级联的方法,因为要加快速度的运行,我们选用的是并行进位的级联。因为每个片子以及各种元件均需要一个5V的直流电源来驱动,故我们还需要用一个5V的变压器,整流桥与一个三端稳压器来设计一个电源。因为我们要的是以秒为单位的计数器,所以我们需要的是1Hz的cp信号,这个可以由555多谐振荡器来完成。555多谐振荡器的功能就是你可以调节它的电阻和电容来得到不同频率和不同占空比的脉冲信号。然后还需要两个74LS48译码器与两个共阴数码管来对计数器所记得数进行翻译和显示。当倒计时显示进行到03,02,01这三个数字得时候就报警,以蜂鸣器响声来表示;这个可以用一个四线与门来实现,四线与门的四个输入分别为十位计数器的进位信号,多谐振荡器的输出端,个位的高两位经过或非输出端与低两位经过或门输出端。然后四线与门的后面接蜂鸣器就可以完成报警功能。系统还能开机复位,包括计数器清零,从而达到课设题目要求。

1.2 整体设计方案

2.单元电路设计和基本原理

2.1电源设计

根据变压原理:n1:n2=V1:V2,我们要求将220V 电压降为5V 电压,只要原副线圈比为44:1即可实现变压。

原理图如下:

工频交流

脉动直流

直流

负载

降压电路:交流电源输入220V 的交流电压,一般情况下需要对交流电压进行处理,而降压电路往往采用变压器直接变压,输出5V 交流电。

整流电路:整流电路一般分为半波整流和全波整流。半波整流具有输出电压高、变压器利用率高、脉动小等优点,因此得到相当广泛的应用,其中桥式整流最为常用,单相桥式整流电路将变压器副边电压从交流变为直流电压。鉴于以上优点,本设计采用了桥式整流。

滤波电路:在整流滤波电路的输出端(即负载电阻两端),并联一个电容即得到电容滤波电路。滤波电容容量较大,利用其充放电作用,使输出电压趋于平滑。其中C3起滤波作用,C5的作用是改善电源的动态特性(即载负载电流突变时,可由C5提供较大的瞬时电流)采用大容量的铝解电容器。这种电容器的电感效应较大,对高次谐波的滤波效果较差,通常需要并联高频滤波电容器,其容量在0.01微法到0.1 微法之间即可。

稳压电路:我们采用了集成7805稳压器型稳压电路进行稳压,为后面的一切电路提供了稳定的电压。

整体电源设计原理为:220V 、50HZ

输出U0。

电源部分电路图如下图2-1所示

:

图2-1 电源图

测试后的结果

2.2信号源设计

利用555集成定时器,构成占空比为50%的多谐振荡器,用于产生周期为1s 的矩形方波。 2.2.1 555定时器的引脚排列:

其中管脚1(GND )为接地端;管脚2(TR )为低电平触发端(<1/3);管脚3(Vo )为输出端;管脚4为复位端;管脚5为控制电压输入端,可改变上、下触发电位,不用时接0.01μF 电容倒地;管脚6(TH )为高电平触发端(>2/3Vcc ),也称阀值端;管脚7(D )为放电端;管脚8(Vcc=5V~18V )电源端。

图2.2.1 555定时器管脚图

表1:555定时器功能表

2.2.2 555定时器的几种功能:

1)只要RD=0,无论两个触发端为何状态,输出端Vo=0。

2)当RD=1,高电平触发端TH>2/3Vcc,低触发端TR>1/3Vcc时,D放电管导通,输出端Vo=0。

3)当RD=1,低触发端TR<1/3Vcc,D放电管截止,输出端Vo=1.。

4)当RD=1,而低触发端TR和高电平触发端TH的电平在1/3Vcc到2/3Vcc之间时,输出保持不变。

2.2.4 555定时器制成多谐振荡器

多谐振荡器是一种自激振荡器,接通电源后不需外加触发便能产生矩形脉冲

(2)原理图:

图2.2.2 -多谢振荡器

我们用555定时器构成多谐振荡器的原理很简单,只要将施密特触发器的反相输出端经RC 积分电路接回输入端即可。当接通电源以后,因为电容上的初始电压为0,所以输出为高电平,并开始经电阻R向电容C充电,当充到输入电压为Vi=Vt+时,输出电压跳变为低电平,电容C 又经过电阻R开始放电。当放至Vi=Vt-时,输出电位又跳变为高电平,电容C重新开始充电,如此周而复始,电路便不停的振荡.由Vc的波形求得电容C的充电时间T1和放电时间T2各为

T1=(R1+R2)CLn【(Vcc-VT-)/(Vcc-VT+)】=(R1+R2)CLn2

T2=R2CLn【(0-VT+)/(0-VT-)】=R2CLn2

振荡周期为T=T1+T2=(R1+2R2)CLn2

振荡频率为f=1/T=1/【(R1+2R2)CLn2】

通过改变R和C的参数即可改变振荡频率。输出脉冲的占空比为q=T1/T=(R1+R2)/(R1+2R2)。为了得到占空比为50%的脉冲,可采用占空比可调的可调电路。电容的充电电流和放电电流流经不同的路径,充电电流只经过R1,放电电流只经过R2,因此电容充电时间变为T1=R1CLn2 而放电时间变为T2=R2CLn2,故输出脉冲占空比为q=R1/(R1+R2)取R1=R2则可得到占空比为50%的信号源。

(3)参数计算过程

实验参数:R1=72.46KΩ,R2=72.46KΩ,C1= 10nF,C2=10uf,Vcc=5V。

振荡频率为:f=1/T=1/【(R1+2R2)CLn2】

改变振荡频率的方法:通过改变R和C的参数即可改变振荡频率。

输出脉冲的占空比为q=T1/T=(R1+R2)/(R1+2R2).为了得到占空比为50%的脉冲,可采用占空比可调的可调电路。电容的充电电流和放电电流流经不同的路径,充电电流只经过R1,放电电流只经过R2,因此电容充电时间变为T1=R1CLn2 而放电时间变为T2=R2CLn2,故输出脉冲占空比为q=R1/(R1+R2)取R1=R2则可得到占空比为50%的信号源。经以上分析及计算R1=72.46K=R2,C2=10微法。

(4)仿真显示,结果显示周期为1秒,即信号频率为10Hz。

相关文档
最新文档