华侨大学大学物理下练习答案
大学物理下习题册答案详解
解 : a 30cm ,d 0.6m m , b=2.2m
D =a+b 2.5m ,
x 2.25m m
x D dx 5400 A
d
D
第 4级 明 纹 至 中 心 距 离 满 足 :
dx 4 x 4 D 9.00m m
D
ቤተ መጻሕፍቲ ባይዱ
d
练习34 光的干涉(2)
1.在双缝装置中,用一折射率为n的薄云母片覆盖其中
光的程亮差度2 分,, 2别则. 5为 有 , :3 .5
,比较 P、Q、R 三点
(1)P点最亮、Q点次之、R点最暗;
注意。单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。您的 内容已经简明扼要,字字珠玑,但信息却千丝万缕、错综复杂,需要用更多的文字来表述;但请您尽可能提炼思
20D 想 的 精 髓 , 否 则 容 易 造 成 观 者 的 阅 读 压 力 , 适 得 其 反 。 正 如 我 们 都 希 望 改 变 世 界 , 希 望 给 别 人 带 去 光 明 , 但 更 多
x 20x= 0.11m 时候我们只需要播下一颗种子,自然有微风吹拂,雨露滋养。恰如其分地表达观点,往往事半功倍。当您的内容 a 到 达 这 个 限 度 时 , 或 许 已 经 不 纯 粹 作 用 于 演 示 , 极 大 可 能 运 用 于 阅 读 领 域 ; 无 论 是 传 播 观 点 、 知 识 分 享 还 是 汇 报
n 1 题 目 中 k=-7
所 以 : e 7 n 1
答案为:(1)
2.迈克耳逊干涉仪可用来测量单色光的波长,当干涉仪
的动镜M2移动d距离时,测得某单色光的干涉条纹移 动N条,则该单色光的波长为:( )
大学物理下册课后习题答案word精品文档43页
大学物理下册课后习题答案习题八8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷 解得 q q 33-=' (2)与三角形边长无关.题8-1图 题8-2图8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的解: 如题8-2图示解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式204r q E πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q Eε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d q πε,又有人说,因为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S qE 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力.8-5 一电偶极子的电矩为l q p =,场点到偶极子中心O 点的距离为r ,矢量r 与l的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为证: 如题8-5所示,将p 分解为与r 平行的分量θsin p 和垂直于r的分量θsin p . ∴ 场点P 在r 方向场强分量垂直于r 方向,即θ方向场强分量题8-5图 题8-6图8-6 长l =15.0cm AB 上均匀地分布着线密度λ=5.0x10-9C ·m-1(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 解: 如题8-6图所示(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2) 2220d d π41d +=x xE Q λε 方向如题8-6图所示由于对称性⎰=lQx E 0d ,即Q E只有y 分量,以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向8-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强. 解: 如8-7图在圆上取ϕRd dl =题8-7图ϕλλd d d R l q ==,它在O 点产生场强大小为20π4d d R R E εϕλ=方向沿半径向外则 ϕϕελϕd sin π4sin d d 0RE E x ==积分RR E x 000π2d sin π4ελϕϕελπ==⎰∴ RE E x 0π2ελ==,方向沿x 轴正向.8-8 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E解: 如8-8图示,正方形一条边上电荷4q在P 点产生物强P E d 方向如图,大小为P Ed 在垂直于平面上的分量βcos d d P E E =⊥题8-8图由于对称性,P 点场强沿OP 方向,大小为 ∴ 2)4(π422220l r l r qrE P ++=ε 方向沿OP8-9 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题8-9(3)图所示,在点电荷q 的电场中取半径为R 的圆平面.q 在该平面轴线上的A 点处,求:通过圆平面的电通量.(xRarctan=α) 解: (1)由高斯定理0d εqS E s⎰=⋅立方体六个面,当q 在立方体中心时,每个面上电通量相等∴ 各面电通量06εqe =Φ. (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ, 如果它包含q 所在顶点则0=Φe .如题8-9(a)图所示.题8-9(3)图题8-9(a)图 题8-9(b)图 题8-9(c)图(3)∵通过半径为R 的圆平面的电通量等于通过半径为22x R +的球冠面的电通量,球冠面积**关于球冠面积的计算:见题8-9(c)图8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理0d ε∑⎰=⋅q S E s,02π4ε∑=q rE当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰对(1) 1R r < 0,0==∑E q(2) 21R r R <<λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, n E)(21210σσε-= 1σ面外, n E)(21210σσε+-= 2σ面外, n E)(21210σσε+= n:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a). (1) ρ+球在O 点产生电场010=E,ρ- 球在O 点产生电场'dπ4π3430320OO r E ερ=∴ O 点电场'd33030OO r E ερ= ; (2) ρ+在O '产生电场'd π4d 3430301OO E ερπ=' ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E 'OO 题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r',相对O 点位矢为r (如题8-13(b)图)则 03ερrE PO =,∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6Cd=0.2cm ,把这电偶极子放在1.0×105N ·C-1解: ∵ 电偶极子p在外场E中受力矩 ∴ qlE pE M ==max 代入数字8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功?解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εε )11(21r r -外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的解: 如题8-16图示8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题8-17图(2) AB 电荷在O 点产生电势,以0=∞U同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C) 解: 设均匀带电直线电荷密度为λ,在电子轨道处场强 电子受力大小 re eE F e 0π2ελ== 得 1320105.12π2-⨯==emv ελ1m C -⋅ 8-19 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm解: 平行板电容器内部近似为均匀电场8-20 根据场强E与电势U 的关系U E -∇= ,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图)解: (1)点电荷 rqU 0π4ε=题 8-20 图 ∴ 0200π4r rq r r U E ε=∂∂-= 0r 为r 方向单位矢量. (2)总电量q ,半径为R 的均匀带电圆环轴上一点电势(3)偶极子l q p=在l r >>处的一点电势8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有 说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即又∵ +2σ03=σ说明相背两面上电荷面密度总是大小相等,符号相同.8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少? 解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ AB AC U U =,即且 1σ+2σSq A= 得 ,32S q A =σ Sq A321=σ而 7110232-⨯-=-=-=A C q S q σCC10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC AC AC A E U εσV 8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计(1) (2) *(3) 解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且 得 q R R q 21=' 外球壳上电势8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:得 -='q 3q 8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2解: 由题意知 2020π4r q F ε=(1)小球3接触小球1后,小球3和小球1均带电 小球3再与小球2接触后,小球2与小球3均带电 ∴ 此时小球1与小球2间相互作用力(2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q . ∴ 小球1、2间的作用力00294π432322F r q q F ==ε *8-26 如题8-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势.解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持U U AB =可得以下6个方程题8-26图 解得 Sq 261==σσ 所以CB 间电场 Sqd U E 00422εεσ+==注意:因为C 片带电,所以2U U C ≠,若C 片不带电,显然2U U C = 8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求:(1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强 介质外)(2R r <场强 (2)介质外)(2R r >电势介质内)(21R r R <<电势 (3)金属球的电势8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ 由∑⎰=⋅0d q S D得而 101E D ε=,202E D r εε=题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容.解: 取半径为r 的同轴圆柱面)(S则 rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑(1)电场能量密度 22222π82l r Q D w εε== 薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222=== (2)电介质中总电场能量(3)电容:∵ CQ W 22=*8-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求: (1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度. 解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即 但2q 处于金属球壳中心,它受合力..为零,没有加速度. (2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41r q q F ε=,但此时2q 受合力不为零,有加速度.题8-30图 题8-31图8-31 如题8-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U .解: 电容1C 上电量电容2C 与3C 并联3223C C C += 其上电荷123Q Q =8-32 1C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V ? 解: (1) 1C 与2C 串联后电容 (2)串联后电压比231221==C C U U ,而100021=+U U 即电容1C 电压超过耐压值会击穿,然后2C 也击穿.8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求: (1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112*********U U U C U C q qU C U C q q q q 解得 (1) =1q U C C C C C q U C C C C C 21212221211)(,)(+-=+- (2)电场能量损失8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域在21R r R <<时 301π4r rQ E ε=3R r >时 302π4rrQ E ε = ∴在21R r R <<区域 在3R r >区域∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε(2)导体壳接地时,只有21R r R <<时30π4r rQ E ε =,02=W(3)电容器电容 )11/(π422102R R QW C -==ε 习题九9-1 在同一磁感应线上,各点B的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B的方向?解: 在同一磁感应线上,各点B的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B的方向.题9-2图9-2 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)? (2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B=(2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B方向相反,即21B B≠.9-3 用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.9-4 在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管 外面环绕一周(见题9-4图)的环路积分⎰外B L·d l =0 但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为⎰外B L·d l =I 0μ这是为什么?解: 我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μ外,与⎰⎰=⋅=⋅Ll l B 0d 0d外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B 的轴向分量为零,而垂直于轴的圆周方向分量rIB πμ20=⊥,r 为管外一点到螺线管轴的距离.题 9 - 4 图9-5 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发 生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.9-6 已知磁感应强度0.2=B Wb ·m-2x 轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量.解: 如题9-6图所示题9-6图(1)通过abcd 面积1S 的磁通是 (2)通过befc 面积2S 的磁通量(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S BΦWb (或曰24.0-Wb )题9-7图9-7 如题9-7图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B、CD 三部分电流产生.其中AB 产生 01=BCD 产生RIB 1202μ=,方向垂直向里CD 段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里 ∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里. 9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B题9-8图解:如题9-8图所示,A B方向垂直纸面向里(2)设0=B在2L 外侧距离2L 为r 处则02)1.0(220=-+rIr I πμπμ 解得 1.0=r m题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度. 解: 如题9-9图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。
华侨大学 大学物理作业本(下)答案
大学物理作业本(下)姓名班级学号江西财经大学电子学院2005年10月第九章 稳恒磁场练 习 一1. 已知磁感应强度为20.2-⋅=m Wb B 的均匀磁场,方向沿x 轴正方向,如图所示。
求:(1) 通过图中abcd 面的磁通量;(2) 通过图中befc 面的磁通量;(3) 通过图中aefd 面的磁通量。
2. 如图所示,在被折成钝角的长直导线通中有20安培的电流。
求A 点的磁感应强度。
设a=2.0cm , 120=α。
3.有一宽为a的无限长薄金属片,自下而上通有电流I,如图所示,求图中P点处的磁感应强度B。
4.半径为R的圆环,均匀带电,单位长度所带的电量为 ,以每秒n转绕通过环心并与环面垂直的轴作等速转动。
求:(1)环心的磁感应强度;(2)在轴线上距环心为x处的任一点P的磁感应强度。
练习二1.一载有电流I的圆线圈,半径为R,匝数为N。
求轴线上离圆心x处的磁感应强度B,取R=12cm,I=15A,N=50,计算x=0cm,x=5.0cm, x=15cm各点处的B值;2.在一半径R=1.0cm的无限长半圆柱形金属薄片中,自上而下通有电流I=5.0A,如图所示。
求圆柱轴线上任一点P处的磁感应强度。
3.如图所示,两无限大平行平面上都有均匀分布的电流,设其单位宽度上的电流分别为1i 和2i ,且方向相同。
求:(1) 两平面之间任一点的磁感应强度;(2) 两平面之外任一点的磁感应强度;(3) i i i ==21时,结果又如何?4.10A 的电流均匀地流过一根长直铜导线。
在导线内部做一平面S ,一边为轴线,另一边在导线外壁上,长度为1m ,如图所示。
计算通过此平面的磁通量。
(铜材料本身对磁场分布无影响)。
练习三1.半径为R 的薄圆盘上均匀带电,总电量为q ,令此盘绕通过盘心且垂直盘面的轴线匀速转动,角速度为ω,求轴线上距盘心x 处的磁感应强度。
2.矩形截面的螺绕环,尺寸如图所示。
(1) 求环内磁感应强度的分布;(2) 证明通过螺绕环截面(图中阴影区)的磁通量,210ln 2D D NIh πμ=Φ 式中N 为螺绕环总匝数,I 为其中电流强度。
大物下册课后习题答案
大物下册课后习题答案大物下册课后习题答案大学物理是一门重要的基础学科,它涉及到我们周围的自然现象和物质运动规律的研究。
作为学习大学物理的学生,课后习题是巩固知识、提高能力的重要途径。
下面将为大家提供大物下册课后习题的答案,希望对大家的学习有所帮助。
第一章:运动的描述1. 速度与位移的区别是什么?答:速度是描述物体在单位时间内位移的快慢,是矢量量,有大小和方向;位移是描述物体从一个位置到另一个位置的距离和方向,是矢量量,有大小和方向。
2. 什么是匀速直线运动?答:匀速直线运动是指物体在相等时间内位移相等的运动。
在匀速直线运动中,速度大小和方向保持不变。
3. 什么是加速度?答:加速度是描述物体速度变化率的物理量,是矢量量,有大小和方向。
加速度的大小等于速度变化量与时间的比值。
第二章:牛顿定律与运动学1. 牛顿第一定律是什么?答:牛顿第一定律,也称为惯性定律,指出当物体受力为零时,物体将保持静止或匀速直线运动的状态。
2. 什么是牛顿第二定律?答:牛顿第二定律指出,物体的加速度与作用在物体上的力成正比,与物体的质量成反比。
即F=ma,其中F为物体所受合力,m为物体的质量,a为物体的加速度。
3. 什么是牛顿第三定律?答:牛顿第三定律指出,任何一个物体受到的作用力都有一个大小相等、方向相反的反作用力作用在另一个物体上。
第三章:动能、功和能量守恒定律1. 动能是什么?答:动能是物体由于运动而具有的能量,它与物体的质量和速度的平方成正比。
动能的表达式为:K=1/2mv²,其中K为动能,m为物体的质量,v为物体的速度。
2. 什么是功?答:功是描述力对物体做功的物理量,它等于力与物体位移的乘积。
功的表达式为:W=Fs,其中W为功,F为力,s为物体的位移。
3. 能量守恒定律是什么?答:能量守恒定律指出,在一个封闭系统内,能量的总量是不变的。
能量可以相互转化,但不能被创造或破坏。
第四章:动量和碰撞1. 动量是什么?答:动量是物体运动的量度,它等于物体的质量与速度的乘积。
大学物理练习册答案(下册)-
(1) x Acos( 2π t )
T
(2)
x Acos( 2π t 1 )
T2
(3)x Acos( 2π t 1 ) (4) x Acos( 2π t 3 )
T3
T4
2.两位外星人A和B生活在一个没有自转,没有大气, 表面光滑的匀质球形小星球上。有一次他们决定进 行一场比赛,从他们所在的位置出发,各自采用航 天技术看谁能先达到星球的对径位置。A计划穿过星 体直径凿一条通道,采用自由下落方式到达目标位 置;B计划沿着紧贴着星球表面的空间轨道,象人造 卫星一样航行到目标位置。试问A和B谁会赢得比赛?
C. 1 , 1 ,0.05 22
D. 2,2,0.05
9. 一列机械横波在t时刻的波形曲线如图所示, 则该时刻能量为最大值的媒y质质元的位置是:
A. o, b, d, f B. a, c, e, g O'
C. o, d
D. b, f O
d
a
eg
c
b
fx
(二) 填空题 1.一横波的波动方程为: y 0.01cos(250πt 10πx)(m)
解: 以星球中心为原点在直径 通道上设置x轴,A在x处受引力:
Fx
G
Mm R3
x
(注: 只有半径为x的星球部分对A有引力)
式中M为星球质量, R为星球半径, m为A的质量
A做简谐振动, 周期为 T 2 m / k k GMm / R3
A到达目标所需的时间为 tA T / 2 R R / GM B以第一宇宙速度做圆周运动 vB GM / R B到达目标所需的时间为 tB R / vB R R / GM
4. 一质点在x轴上作谐振动振幅A=4cm, 周期T=2s, 其平衡位置取作坐标原点, 若t=0时刻近质点第一次通过x=-2cm处, 且向x轴正方向运动, 则质点第二次通过 x=-2cm,处时刻为:[]
《大学物理》下册试卷及答案(K12教育文档)
《大学物理》下册试卷及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(《大学物理》下册试卷及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为《大学物理》下册试卷及答案(word版可编辑修改)的全部内容。
2008—2009《大学物理》(下)考试试卷一、选择题(单选题,每小题3分,共30分):1、两根无限长平行直导线载有大小相等方向相反的电流I ,I 以dI/dt 的变化率增长,一矩形线圈位于导线平面内(如图所示),则 。
(A),矩形线圈中无感应电流;(B),矩形线圈中的感应电流为顺时针方向; (C),矩形线圈中的感应电流为逆时针方向; (D),矩形线圈中的感应电流的方向不确定;2,如图所示的系统作简谐运动,则其振动周期为 。
(A ),k m T π2=;(B), k m T θπsin 2=; (C ), km T θπcos 2=; (D), θθπcos sin 2k m T =;3,在示波器的水平和垂直输入端分别加上余弦交变电压,屏上出现如图所示的闭合曲线,已知水平方向振动的频率为600Hz ,则垂直方向的振动频率为 。
(A ),200Hz ;(B), 400Hz;(C ), 900Hz;(D), 1800Hz ;4,振幅、频率、传播速度都相同的两列相干波在同一直线上沿相反方向传播时叠加可形成驻波,对于一根长为100cm的两端固定的弦线,要形成驻波,下面哪种波长不能在其中形成驻波? .(A),λ=50cm;(B), λ=100cm;(C),λ=200cm;(D), λ=400cm;5,关于机械波在弹性媒质中传播时波的能量的说法,不对的是。
《大学物理学》第二版下册习题解答
大学物理学第二版下册习题解答第一章:力学1.1 力学基本概念1.1.1 力的概念问题:什么是力?力的种类有哪些?解答:力是物体之间相互作用导致的物体运动或形变的原因。
力可以分为以下几种:•接触力:当两个物体接触时产生的力,如弹簧力、摩擦力等。
•引力:天体之间由于引力而产生的力,如地球引力、行星引力等。
•重力:地球上物体受到的引力,是一种特殊的引力。
•弹力:当物体被弹性体拉伸或压缩时,物体回复原状所产生的力。
•阻力:物体在流体中运动时受到的阻碍力,如空气阻力、水阻力等。
1.1.2 力的合成与分解问题:什么是力的合成与分解?如何进行力的合成与分解?解答:力的合成是指将多个力按照一定的规律合成为一个力的过程。
力的分解是指将一个力按照一定的规律分解为多个力的过程。
力的合成可以使用力的三角法进行。
假设有两个力F₁、F₂,其方向分别为α₁、α₂,大小分别为|F₁|、|F₂|,则合力F的大小可以通过以下公式计算:F = √(F₁² + F₂² + 2F₁F₂cos(α₁-α₂))合力F的方向则可以通过以下公式计算:tan(θ) = (F₂sin(α₁-α₂))/(F₁+F₂cos(α₁-α₂))力的分解可以使用力的正弦法和余弦法进行。
假设有一个力F,其大小为|F|,方向为α,要将该力分解为水平方向的力F x和竖直方向的力F x,可以通过以下公式计算:Fₓ = |F|cosα, Fᵧ = |F|sinα1.2 牛顿定律与惯性1.2.1 牛顿第一定律问题:什么是牛顿第一定律?牛顿第一定律适用于哪些情况?解答:牛顿第一定律,也称为惯性定律,指的是:物体在没有受到外力或受到的合外力为零时,物体保持静止或匀速直线运动的状态。
牛顿第一定律适用于只有一个物体或多个物体之间相互独立运动的情况。
当物体受到外力时,按照该定律,物体会发生运动或停止运动。
1.2.2 牛顿第二定律问题:什么是牛顿第二定律?如何计算物体所受合外力和加速度的关系?解答:牛顿第二定律指的是:物体所受合外力等于物体的质量乘以加速度。
华侨大学 大学物理作业本(下)答案
大学物理作业本(下)姓名班级学号江西财经大学电子学院2005年10月第九章 稳恒磁场练 习 一1. 已知磁感应强度为20.2-⋅=m Wb B 的均匀磁场,方向沿x 轴正方向,如图所示。
求:(1) 通过图中abcd 面的磁通量;(2) 通过图中befc 面的磁通量;(3) 通过图中aefd 面的磁通量。
2. 如图所示,在被折成钝角的长直导线通中有20安培的电流。
求A 点的磁感应强度。
设a=2.0cm ,ο120=α。
3.有一宽为a的无限长薄金属片,自下而上通有电流I,如图所示,求图中P点处的磁感应强度B。
4.半径为R的圆环,均匀带电,单位长度所带的电量为 ,以每秒n转绕通过环心并与环面垂直的轴作等速转动。
求:(1)环心的磁感应强度;(2)在轴线上距环心为x处的任一点P的磁感应强度。
练习二1.一载有电流I的圆线圈,半径为R,匝数为N。
求轴线上离圆心x处的磁感应强度B,取R=12cm,I=15A,N=50,计算x=0cm,x=5.0cm, x=15cm各点处的B值;2.在一半径R=1.0cm的无限长半圆柱形金属薄片中,自上而下通有电流I=5.0A,如图所示。
求圆柱轴线上任一点P处的磁感应强度。
3.如图所示,两无限大平行平面上都有均匀分布的电流,设其单位宽度上的电流分别为1i 和2i ,且方向相同。
求:(1) 两平面之间任一点的磁感应强度;(2) 两平面之外任一点的磁感应强度;(3) i i i ==21时,结果又如何?4.10A 的电流均匀地流过一根长直铜导线。
在导线内部做一平面S ,一边为轴线,另一边在导线外壁上,长度为1m ,如图所示。
计算通过此平面的磁通量。
(铜材料本身对磁场分布无影响)。
练习三1.半径为R 的薄圆盘上均匀带电,总电量为q ,令此盘绕通过盘心且垂直盘面的轴线匀速转动,角速度为ω,求轴线上距盘心x 处的磁感应强度。
2.矩形截面的螺绕环,尺寸如图所示。
(1) 求环内磁感应强度的分布;(2) 证明通过螺绕环截面(图中阴影区)的磁通量,210ln 2D D NIh πμ=Φ 式中N 为螺绕环总匝数,I 为其中电流强度。
大学物理下练习题标准答案
大学物理下练习题答案————————————————————————————————作者:————————————————————————————————日期:大学物理下练习题一、选择题(每题1分,共41分)1.关于电场强度定义式E = F /q 0,下列说法中哪个是正确的?(B )(A) 场强E 的大小与试验电荷q 0的大小成反比;(B) 对场中某点,试验电荷受力F 与q 0的比值不因q 0而变; (C) 试验电荷受力F 的方向就是场强E 的方向; (D) 若场中某点不放试验电荷q 0,则F = 0,从而E = 0.2.下列几个说法中哪一个是正确的?(C )(A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向。
(B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同。
(C )场强方向可由 E =F /q 定出,其中 q 为试验电荷的电量,q 可正、可负,F 为试验电荷所受的电场力。
( D )以上说法都不正确。
3.图1.1所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ ( x < 0)和-λ ( x > 0),则xOy 平面上(0, a )点处的场强为: (A )(A )i a02πελ. (B) 0.(C)i a 04πελ. (D))(40j +i aπελ.4. 边长为a 的正方形的四个顶点上放置如图1.2所示的点电荷,则中心O 处场强(C )(A) 大小为零.(B) 大小为q/(2πε0a 2), 方向沿x 轴正向.(C) 大小为()2022a q πε, 方向沿y 轴正向.(D) 大小为()2022a q πε, 方向沿y 轴负向.5. 如图1.3所示.有一电场强度E 平行于x 轴正向的均匀电场,则通过图中一半径为R 的半球面的电场强度通量为(D )(A) πR 2E .(B) πR 2E /2 . (C) 2πR 2E . (D) 0 .6. 下列关于高斯定理理解的说法中,正确的是:(B )(A)当高斯面内电荷代数和为零时,高斯面上任意点的电场强度都等于零+λ -• (0, xyO 图1.1O q a --2x y 图1.2E O图1.3 xy(B)高斯面上电场强处处为零,则高斯面内的电荷代数和必为零。
大学物理学(下册)习题答案详解
第十二章 热力学基础一、选择题 12-1 C 12-2 C 12-3 C 12-4 B 12-5 C 12-6 A 二、填空题 12-710000100p V p V p V p V --12-8 260J ,280J - 12-912-10 )(5.21122V p V p -,))((5.01212V V p p -+,)(5.0)(312211122V p V p V p V p -+- 12-11 268J ,732J 三、计算题12-12 分析:理想气体的内能是温度T 的单值函数,内能的增量E ∆由始末状态的温度的增量T ∆决定,与经历的准静态过程无关.根据热力学第一定律可知,在等温过程中,系统从外界吸收的热量全部转变为内能的增量,在等压过程中,系统从外界吸收的热量部分用来转变为内能的增量,同时对外做功. 解:单原子理想气体的定体摩尔热容,32V m C R = (1) 等体升温过程20=A,21333()8.3150623222V V m E Q C T R T R T T J J ∆==∆=∆=-=⨯⨯= (2) 等压膨胀过程,2133()8.315062322V m E C T R T T J J ∆=∆=-=⨯⨯= 2121()()8.3150416A p V V R T T J J =-=-=⨯=1039p Q A E J =+∆=或者,,215()8.315010392p p m p m Q C T C T T J J =∆=-=⨯⨯=12-13 分析:根据热力学第一定律和理想气体物态方程求解. 解:氢气的定体摩尔热容,52V m C R =(1) 氢气先作等体升压过程,再作等温膨胀过程. 在等体过程中,内能的增量为 ,558.3160124622V V m Q E C T R T J J =∆=∆=∆=⨯⨯= 等温过程中,对外界做功为221ln8.31(27380)ln 22033T T V Q A RT J J V ===⨯+⨯= 吸收的热量为3279V T Q Q Q J =+=(2) 氢气先作等温膨胀过程,然后作等体升压过程. 在等温膨胀过程中,对外界做功为211ln8.31(27320)ln 21687T V A RT J J V ==⨯+⨯= 在等体升压过程中,内能的增量为,558.3160124622V m E C T R T J J ∆=∆=∆=⨯⨯= 吸收的热量为2933T Q A E J =+∆=3虽然氢气所经历的过程不同,但由于始末状态的温差T ∆相同,因而内能的增量E ∆相同,而Q 和A 则与过程有关.12-14 分析:卡诺循环的效率仅与高、低温热源的温度1T 和2T 有关.本题中,求出等温膨胀过程吸收热量后,利用卡诺循环效率及其定义,便可求出循环的功和在等温压缩过程中,系统向低温热源放出的热量. 解:从高温热源吸收的热量321110.005ln 8.31400ln 5.35100.001V m Q RT J J M V ==⨯⨯=⨯ 由卡诺循环的效率2113001125%400T A Q T η==-=-= 可得循环中所作的功310.255350 1.3410A Q J J η==⨯=⨯传给低温热源的热量3321(1)(10.25) 5.3510 4.0110Q Q J J η=-=-⨯⨯=⨯12-15 分析:在a b →等体过程中,系统从外界吸收的热量全部转换为内能的增量,温度升高.在b c →绝热过程中,系统减少内能,降低温度对外作功,与外界无热量交换.在c a →等压压缩过程中,系统放出热量,温度降低,对外作负功.计算得出各个过程的热量和功,根据热机循环效率的定义即可得证. 证明:在a b →等体过程中,系统从外界吸收的热量为,,1222()()V m V V m b a C mQ C T T p V p V M R=-=-在c a →等压压缩过程中,系统放出热量的大小为,,2122()()p m P p m c a C mQ C T T p V p V M R=-=- 所以,该热机的循环效率为41,212221,12222(1)()111()(1)p m P V V m V C p V p V Q V p Q C p V p V p ηγ--=-=-=---12-16 分析:根据卡诺定理,在相同的高温热源(1T ),与相同的低温热源(2T )之间工作的一切可逆热机的效率都相等,有221111Q TQ T η=-=-.非可逆热机的效率221111Q T Q T η=-<-. 解:(1) 该热机的效率为21137.4%Q Q η=-= 如果是卡诺热机,则效率应该是21150%c T T η=-= 可见它不是可逆热机.(2) “尽可能地提高效率”是指热机的循环尽可能地接近理想的可逆循环工作方式.根据热机效率的定义,可得理想热机每秒吸热1Q 时所作的功为4410.50 3.3410 1.6710c A Q J J η==⨯⨯=⨯5第十三章 气体动理论一、选择题 13-1 D 13-2 B 13-3 D 13-4 D 13-5 C 13-6 C 13-7 A 二、填空题13-8 相同,不同;相同,不同,相同. 13-9 (1)分子体积忽略不计;(2)分子间的碰撞是完全弹性的; (3)只有在碰撞时分子间才有相互作用.13-10 速率大于p v 的分子数占总分子数的百分比,分子的平均平动动能,()d 1f v v ∞=⎰,速率在∞~0内的分子数占总分子数的百分之百.13-11 氧气,氢气,1T 13-12 3,2,013-13 211042.9-⨯J ,211042.9-⨯J ,1:2 13-14 概率,概率大的状态. 三、计算题13-15 分析:根据道尔顿分压定律可知,内部无化学反应的平衡状态下的混合气体的总压强,等于混合气体中各成分理想气体的压强之和.解:设氦、氢气压强分别为1p 和2p ,则12p p p =+.由理想气体物态方程,得1He He m RTp M V =, 222H H m RT p M V=所以,总压强为62255123334.010 4.0108.31(27230)()()4.010 2.010 1.010H He He H m m RT p p p Pa M M V -----⨯⨯⨯+=+=+=+⨯⨯⨯⨯ 47.5610Pa =⨯13-16 解:(1)=可得 氢的方均根速率3/ 1.9310/s m s ===⨯ 氧的方均根速率483/m s === 水银的方均根速率/193/s m s === (2) 温度相同,三种气体的平均平动动能相同232133 1.3810300 6.211022k kT J J ε--==⨯⨯⨯=⨯13-17 分析:在某一速率区间,分布函数()f v 曲线下的面积,表示分子速率在该速率区间内的分子数占总分子数的百分比.速率区间很小时,这个百分比可近似为矩形面积()Nf v v N∆∆=,函数值()f v 为矩形面积的高,本题中可取为()p f v .利用p v 改写麦克斯韦速率分布律,可进一步简化计算.解: ()Nf v v N∆=∆ 当300T K =时,氢气的最概然速率为1579/p v m s ==== 根据麦克斯韦速率分布率,在v v v →+∆区间内的分子数占分子总数的百分比为232224()2mvkT N m e v v N kTππ-∆=∆7用p v 改写()f v v ∆有223()2222()4()e ()()2pv mv v kTpp mv v f v v v v e kTv v ππ--∆∆=∆=由题意可知,10p v v =-,(10)(10)20/p p v v v m s ∆=+--=.而10p v ,所以可取p v v ≈,代入可得1201.05%1579p N e N-∆=⨯=13-18 解:(1) 由归一化条件204()d 1FF V V dN V AdV f v v N Nπ∞===⎰⎰⎰ 可得 334F NA V π= (2) 平均动能2230143()d d 24FV FV N f v v mv v N V πωωπ∞==⨯⨯⎰⎰423031313d ()2525FV F F F mv v mv E v =⨯==⎰13-19 分析:气体分子处于平衡态时,其平均碰撞次数于分子数密度和分子的平均速率有关.温度一定时,平均碰撞次数和压强成正比.解:(1) 标准状态为50 1.01310p Pa =⨯,0273T K =,氮气的摩尔质量32810/M kg mol -=⨯由公式v =kTp n =可得224Z d nv d d π===5102231.013104(10)/1.3810273s π--⨯=⨯⨯⨯次885.4210/s =⨯次(2) 41.3310p Pa -=⨯,273T K =4102231.331044(10)/1.3810273Z ds ππ---⨯==⨯⨯⨯次0.71/s =次13-20 分析:把加热的铁棒侵入处于室温的水中后,铁棒将向水传热而降低温度,但“一大桶水”吸热后的水温并不会发生明显变化,因而可以把“一大桶水”近似为恒温热源.把铁棒和“一大桶水”一起视为与外界没有热和功作用的孤立系统,根据热力学第二定律可知,在铁棒冷却至最终与水同温度的不可逆过程中,系统的熵将增加.熵是态函数,系统的熵变仅与系统的始末状态有关而与过程无关.因此,求不可逆过程的熵变,可在始末状态之间设计任一可逆过程进行求解. 解:根据题意有 1273300573T K =+=,227327300T K =+=.设铁棒的比热容为c ,当铁棒的质量为m ,温度变化dT 时,吸收(或放出)的热量为dQ mcdT =设铁棒经历一可逆的降温过程,其温度连续地由1T 降为2T ,在这过程中铁棒的熵变为2121d d 300ln 5544ln /1760/573T T T Q mc T S mc J K J K T T T ∆====⨯⨯=-⎰⎰9第十四章 振动学基础一、选择题 14-1 C 14-2 A 14-3 B 14-4 C 14-5 B 二、填空题 14-622 14-7 5.5Hz ,114-82411s ,23π 14-9 0.1,2π14-10 2222mA T π- 三、计算题14-11 解:简谐振动的振幅2A cm =,速度最大值为3/m v cm s =则 (1) 2220.024 4.20.033m A T s s s v ππππω⨯====≈ (2) 222220.03m/s 0.045m/s 4m m m a A v v T ππωωπ===⨯=⨯≈ (3) 02πϕ=-,3rad/s 2ω= 所以 30.02cos()22x t π=- [SI]14-12 证明:(1) 物体在地球内与地心相距为r 时,它受到的引力为2MmF Gr=- 负号表示物体受力方向与它相对于地心的位移方向相反.式中M 是以地心为中心,以r 为半径的球体内的质量,其值为10343M r πρ=因此 43F G m r πρ=-物体的加速度为43F aG r m πρ==- a 与r 的大小成正比,方向相反,故物体在隧道内作简谐振动. (2) 物体由地表向地心落去时,其速度dr dr dv dr v a dt dv dt dv=== 43vdv adr G rdr πρ==-043v r R vdv G rdr πρ=-⎰⎰ 所以v =又因为dr vdt == 所以tRdt =-⎰⎰则得1126721min 4t s ===≈14-13 分析:一物体是否作简谐振动,可从动力学方法和能量分析方法作出判断.动力学的分析方法由对物体的受力分析入手,根据牛顿运动方程写出物体所满足的微分方程,与简谐振动的微分方程作出比较后得出判断.能量法求解首先需确定振动系统,确定系统的机械能是否守恒,然后需确定振动物体的平衡位置和相应的势能零点,再写出物体在任意位置时的机械能表达式,并将其对时间求一阶导数后与简谐振动的微分方程作比较,最后作出是否作简谐振动的判断. 解:(1) 能量法求解取地球、轻弹簧、滑轮和质量为m 的物体作为系统.在物体上下自由振动的过程中,系统不受外力,系统内无非保守内力作功,所以系统的机械能守恒. 取弹簧的原长处为弹性势能零点,取物体受合力为零的位置为振动的平衡位11置,也即Ox 轴的坐标原点,如图14-13(a)所示.图14-13 (a)图14-13 (b)设物体在平衡位置时,弹簧的伸长量为l ,由图14-13(b)可知,有10mg T -=,120T R T R -=,2T kl =得 mgl k=当物体m 偏离平衡位置x 时,其运动速率为v ,弹簧的伸长量为x l +,滑轮的角速度为ω.由系统的机械能守恒,可得222111()222k x l mv J mgx ω+++-=常量 式中的角速度 1v dxR R dt ω==将机械能守恒式对时间t 求一阶导数,得2222d x k x x dt m J Rω=-=-+ 上式即为简谐振动所满足的微分方程,式中ω为简谐振动的角频率2km J R ω=+另:动力学方法求解物体和滑轮的受力情况如图14-13(c)所示.12图14-13 (c)1mg T ma -= (1)12()JT T R J a Rβ-==(2) 设物体位于平衡位置时,弹簧的伸长量为l ,因为这时0a =,可得12mg T T kl ===当物体对平衡位置向下的位移为x 时,2()T k l x mg kx =+=+ (3)由(1)、(2)、(3)式解得2ka x m J R =-+物体的加速度与位移成正比,方向相反,所以它是作简谐振动. (2) 物体的振动周期为222m J R T kππω+==(3) 当0t =时,弹簧无伸长,物体的位移0x l =-;物体也无初速,00v =,物体的振幅22200()()v mgA x l l kω=+=-==00cos 1x kl A mgϕ-===- 则得 0ϕπ=13所以,物体简谐振动的表达式为2cos()mg k x t k m J Rπ=++ 14-14 分析:M 、m 一起振动的固有频率取决于k 和M m +,振动的初速度0m v 由M 和m 的完全非弹性碰撞决定,振动的初始位置则为空盘原来的平衡位置.图14-14解:设空盘静止时,弹簧伸长1l ∆(图14-14),则1Mg k l =∆ (1)物体与盘粘合后且处于平衡位置,弹簧再伸长2l ∆,则12()()m M g k l l +=∆+∆ (2)将(1)式代入得2mg k l =∆与M 碰撞前,物体m 的速度为02m v gh =与盘粘合时,服从动量守恒定律,碰撞后的速度为02m m mv v gh m M m M==++取此时作为计时零点,物体与盘粘合后的平衡位置作为坐标原点,坐标轴方向竖直向下.则0t =时,02mg x l k =-∆=-,02mv v gh m M==+14ω=由简谐振动的初始条件,0000cos , sin x A v A ϕωϕ==-可得振幅A ===初相位0ϕ满足000tan v x ϕω=-== 因为 00x <,00v >所以 032πϕπ<<0ϕπ=+所以盘子的振动表式为cos x π⎤⎫=+⎥⎪⎪⎥⎭⎦14-15 解:(1) 振子作简谐振动时,有222111222k p E E E mv kx kA +==+= 当k p E E =时,即12p E E =.所以 22111222kx kA =⨯0.200.14141x m m ==±=±(2)由条件可得振子的角频率为/2/s rad s ω=== 0t =时,0x A =,故00ϕ=.动能和势能相等时,物体的坐标15x =即cos A t ω=,cos t ω= 在一个周期内,相位变化为2π,故3574444t ππππω=, , , 时间则为1 3.140.3944 2.0t s s πω===⨯ 213330.39 1.24t t s s πω===⨯=315550.39 2.04t t s s πω===⨯=417770.39 2.74t t s s πω===⨯=14-16 解:(1) 合成振动的振幅为A =0.078m== 合成振动的初相位0ϕ可由下式求出110220*********.05sin0.06sin sin sin 44tan 113cos cos 0.05cos 0.06cos 44A A A A ππϕϕϕππϕϕ⨯+⨯+===+⨯+⨯ 084.8ϕ=(2) 当0102k ϕϕπ-=± 0,1,2,k =时,即0103224k k πϕπϕπ=±+=±+时, 13x x +的振幅最大.取0k =,则 031354πϕ== 当020(21)k ϕϕπ-=±+0,1,2,k =时,即020(21)(21)4k k πϕπϕπ=±++=±++时,13x x +的振幅最小.取0k =,则 052254πϕ==(或031354πϕ=-=-) 14-17 分析:质点同时受到x 和y 方向振动的作用,其运动轨迹在Oxy 平面内,16质点所受的作用力满足力的叠加原理.解:(1) 质点的运动轨迹可由振动表达式消去参量t 得到.对t 作变量替换,令12t t '=-,两振动表达式可改写为0.06cos()0.06sin 323x t t πππ''=+=-0.03cos3y t π'=将两式平方后相加,得质点的轨迹方程为222210.060.03x y += 所以,质点的运动轨迹为一椭圆. (2) 质点加速度的两个分量分别为22220.06()cos()3339x d x a t x dt ππππ==-+=-22220.03()cos()3369y d y a t y dt ππππ==--=-当质点的坐标为(,)x y 时,它所受的作用力为22()99x y F ma i ma j m xi yj mr ππ=+=-+=-可见它所受作用力的方向总是指向中心(坐标原点),作用力的大小为223.1499F ma π====⨯=14-18 分析:充电后的电容器和线圈构成LC 电磁振荡电路.不计电路的阻尼时,电容器极板上的电荷量随时间按简谐振动的规律变化.振荡电路的固有振动频率由L 和C 的乘积决定,振幅和初相位由系统的初始状态决定.任意时刻电路的状态都可由振荡的相位决定. 解:(1) 电容器中的最大能量212e W C ε=线圈中的最大能量17212m m W LI =在无阻尼自由振荡电路中没有能量损耗,e m W W =.因此221122m C LI ε=21.4 1.410m I A A -===⨯(2) 当电容器的能量和电感的能量相等时,电容器能量是它最大能量的一半,即22124q C C ε= 因此661.010 1.41.0101.41q C C --⨯⨯==±=±⨯ (3) LC 振荡电路中,电容器上电荷量的变化规律为00cos()q Q t ωϕ=+式中0Q C ε=,ω=.因为0t =时,0q Q =,故有00ϕ=.于是q C ε=当首次q =时有C ε==,4π=53.147.85104t s -===⨯18第十五章 波动学基础一、选择题 15-1 B 15-2 C 15-3 B 15-4 A 15-5 C 15-6 C 二、填空题15-7 波源,传播机械波的介质 15-8B C,2B π,2C π,lC ,lC - 15-9 cos IS θ 15-10 0 15-11 0.45m 三、计算题15-12 分析:平面简谐波在弹性介质中传播时,介质中各质点作位移方向、振幅、频率都相同的谐振动,振动的相位沿传播方向依次落后,以速度u 传播.把绳中横波的表达式与波动表达式相比较,可得到波的振幅、波速、频率和波长等特征量.t 时刻0x >处质点的振动相位与t 时刻前0x =处质点的振动相位相同. 解:(1) 将绳中的横波表达式0.05cos(104)y t x ππ=-与标准波动表达式0cos(22)y A t x πνπλϕ=-+比较可得0.05A m =,52v Hz ωπ==,0.5m λ=,0.55/ 2.5/ u m s m s λν==⨯=. (2) 各质点振动的最大速度为0.0510/0.5/ 1.57/m v A m s m s m s ωππ==⨯=≈各质点振动的最大加速度为192222220.05100/5/49.3/m a A m s m s m s ωππ==⨯=≈(3) 将0.2x m =,1t s =代入(104)t x ππ-的所求相位为10140.29.2ϕπππ=⨯-⨯=0.2x m =处质点的振动比原点处质点的振动在时间上落后0.20.082.5x s s u == 所以它是原点处质点在0(10.08)0.92t s s =-=时的相位. (4) 1t s =时波形曲线方程为x x y 4cos 05.0) 4110cos(05.0πππ=-⨯=1.25t s =时波形曲线方程为)5.0 4cos(05.0) 425.110cos(05.0ππππ-=-⨯=x x y1.50t s =时波形曲线方程为) 4cos(05.0) 45.110cos(05.0ππππ-=-⨯=x x y1t s =, 1.25t s =, 1.50t s =各时刻的波形见图15-12.15-13 解:(1) 由于平面波沿x 轴负方向传播,根据a 点的振动表达式,并以a 点为坐标原点时的波动表达式为0cos[()]3cos[4()]20x xy A t t u ωϕπ=++=+(2) 以a 点为坐标原点时,b 点的坐标为5x m =-,代入上式,得b 点的振动表达式为53cos[4()]3cos(4)20b y t t πππ=-=- 若以b 点为坐标原点,则波动表达式为3cos[4()]20xy t ππ=+-s1s5.12015-14 解:由波形曲线可得100.1A cm m ==,400.4cm m λ==从而0.4/0.2/2u m s m s T λ===,2/rad s Tπωπ==(1) 设振动表达式为 0cos[()]xy A t uωϕ=++由13t s =时O 点的振动状态:2Ot Ay =-,0Ot v >,利用旋转矢量图可得,该时刻O 点的振动相位为23π-,即 10032()33Ot t t ππϕωϕϕ==+=+=-所以O 点的振动初相位为 0ϕπ=-将0x =,0ϕπ=-代入波动表达式,即得O 点的振动表达式为0.1cos()O y t ππ=-(2) 根据O 点的振动表达式和波的传播方向,可得波动表达式0cos[()]0.1cos[(5))]xy A t t x uωϕππ=++=+-(3) 由13t s =时Q 点的振动状态:0Qt y =,0Qt v <,利用旋转矢量图可得,该时刻Q 点的振动相位为2π,即013[()]30.22Q Qt t x x t u πππϕωϕπ==++=+-=可得 0.233Q x m =将0.233Q x m =,0ϕπ=-代入波动表达式,即得Q 点的振动表达式为0.1cos()6Q y t ππ=+(4) Q 点离O 点的距离为0.233Q x m =15-15 分析:波的传播过程也是能量的传播过程,波的能量同样具有空间和时间的周期性.波的强度即能流密度,为垂直通过单位面积的、对时间平均的能流.注意能流、平均能流、能流密度、能量密度、平均能量密度等概念的区别和联系.解:(1) 波中的平均能量密度为32235319.010/ 3.010/2300I w A J m J m u ρω--⨯====⨯最大能量密度为 532 6.010/m w w J m -==⨯ (2) 每两个相邻的、相位差为2π的同相面间的能量为25273000.14() 3.010() 4.621023002u d W wV w S w J v λππ--====⨯⨯⨯⨯=⨯15-16 分析:根据弦线上已知质点的振动状态,推出原点处质点振动的初相位,即可写出入射波的表达式.根据入射波在反射点的振动,考虑反射时的相位突变,可写出反射波的表达式.据题意,入射波和反射波的能量相等,因此,在弦线上形成驻波的平均能流为零.解:沿弦线建立Ox 坐标系,如图15-16所示.根据所给数据可得图15-16/100/u s m s ===,2100 /rad s ωπνπ==,100250u m m v λ===, (1) 设原点处质元的初相位为0ϕ,入射波的表达式为0cos[()]xy A t uωϕ=-+据题意可知,在10.5x m =处质元的振动初相位为103πϕ=,即有110001000.51003x u ωππϕϕϕ⨯=-+=-+=得 05326πππϕ=+=所以,入射波表达式为550.04cos[100()]0.04cos[100()]61006x x y t t u ππππ=-+=-+入考虑半波损失,反射波在2x 处质元振动的初相位为2010511100()10066ππϕππ=-++=反射波表达式为220cos[()]x x y A t uωϕ-=++反 ]611)100(100cos[04.0]611)10010(100cos[04.0ππππ++=+-+=x t x t(2)入射波和反射波的传播方向相反,叠加后合成波为驻波40.08cos()cos(100)23y y y x t ππππ=+=++入反波腹处满足条件 2x k πππ+=即 1()2x k =-因为010x m ≤≤,在此区间内波腹位置为0.5, 1.5, 2.5,,9.5x m = 波节处满足条件 (21)22x k πππ+=+即 x k = 在区间010x m ≤≤,波节坐标为0,1,2,,10x m = (3) 合成为驻波,在驻波中没有能量的定向传播,因而平均能流为零. 15-17 分析:运动波源接近固定反射面而背离观察者时,观察者即接收到直接来自波源的声波,也接收到来自固定反射面反射的声波,两声波在A 点的振动合成为拍.当波源相对于观察者静止,而反射面接近波源和观察者时,观察者接收到直接来自波源的声波无多普勒效应,但反射面反射的频率和观察者接收到的反射波频率都发生多普勒效应,因此,两个不同频率的振动在A 点也将合成为拍. 解:(1) 波源远离观察者而去,观察者接收到直接来自波源声音频率为1R S Suu v νν=+观察者相对反射面静止,接收到来自反射面的声波频率2R ν就是固定反射面接收到的声波频率,这时的波源以S v 接近反射面.2R S Suu v ννν==-反 A 处的观察者听到的拍频为21222S S R R S S S S Suv u uu v u v u v νννννν∆=-=-=-+- 由此可得方程2220S S S v uv u ννν∆+-∆=0.25/S v m s ≈(2) 观察者直接接收到的波的频率就是波源振动频率1RS νν'= 对于波源来说,反射面相当于接收器,它接收到的频率为S u vuνν+'=对于观察者来说,反射面相当于另一波源,观察者接收到的来自反射面的频率为2RS S u u u v u vu v u v u u vνννν++''===--- A 处的观察者听到的拍频为212RR S S S u v vu v u vνννννν+''∆=-=-=-- 所以波源的频率为3400.24339820.4S u v Hz Hz v νν--=∆=⨯= 15-18 解:平面电磁波波动方程的标准形式为222221y y E E x u t ∂∂=∂∂, 222221z zH H x u t ∂∂=∂∂ 与平面电磁波的标准方程相比较,可知波速为82.0010/u m s ==⨯ 所以介质的折射率为1.50cn u== 15-19 解:由电磁波的性质可得00E H =而 000B H μ=, 真空中的光速c =所以0E B c==从而可得 0008703000.8/0.8/310410B E H A m A m c μμπ-====⨯⨯⨯ 磁场强度沿y 轴正方向,且磁场强度和电场强度同相位,所以0.8cos(2)3y H vt ππ=+[SI ]第十六章 几何光学一、选择题 16-1 A 16-2 B 16-3 B 16-4 C 二、填空题16-5 6.0S cm '=,12V = 16-6 80f cm '=16-7 34s cm '=-,2V =- 16-8 左,2R 三、计算题16-9 解:设空气的折射率为n ,玻璃的折射率为n ',则 1n =, 1.5n '= 因为 2r = 所以物方焦距4nrf cm n n=='- 像方焦距6n rf cm n n ''=='- 又因为 1f fs s'+='而 8s cm = 所以 12s cm '=(实像)1ns y V y n s''==-=-' 其中 0.1y cm = 所以 0.1y Vy cm '==-16-10 分析:将球面反射看作n n '=-时球面折射的特例,可由折射球面的成像规律求解。
《大学物理》下册(第五版)课后答案
第九章振动9-1一个质点作简谐运动,振幅为A,在起始时刻质点的位移为-A,且向x 轴正方向运2动,代表此简谐运动的旋转矢量为()题9-1图分析与解(b)图中旋转矢量的矢端在x 轴上投影点的位移为-A/2,且投影点的运动方向指向O x轴正向,即其速度的x 分量大于零,故满足题意.因而正确答案为(b).9-2已知某简谐运动的振动曲线如图(a)所示,则此简谐运动的运动方程为()(A)x = 2cos⎡2πt -2 π⎤(cm)(C)x = 2cos⎡2 πt +2 π⎤(cm)⎢⎣3 3 ⎥⎦ ⎢⎣3 3 ⎥⎦(B)x = 2cos⎡4πt -2 π⎤(cm)(D)x = 2cos⎡4 πt +2 π⎤(cm)⎢⎣3 3 ⎥⎦ ⎢⎣3 3 ⎥⎦题9-2图分析与解由振动曲线可知,初始时刻质点的位移为–A/2,且向x 轴负方向运动.图(b)是其相应的旋转矢量图,由旋转矢量法可知初相位为2π / 3 .振动曲线上给出质点从–A/2 处运动到+A 处所需时间为 1 s,由对应旋转矢量图可知相应的相位差∆ϕ=4π3 ,则角频率ω=∆ϕ/ ∆t =(4π/ 3)s-1 ,故选(D).本题也可根据振动曲线所给信息,逐一代入方程来找出正确答案.9-3两个同周期简谐运动曲线如图(a)所示,x1 的相位比x2 的相位()(A)落后π2(B)超前π2(C)落后π(D)超前π分析与解由振动曲线图作出相应的旋转矢量图(b)即可得到答案为(b).题9-3图9-4当质点以频率ν作简谐运动时,它的动能的变化频率为()(A)v(B)v (C)2v2(D)4v分析与解质点作简谐运动的动能表式为E k=1mω2 A 2sin2 (ωt2+ϕ),可见其周期为简谐运动周期的一半,则频率为简谐运动频率ν 的两倍.因而正确答案为(C).9-5图(a)中所画的是两个简谐运动的曲线,若这两个简谐运动可叠加,则合成的余弦振动的初相位为()3(A)π21(B)π2(C)π(D)0分析与解由振动曲线可以知道,这是两个同振动方向、同频率简谐运动,它们的相位差是π(即反相位).运动方程分别为x1=A cosωt 和x2=Acos(ωt +π).它们的振幅不同.对2于这样两个简谐运动,可用旋转矢量法,如图(b)很方便求得合运动方程为x1 =而正确答案为(D).Acosωt .因2题9-5图9-6 有一个弹簧振子,振幅A = 2.0 ⨯10-2 m ,周期T = 1.0 s ,初相ϕ出它的运动方程,并作出x -t 图、v -t 图和a -t 图.=3π / 4 .试写题9-6 图分析弹簧振子的振动是简谐运动.振幅 A 、初相ϕ、角频率ω是简谐运动方程m / k 外, ω 可通过关系式ω = 2π / T 确定.振子运动的速度和加速度的计算仍与质点运动学中的计算方法相同.解 因ω = 2π / T ,则运动方程x = A cos (ωt + ϕ ) = A ⎛ 2πt + ϕ ⎫cos ⎪ ⎝ T⎭根据题中给出的数据得x = 2.0 ⨯ 10-2 cos (2πt + 0.75π ) (m )振子的速度和加速度分别为v = d x / d y a = d 2x / d 2y = -4π ⨯ 10-2sin (2πt = -8π ⨯ 10-2cos (2πt + 0.75π) ( m ⋅ s-1 )+ 0.75π) ( m ⋅ s -1)x - t 、 v - t 及 a - t 图如图所示.9-7 若简谐运动方程为 x = 0.10 cos (20πt + 0.25π)(m ),求:(1) 振幅、频率、角频率、周期和初相;(2) t = 2s 时的位移、速度和加速度.分析 可采用比较法求解.将已知的简谐运动方程与简谐运动方程的一般形式x = A cos (ωt + ϕ )作比较,即可求得各特征量.运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果.解 (1) 将 x = 0.10 cos (20πt + 0.25π)(m )与 x = A cos (ωt + ϕ )比较后可得:振幅 A = 0.10m ,角频率ω = 20π s -1,初相ϕ =0.25 π ,则周期T = 2π / ω = 0.1 s ,频率 v = 1/ T Hz .(2) t = 2s 时的位移、速度、加速度分别为x = 0.10 cos (40πt + 0.25π) = 7.07 ⨯10-2 mv = d x / d t = -2πsin (40π + 0.25π) = -4.44m ⋅ s -1a = d 2 x / d 2t = -40π2cos (40π + 0.25π) = -2.79 ⨯102 m ⋅ s -29-8 一远洋货轮,质量为 m ,浮在水面时其水平截面积为 S .设在水面附近货轮的水平截面积近似相等,水的密度为 ρ,且不计水的粘滞阻力,证明货轮在水中作振幅较小的竖直自由运动是简谐运动,并求振动周期.分析 要证明货轮作简谐运动,需要分析货轮在平衡位置附近上下运动时,它所受的合外力 F 与位移 x 间的关系,如果满足 F = -kx ,则货轮作简谐运动.通过 F = -kx 即可求得振动 周期T = 2π / ω = 2π .证 货轮处于平衡状态时[图(a )],浮力大小为 F =mg .当船上下作微小振动时,取货轮处于力平衡时的质心位置为坐标原点 O ,竖直向下为 x 轴正向,如图(b )所示.则当货轮向下偏移 x 位移时,受合外力为∑ F = P + F '其中 F ' 为此时货轮所受浮力,其方向向上,大小为F ' = F + ρgSx = mg + ρgSx则货轮所受合外力为题9-8图∑F=P -F '=-ρgSx =-kx式中k =ρgS 是一常数.这表明货轮在其平衡位置上下所作的微小振动是简谐运动.由∑F =m d2 x / d2t 可得货轮运动的微分方程为d2 x / d2t +ρgSx / m = 0令ω2 =ρgS / m ,可得其振动周期为T =2π / ω = 2π9-9设地球是一个半径为R 的均匀球体,密度ρ= 5.5 ⨯103 kg ⋅ m-3 .现假定沿直径凿通一条隧道,若有一质量为m 的质点在此隧道内作无摩擦运动.(1)证明此质点的运动是简谐运动;(2)计算其周期.题9-9图分析证明方法与上题相似.分析质点在隧道内运动时的受力特征即可.证(1)取图所示坐标.当质量为m 的质点位于x 处时,它受地球的引力为m / ρgSm / k x xF = -Gm x m式中G 为引力常量, m 是以 x 为半径的球体质量,即 m = 4πρx 3/ 3 .令 k = 4πρGm / 3 ,则质点受力F = 4πρGmx / 3 = -kx因此,质点作简谐运动.(2) 质点振动的周期为T = 2π = = 5.07 ⨯103 s9-10 如图(a )所示,两个轻弹簧的劲度系数分别为 k 1 、k 2时.(1) 证明其运动仍是简谐运动;(2) 求系统的振动频率..当物体在光滑斜面上振动题 9-10 图分析 从上两题的求解知道,要证明一个系统作简谐运动,首先要分析受力情况,然后看是否满足简谐运动的受力特征(或简谐运动微分方程).为此,建立如图(b )所示的坐标.设系统平衡时物体所在位置为坐标原点 O ,Ox 轴正向沿斜面向下,由受力分析可知,沿 Ox 轴, 物体受弹性力及重力分力的作用,其中弹性力是变力.利用串联时各弹簧受力相等,分析物体 在任一位置时受力与位移的关系,即可证得物体作简谐运动,并可求出频率υ .证 设物体平衡时两弹簧伸长分别为 x 1 、 x 2 ,则由物体受力平衡,有mg sin θ = k 1x 1 = k 2 x 2按图(b )所取坐标,物体沿 x 轴移动位移 x 时,两弹簧又分别被拉伸 x 1' 和 x 2' ,即物体受力为(1)x = x 1' + x 2' .则 3π / Gρ1 2π(k + k )/ m 1 21 2F = mg si n θ - k 2 (x 2 + x 2' )= mg si n θ - k 1 (x 1 + x 1') 将式(1)代入式(2)得(2) F = -k 2 x 2' = -k 1x 1' 由式(3)得 x 1' = -F / k 1 、 x 2' = -F / k 2 ,而 x = x 1' + x 2' ,则得到(3)F = -[k k / (k + k )]x = -kx 1 2式中 k = k 1k 2 / (k 1 + k 2 )为常数,则物体作简谐运动,振动频率v = ω / 2π = 12π k / m = 讨论 (1) 由本题的求证可知,斜面倾角 θ 对弹簧是否作简谐运动以及振动的频率均不产生影响.事实上,无论弹簧水平放置、斜置还是竖直悬挂,物体均作简谐运动.而且可以证明它们的频率相同,均由弹簧振子的固有性质决定,这就是称为固有频率的原因.(2) 如果振动系统如图(c )(弹簧并联)或如图(d )所示,也可通过物体在某一位置的受力分析得出其 作简谐运动,且振动频率均为v = ,读者可以一试.通过这些例子可以知道,证明物体是否作简谐运动的思路是相同的.*9-11 在如图(a )所示装置中,一劲度系数为 k 的轻弹簧,一端固定在墙上,另一端连接一质量为 m 1 的物体 A ,置于光滑水平桌面上.现通过一质量 m 、半径为 R 的定滑轮 B (可视为匀质圆盘)用细绳连接另一质量为 m 2 的物体 C .设细绳不可伸长,且与滑轮间无相对滑动, 求系统的振动角频率.题 9-11 图分析 这是一个由弹簧、物体 A 、C 和滑轮 B 组成的简谐运动系统.求解系统的振动频率可采用两种方法.(1) 从受力分析着手.如图(b )所示,设系统处于平衡状态时,与物体1 2πk k /(k + k )m1 2 1 2k 正向从原点 O 伸长 x 时,分析物体 A 、C 及滑轮 B 的受力情况,并分别列出它们的动力学方程,可解得系统作简谐运动的微分方程.(2)从系统机械能守恒着手.列出系统机械能守恒方 程,然后求得系统作简谐运动的微分方程.解 1 在图(b )的状态下,各物体受力如图(c )所示.其中 F = -k (x + x 0 )i .考虑到绳 子不可伸长,对物体 A 、B 、C 分别列方程,有F T 1 = -k (x + x 0 ) = d 2 x m 1 d t 2 d 2 x(1)m 2 g - F T 2 = m 2 d t2 (2)( - ) = α = 1d 2 xF T 2 F T 1 R J2 mR d t 2(3) kx 0 = m 2 g (4)方程(3)中用到了 F = F ' 、F = F ' 、J = mR 2/ 2 及α = a / R .联立式(1) ~式(4)T 2 T 2 可得T 1 T 1d 2 x k则系统振动的角频率为d t2+m 1 + m 2 + m / 2x = 0(5)ω = 解 2 取整个振动装置和地球为研究系统,因没有外力和非保守内力作功,系统机械能守恒.设物体平衡时为初始状态,物体向右偏移距离 x (此时速度为 v 、加速度为 a )为末状态, 则由机械能守恒定律,有E = -m gx + 1 m v 2 + 1 m v 2 + 1 J ω2 + 1 k (x + x )20 2 2 1 2 2 2 2在列出上述方程时应注意势能(重力势能和弹性势能)零点的选取.为运算方便,选初始状态下物体 C 所在位置为重力势能零点;弹簧原长时为弹性势能的零点.将上述方程对时间求导得0 = -m gv + m v d v + m v d v + Jω d ω + k (x + x )d x2 1 d t 2 d t d t 0d t 将 J = mR 2 / 2 , ωR = v , d v / d t = d 2 x / d t 2和m g = kx 代入上式,可得d 2x + d t 2 m2 0+ m + m / 2 x = 0(6)12式(6)与式(5)相同,表明两种解法结果一致.9-12 一放置在水平桌面上的弹簧振子,振幅 A =2.0 ×10-2 m ,周期 T =0.50s.当 t =0 时,(1) 物体在正方向端点;(2) 物体在平衡位置、向负方向运动;(3) 物体在 x =-1.0×10-2m 处, 向负方向运动; (4) 物体在 x =-1.0×10-2 m 处,向正方向运动.求以上各种情况的运动方程.分析 在振幅 A 和周期 T 已知的条件下,确定初相 φ 是求解简谐运动方程的关键.初相k / (m 1 + m 2 + m / 2)π π = 4π 的确定通常有两种方法.(1) 解析法:由振动方程出发,根据初始条件,即 t =0 时,x =x 0 和 v =v 0 来确定 φ 值.(2) 旋转矢量法:如图(a )所示,将质点 P 在 Ox 轴上振动的初始位置 x 0 和速度 v 0 的方向与旋转矢量图相对应来确定 φ.旋转矢量法比较直观、方便,在分析中常采用.题 9-12 图解 由题给条件知 A =2.0 ×10-2 m , ω = 2 / T = 4π s -1,而初相 φ 可采用分析中的两种不 同方法来求.解析法 : 根据简 谐 运动方 程 x = A cos (ωt + ϕ ) ,当 t = 0 时有 x 0 = A cos (ωt + ϕ ) ,v 0 = - Aωsin .当(1) x 0 = A 时, cos ϕ1 = 1,则ϕ1 = 0 ;π π(2) x 0 = 0 时, cos ϕ2 = 0 ,ϕ2 = ± ,因v 0 < 0 ,取ϕ2 = ;2 2(3) x 0 = 1.0 ⨯10-2 m 时, cos ϕ = 0.5 ,ϕ3 = ± π 3 ,由v 0 < 0 ,取ϕ3 = ; 3(4) x = -1.0 ⨯10-2m 时, cos ϕ = -0.5 ,ϕ = π ± ,由v > 0 ,取ϕ 4π 0 4 4 3 0 4 3旋转矢量法:分别画出四个不同初始状态的旋转矢量图,如图(b )所示,它们所对应的初 相分别为ϕ1 = 0 , ϕ2 =, ϕ3 =2, ϕ4 =.33振幅 A 、角频率 ω、初相 φ 均确定后,则各相应状态下的运动方程为(1) x = 2.0 ⨯10-2cos4πt(m )(2) x = 2.0 ⨯10-2 cos (4πt + π/2) (m ) (3) x = 2.0 ⨯10-2 cos (4πt + π/3) (m ) (4) x = 2.0 ⨯10-2 cos (4πt + 4π/3) (m )9-13 有一弹簧, 当其下端挂一质量为 m 的物体时, 伸长量为 9.8 ×10-2 m .若使物体上、下振动,且规定向下为正方向.(1) 当 t =0 时,物体在平衡位置上方 8.0 ×10-2 m 处,由静止开始向下运动,求运动方程.(2) 当 t =0 时,物体在平衡位置并以 0.6m·s -1 的速度向上运动,求运动方程.π π 3.k / m g / ∆l x + ( 21010 v / ω )2⎝ 12 ⎭分析 求运动方程,也就是要确定振动的三个特征物理量 A 、ω 和 φ.其中振动的角频率是 由弹簧振子系统的固有性质(振子质量 m 及弹簧劲度系数 k )决定的,即ω =k /m ,k 可根据物体受力平衡时弹簧的伸长来计算;振幅 A 和初相 φ 需要根据初始条件确定.题 9-13 图解 物体受力平衡时,弹性力 F 与重力 P 的大小相等,即 F =mg .而此时弹簧的伸长量 Δl =9.8 ×10-2m .则弹簧的劲度系数 k =F /Δl =mg /Δl .系统作简谐运动的角频率为ω = = = 10 s -1(1) 设系统平衡时,物体所在处为坐标原点,向下为 x 轴正向.由初始条件 t =0 时, x 10 =8.0 ×10-2 m 、v 10 =0 可得振幅 A = = 8.0 ⨯10- 2m ;应用旋转矢量法可确定初相ϕ1 = π [图(a )].则运动方程为x = 8.0 ⨯10-2cos (10t + π) (m ) (2)t =0 时,x 20 =0、v 20 =0.6 m·s -1 ,同理可得 A 2 == 6.0 ⨯10- 2 m ; ϕ2 = π / 2 [图(b )].则运动方程为x = 6.0 ⨯10-2cos (10t + 0.5π) (m ) 9-14 某振动质点的 x -t 曲线如图(a )所示,试求:(1) 运动方程;(2) 点 P 对应的相位;(3) 到达点 P 相应位置所需的时间.分析 由已知运动方程画振动曲线和由振动曲线求运动方程是振动中常见的两类问题.本题就是要通过 x -t 图线确定振动的三个特征量 A 、ω 和ϕ0 ,从而写出运动方程.曲线最大幅值即为振幅 A ;而 ω、ϕ0 通常可通过旋转矢量法或解析法解出,一般采用旋转矢量法比较方便. 解 (1) 质点振动振幅 A =0.10 m.而由振动曲线可画出 t 0 =0 和 t 1 =4 s时旋转矢 量,如图( b ) 所 示.由图可见初相 ϕ0 = -π / 3 (或 ϕ0 = 5π / 3 ), 而由 ω(t 1 - t 0 ) = π / 2 + π / 3 得ω = 5π / 24 s ,则运动方程为 -1x = 0.10 cos⎛ 5πt - π / 3⎫(m )24⎪ x + ( 220 20 v / ω)2ppp p题9-14 图(2)图(a)中点P 的位置是质点从A/2 处运动到正向的端点处.对应的旋转矢量图如图(c)所示.当初相取ϕ0 =-π / 3 时,点P 的相位为ϕp =ϕ0 +ω(t - 0)= 0 (如果初相取成=5π / 3 ,则点P 相应的相位应表示为ϕp =ϕ0 +ω(t -0)=2π .(3)由旋转矢量图可得ω(t - 0)=π/ 3 ,则t =1.6 s .9-15作简谐运动的物体,由平衡位置向x 轴正方向运动,试问经过下列路程所需的最短时间各为周期的几分之几?(1)由平衡位置到最大位移处;(2)由平衡位置到x =A/2 处;(3)由x =A/2 处到最大位移处.解采用旋转矢量法求解较为方便.按题意作如图所示的旋转矢量图,平衡位置在点O.(1))平衡位置x1到最大位移x3处,图中的旋转矢量从位置 1 转到位置 3 ,故∆ϕ1=π / 2 ,则所需时间∆t1=∆ϕ1 / ω=T / 4(2)从平衡位置x1到x2=A/2 处,图中旋转矢量从位置1 转到位置2,故有∆ϕ2则所需时间=π / 6 ,∆t2=∆ϕ2 / ω=T / 12(3)从x2=A/2 运动到最大位移x3处,图中旋转矢量从位置 2 转到位置3,有∆ϕ0=π / 3 ,则所需时间∆t3=∆ϕ3 / ω=T / 6N 题 9-15 图9-16 在一块平板下装有弹簧,平板上放一质量为 1.0 kg 的重物.现使平板沿竖直方向作上下简谐运动,周期为 0.50s,振幅为 2.0×10-2 m .求:(1) 平板到最低点时,重物对平板的作用力;(2) 若频率不变,则平板以多大的振幅振动时,重物会跳离平板? (3) 若振幅不变,则平板以多大的频率振动时, 重物会跳离平板?题 9-16 图分析 按题意作示意图如图所示.物体在平衡位置附近随板作简谐运动,其间受重力 P 和板支持力 F N 作用,F N 是一个变力.按牛顿定律,有d 2 y F = mg - F N = m d t 2(1)由于物体是随板一起作简谐运动,因而有a 改写为 = d 2y d t 2 = -A ω 2 cos (ωt + ϕ ) ,则式(1)可 F N = mg + mA ω 2cos (ωt + ϕ ) (2)(1) 根据板运动的位置,确定此刻振动的相位ωt + ϕ ,由式(2)可求板与物体之间的作 用力.(2) 由式(2)可知支持力 F N 的值与振幅 A 、角频率 ω 和相位( ωt + ϕ )有关.在振 动过程中,当ωt + ϕ = π 时 F N 最小.而重物恰好跳离平板的条件为 F N =0,因此由式(2)可 分别求出重物跳离平板所需的频率或振幅.解 (1) 由分析可知,重物在最低点时,相位ωt + ϕ =0,物体受板的支持力为F = mg + mA ω 2 = mg + mA (2π / t)2 = 12.96 N 重物对木块的作用力 F N ' 与 F N 大小相等,方向相反. (2) 当频率不变时,设振幅变为 A ′.根据分析中所述,将 F N =0 及ωt + ϕ 分析中式(2),可得= π 代入max max2A ' = mg / mω2 = gT 2 / 4π2 = 6.2 ⨯10-2 m(3) 当振幅不变时,设频率变为v ' .同样将 F N =0 及ωt + ϕ 可得= π 代入分析中式(2), v ' = ω = 2π = 3.52 Hz 9-17 两 质点作同 频率、同 振幅的简 谐运动. 第一个质 点的运动 方程 为x 1 = A cos (ωt + ϕ ),当第一个质点自振动正方向回到平衡位置时,第二个质点恰在振动正方 向的端点,试用旋转矢量图表示它们,并求第二个质点的运动方程及它们的相位差.题 9-17 图解 图示为两质点在时刻 t 的旋转矢量图,可见第一个质点 M 的相位比第二个质点 N 的相位超前π / 2 ,即它们的相位差 Δφ=π/2.故第二个质点的运动方程应为x 2 = A cos (ωt + ϕ - π / 2)9-18 图(a )为一简谐运动质点的速度与时间的关系曲线,且振幅为 2cm ,求(1) 振动周期;(2) 加速度的最大值;(3) 运动方程.分析 根据 v -t 图可知速度的最大值 v max ,由 v max =Aω 可求出角频率 ω,进而可求出周期 T 和加速度的最大值 a max =Aω2 .在要求的简谐运动方程 x =A cos (ωt +φ)中,因为 A 和 ω 已得出,故只要求初相位 φ 即可.由 v -t 曲线图可以知道,当 t =0 时,质点运动速度v 0 =v max /2 =Aω/2,之后速度越来越大,因此可以判断出质点沿 x 轴正向向着平衡点运动.利用 v 0 =-Aωsinφ 就可求出 φ.解 (1) 由v = A ω 得ω =1.5 s -1 ,则 T = 2π / ω = 4.2 s (2) a = A ω 2 = 4.5 ⨯10-2 m ⋅ s -2 (3) 从分析中已知 v 0 = - Aωsin= Aω / 2 ,即 sin ϕ = -1 / 2= -π / 6,-5π / 6因为质点沿 x 轴正向向平衡位置运动,则取 = -5π / 6 ,其旋转矢量图如图(b )所示.则运动 方程为 x = 2cos (1.5t - 5π / 6) (cm )1 mg / m A 2πg / l g / l max题 9-18 图9-19 有一单摆,长为 1.0m ,最大摆角为 5°,如图所示.(1) 求摆的角频率和周期;(2)设开始时摆角最大,试写出此单摆的运动方程;(3) 摆角为 3°时的角速度和摆球的线速度各为多少?题 9-19 图分析 单摆在摆角较小时(θ<5°)的摆动,其角量 θ 与时间的关系可表示为简谐运动方程 θ = θmax co s (ωt + ϕ ) ,其中角频率 ω 仍由该系统的性质(重力加速度 g 和绳长 l )决定,即 ω = .初相 φ 与摆角 θ,质点的角速度与旋转矢量的角速度(角频率)均是不同的物理 概念,必须注意区分.解 (1) 单摆角频率及周期分别为ω = = 3.13 s -1; T = 2π / ω = 2.01 s(2) 由t = 0 时θ = θ = 5o可得振动初相ϕ = 0 ,则以角量表示的简谐运动方程为 θ = π cos3.13t 36(3) 摆角为 3°时,有cos (ωt + ϕ ) = θ / θmax = 0.6 ,则这时质点的角速度为J / mgl c maxE c M线速度的大小为d θ/d t = -θmax ωsi n (ωt + ϕ ) = -θmax ω = -0.80θ ω = -0.218 s -1 v = l d θ/d t = -0.218 s -1讨论 质点的线速度和角速度也可通过机械能守恒定律求解,但结果会有极微小的差别.这是因为在导出简谐运动方程时曾取sin θ ≈ θ ,所以,单摆的简谐运动方程仅在 θ 较小时成立.9-20 为了测月球表面的重力加速度,宇航员将地球上的“秒摆”(周期为 2.00s),拿到月 球上去,如测得周期为 4.90s,则月球表面的重力加速度约为多少? (取地球表面的重力加速度 g = 9.80 m ⋅s-2 ) 解 由单摆的周期公式T = 2π 可知 g ∝ 1 / T 2 ,故有 g / g = T 2 / T 2 ,则月球的重力加速度为 g = (T/ T M )2g M E E M= 1.63 m ⋅ s - 29-21 一飞轮质量为 12kg ,内缘半径 r =0.6m,如图所示.为了测定其对质心轴的转动惯量,现让其绕内缘刃口摆动,在摆角较小时,测得周期为 2.0s ,试求其绕质心轴的转动惯量.9-21 题图分析 飞轮的运动相当于一个以刃口为转轴的复摆运动,复摆振动周期为 T = 2π ,因此,只要知道复摆振动的周期和转轴到质心的距离l c ,其以刃口为转轴的 转动惯量即可求得.再根据平行轴定理,可求出其绕质心轴的转动惯量.解 由复摆振动周期T = 2π J / mgl ,可得 J = mgrT 2 / 4π2.则由平行轴定理得 J 0 = J - mr 2 = mgrT 2 / 4π 2 - mr 2 = 2.83 kg ⋅ m 29-22 如图(a )所示,质量为 1.0 ×10-2kg 的子弹,以 500m·s -1 的速度射入木块,并嵌在木块中,同时使弹簧压缩从而作简谐运动,设木块的质量为 4.99 kg ,弹簧的劲度系数为 8.0 ×103 N·m -1 ,若以弹簧原长时物体所在处为坐标原点,向左为 x 轴正向,求简谐运动方程.1 - cos2 (ωt + ϕ ) l / g E E题 9-22 图分析 可分为两个过程讨论.首先是子弹射入木块的过程,在此过程中,子弹和木块组成的系统满足动量守恒,因而可以确定它们共同运动的初速度 v 0 ,即振动的初速度.随后的过程是以子弹和木块为弹簧振子作简谐运动.它的角频率由振子质量 m 1 +m 2 和弹簧的劲度系数 k 确定,振幅和初相可根据初始条件(初速度 v 0 和初位移 x 0 )求得.初相位仍可用旋转矢量法求.解 振动系统的角频率为 ω == 40 s -1由动量守恒定律得振动的初始速度即子弹和木块的共同运动初速度 v 0 为v = m v (m + m ) = 1.0 m ⋅ s -10 1 1 2 又因初始位移 x 0 =0,则振动系统的振幅为A = = v 0/ ω = 2.5⨯10-2 m 图(b )给出了弹簧振子的旋转矢量图,从图中可知初相位 0 = π / 2 ,则简谐运动方程为x = 2.5⨯10-2 cos (40t + 0.5π) (m )9-23 如图(a )所示,一劲度系数为 k 的轻弹簧,其下挂有一质量为 m 1 的空盘.现有一质量为 m 2 的物体从盘上方高为 h 处自由落入盘中,并和盘粘在一起振动.问:(1) 此时的振动周期与空盘作振动的周期有何不同? (2) 此时的振幅为多大?k / (m 1 + m 2 ) x + ( 2 0 0 v / ω) 2x + (v / ω) 2 20 0题 9-23 图分析 原有空盘振动系统由于下落物体的加入,振子质量由 m 1 变为 m 1 + m 2,因此新系统的角频率(或周期)要改变.由于 A = ,因此,确定初始速度 v 0 和初始位移 x 0 是求解振幅 A 的关键.物体落到盘中,与盘作完全非弹性碰撞,由动量守恒定律可确定盘与物体的共同初速度 v 0 ,这也是该振动系统的初始速度.在确定初始时刻的位移 x 0 时,应注意新振动系统的平衡位置应是盘和物体悬挂在弹簧上的平衡位置.因此,本题中初始位移 x 0 ,也就是空盘时的平衡位置相对新系统的平衡位置的位移.解 (1) 空盘时和物体落入盘中后的振动周期分别为T = 2π / ω = 2π T ' = 2π / ω' = 2π 可见 T ′>T ,即振动周期变大了. (2) 如图(b )所示,取新系统的平衡位置为坐标原点 O .则根据分析中所述,初始位移为空盘时的平衡位置相对粘上物体后新系统平衡位置的位移,即x = l - l =m 1g - m 1 + m 2 g = - m 2 g 01 2 k k k式中 l 1 =m 1/k 为空盘静止时弹簧的伸长量,l 2 =(m 1 +m 2)/k 为物体粘在盘上后,静止时弹 簧的伸长量.由动量守恒定律可得振动系统的初始速度,即盘与物体相碰后的速度v 0 = m 2 v =m 1 + m 2 式中 v = 是物体由 h 高下落至盘时的速度.故系统振动的振幅为m 1 / k(m 1 + m 2 )/ km 2 m 1 + m 2 2gh2ghx +(2 v / ω ) ' 20 0x + 20 0( v/ ω) 211A ==本题也可用机械能守恒定律求振幅A.9-24如图所示,劲度系数为k 的轻弹簧,系一质量为m1的物体,在水平面上作振幅为A的简谐运动.有一质量为m2的粘土,从高度h 自由下落,正好在(a)物体通过平衡位置时,(b)物体在最大位移处时,落在物体上.分别求:(1)振动周期有何变化?(2)振幅有何变化?题9-24 图分析谐振子系统的周期只与弹簧的劲度系数和振子的质量有关.由于粘土落下前后,振子的质量发生了改变,因此,振动周期也将变化.至于粘土如何落下是不影响振动周期的.但是,粘土落下时将改变振动系统的初始状态,因此,对振幅是有影响的.在粘土落到物体上的两种不同情况中,系统在水平方向的动量都是守恒的.利用动量守恒定律可求出两种情况下系统的初始速度,从而利用机械能守恒定律(或公式A =)求得两种情况下的振幅.解(1)由分析可知,在(a)、(b)两种情况中,粘土落下前后的周期均为T =2π / ω =2πT '=2π / ω'=2π物体粘上粘土后的周期T′比原周期T 大.(2)(a)设粘土落至物体前后,系统振动的振幅和物体经过平衡位置时的速度分别为A、v 和A′、v′.由动量守恒定律和机械能守恒定律可列出如下各式kA'2 / 2 =m v2 / 2 (1)kA'2 / 2 =(m+m)v'2 / 22(2)联立解上述三式,可得m1v=(m1+m2)v'A'=(3)即A′<A,表明增加粘土后,物体的振幅变小了.(b)物体正好在最大位移处时,粘土落在物体上.则由动量守恒定律知它们水平方向的共同速度v′=m1v/(m1+m2)=0,因而振幅不变,即m2gk1 +2khm1+m2m1/ k(m1+m2)/ km1/(m1+m2)AA / a max max 0 max max 9-25 质量为 0.10kg 的物体,以振幅 1.0×10-2 m 作简谐运动,其最大加速度为 4.0 m·s -1求:(1) 振动的周期;(2) 物体通过平衡位置时的总能量与动能;(3) 物体在何处其动能和势能相等? (4) 当物体的位移大小为振幅的一半时,动能、势能各占总能量的多少?分析 在简谐运动过程中,物体的最大加速度 a = A ω 2,由此可确定振动的周期T .另外,在简谐运动过程中机械能是守恒的,其中动能和势能互相交替转化,其总能量 E =kA 2/2.当动能与势能相等时,E k =E P =kA 2/4.因而可求解本题.解 (1) 由分析可得振动周期 T = 2π / ω = 2π = 0.314 s(2) 当物体处于平衡位置时,系统的势能为零,由机械能守恒可得系统的动能等于总能量,即 E = E = 1 mA 2ω 2 = 1 mAak 2 2max = 2.0 ⨯10-3 J(3) 设振子在位移 x 0 处动能与势能相等,则有kx 2 / 2 = kA 2 / 4得 x 0 = ± 2 A / 2 = ±7.07 ⨯10-3 m(4) 物体位移的大小为振幅的一半(即 x = A / 2 )时的势能为 E = 1 kx 2 = 1 k ⎛ A ⎫ = E / 4 P 2 2 2 ⎪ ⎝ ⎭则动能为E K = E - E P = 3E / 4 9-26 一氢原子在分子中的振动可视为简谐运动.已知氢原子质量 m =1.68 ×10-27 Kg ,振动频率υ =1.0 ×1014 Hz ,振幅 A =1.0 ×10-11m.试计算:(1) 此氢原子的最大速度;(2) 与此振动相联系的能量.解 (1) 简谐运动系统中振子运动的速度 v =-A ωsin (ωt +φ),故氢原子振动的最大速度为v = ωA = 2πvA = 6.28⨯102 m ⋅ s -1 (2) 氢原子的振动能量E = mv 2 / 2 = 3.31⨯10-20 J 9-27 质量 m =10g 的小球与轻弹簧组成一振动系统, 按 x = 0.5(8πt + π / 3) (cm )的规 律作自由振动,求(1) 振动的角频率、周期、振幅和初相;(2) 振动的能量 E ;(3) 一个周期内的平均动能和平均势能.解 (1) 将 x = 0.5(8πt + π / 3) (cm )与 x = A cos (ωt + ϕ )比较后可得:角频率ω = 8π s -1 ,振 幅 A =0.5cm ,初相 φ=π/3,则周期 T =2π/ω=0.25 sA + A + 2 A A cos ( 2 2 1 2 1 2 ϕ - ϕ ) 2 1(2) 简谐运动的能量 E = 1 mA 2ω 2 = 7.90 ⨯10-5 J (3) 简谐运动的动能和势能分别为 E = 1 mA 2ω 2sin 2 (ωt + ϕ ) K 2E = 1 mA 2ω 2cos 2 (ωt + ϕ ) P 2则在一个周期中,动能与势能对时间的平均值分别为E = 1 ⎰T 1 mA 2ω 2 sin 2 (ωt + ϕ )d t = mA 2ω 2 = 3.95 ⨯10-5 J T 0 2 4E = 1 ⎰T 1 mA 2ω 2 cos 2 (ωt + ϕ )d t = mA 2ω 2 = 3.95 ⨯10-5 J T 0 2 49-28已 知 两 同 方 向 、 同 频 率 的 简 谐 运 动 的 运 动 方 程 分 别 为 x 1= 0.05cos (10t + 0.75π) (m ); x 2 = 0.06cos (10t + 0.25π) (m ) .求:(1) 合振动的振幅及初相;(2) 若有另一同方向、同频率的简谐运动 x 3 = 0.07co s (10t + ϕ3 ) (m ),则ϕ3 为多少时, x 1 +x 3 的振幅最大? 又ϕ3 为多少时,x 2 +x 3 的振幅最小?题 9-28 图分析 可采用解析法或旋转矢量法求解.由旋转矢量合成可知,两个同方向、同频率简谐运动 的合成仍为一简谐运动,其角频率不变;合振动的振幅 A = ,其大小与两个分振动的初相差ϕ2 - ϕ1 相关.而合振动的初相位ϕ = arctan [(A s in ϕ + A sin ϕ ) / (A cos ϕ + A cos ϕ )] 1 1 2 2 1 1 2 2解 (1) 作两个简谐运动合成的旋转矢量图(如图).因为∆ϕ 故合振动振幅为= ϕ2 - ϕ1 = -π / 2 , A = 合振动初相位= 7.8 ⨯10-2 m ϕ = arctan [(A s in ϕ + A sin ϕ ) / (A cos ϕ + A cos ϕ )] 1 1 2 2 1 1 2 2= arctan11 = 1.48 rad (2) 要使 x 1 +x 3 振幅最大,即两振动同相,则由∆ϕ= 2k π 得 A + A + 2 A A cos ( 2 2 1 2 1 2 ϕ - ϕ ) 21 K PA 2 + A 2 + 2A 2cos (π + ϕ - ϕ ) 2 12ϕ3 = ϕ1 + 2k π = 2k π + 0.75π, k= 0,±1,±2,...要使 x 1 +x 3 的振幅最小,即两振动反相,则由()得 ϕ3 = ϕ2 + (2k + 1)π = 2k π + 1.25π, k = 0,±1,±2,...9-29 手电筒和屏幕质量均为 m ,且均被劲度系数为 k 的轻弹簧悬挂于同一水平面上,如 图所示.平衡时,手电筒的光恰好照在屏幕中心.设手电筒和屏幕相对于地面上下振动的表达式分别为 x 1 = A cos (ωt + ϕ1 )和 x 2 = A cos (ωt + ϕ2 ).试求在下述两种情况下,初相位 φ1 、φ2 应满足的条件:(1) 光点在屏幕上相对于屏静止不动;(2) 光点在屏幕上相对于屏作振幅 A ′=2A 的振动.并说明用何种方式起动,才能得到上述结果.题 9-29 图分析 落在屏幕上的光点相对地面的运动和屏幕相对于地面的运动都已知道,且是两个简谐运动.因此由运动的合成不难写出光点相对屏的运动(实际上是两个同方向、同频率简谐运动的合成).根据相对运动公式,有依题意x 光对地 = x 光对屏 + x 屏对地x 光对地 = x 1 = A cos (ωt + ϕ1 ) x 屏对地 = x 2 = A cos (ωt + ϕ2 ) 所以 x 光对屏 = x 1 - x 2 = x 1 + x 2'= A cos (ωt + ϕ1 ) + A cos (ωt + π + ϕ2 ) 可见光点对屏的运动就是两个同方向、同频率简谐运动 x 1 = A cos (ωt + ϕ1 ) 和 x 2' = A cos (ωt + π + ϕ2 )的合成.用与上题相同的方法即可求解本题.其中合运动振幅 A ' = . 解 (1) 根据分析和参考上题求解,当要求任一时刻光点相对于屏不动,即 x 光对屏 = 0 ,就是 当π + ϕ2 - ϕ1 = (2k + 1)π 时,即ϕ = ϕ1 + 2k π 时( k = 0,±1,±2,...),A ′=0.当光点 相对于屏作振幅为 2A 的运动时,要求π + ϕ2 - ϕ1 = 2k π ,即ϕ2 = ϕ1 + (2k - 1)π .(2) 由以上求解可知,要使光点相对于屏不动,就要求手电筒和屏的振动始终要同步, 即同相位,为此,把它们往下拉 A 位移后,同时释放即可;同理,要使光点对屏作振幅为 2A 的谐振动,两者必须相位相反,为此,让手电筒位于平衡点 0 上方的-A 处,而屏则位于+A 处同。
大学物理下册课后题答案完整版
大学物理下册课后习题答案习题八8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷2220)33(π4130cos π412a q q a q '=︒εε解得 q q 33-=' (2)与三角形边长无关.题8-1图 题8-2图8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带解: 如题8-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式204rq E πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解? 解: 020π4r r q Eε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d q πε,又有人说,因为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S qE 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力.8-5 一电偶极子的电矩为l q p =,场点到偶极子中心O 点的距离为r ,矢量r 与l的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为r E =302cos r p πεθ, θE =304sin r p πεθ证: 如题8-5所示,将p 分解为与r 平行的分量θsin p 和垂直于r的分量θsin p . ∵ l r >> ∴ 场点P 在r 方向场强分量30π2cos rp E r εθ= 垂直于r 方向,即θ方向场强分量300π4sin rp E εθ=题8-5图 题8-6图8-6 长l =15.0cm AB 上均匀地分布着线密度λ=5.0x10-9C ·m -1(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 解: 如题8-6图所示(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε 2220)(d π4d x a xE E ll P P -==⎰⎰-ελ ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2) 2220d d π41d +=x xE Q λε 方向如题8-6图所示由于对称性⎰=lQx E 0d ,即Q E只有y 分量,∵ 22222220dd d d π41d ++=x x x E Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x2220d4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Q y Q E E 1C N -⋅,方向沿y 轴正向8-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强. 解: 如8-7图在圆上取ϕRd dl =题8-7图ϕλλd d d R l q ==,它在O 点产生场强大小为20π4d d RR E εϕλ=方向沿半径向外 则 ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-=积分RR E x 000π2d sin π4ελϕϕελπ==⎰ 0d cos π400=-=⎰ϕϕελπR E y∴ RE E x 0π2ελ==,方向沿x 轴正向.8-8 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E解: 如8-8图示,正方形一条边上电荷4q在P 点产生物强P E d 方向如图,大小为()4π4cos cos d 22021lr E P +-=εθθλ∵ 22cos 221l r l +=θ12cos cos θθ-=∴ 24π4d 22220lr ll r E P ++=ελP Ed 在垂直于平面上的分量βcos d d P E E =⊥∴ 424π4d 2222220lr rl r l r l E +++=⊥ελ题8-8图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελ∵ lq 4=λ ∴ 2)4(π422220l r l r qrE P ++=ε 方向沿OP8-9 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题8-9(3)图所示,在点电荷q 的电场中取半径为R 的圆平面.q 在该平面轴线上的A 点处,求:通过圆平面的电通量.(xRarctan =α) 解: (1)由高斯定理0d εqS E s⎰=⋅立方体六个面,当q 在立方体中心时,每个面上电通量相等 ∴ 各面电通量06εqe =Φ. (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ,如果它包含q 所在顶点则0=Φe .如题8-9(a)图所示.题8-9(3)图题8-9(a)图 题8-9(b)图 题8-9(c)图(3)∵通过半径为R 的圆平面的电通量等于通过半径为22x R +的球冠面的电通量,球冠面积*]1)[(π22222xR x x R S +-+=∴ )(π42200x R Sq +=Φε02εq=[221xR x +-]*关于球冠面积的计算:见题8-9(c)图ααα⎰⋅=0d sin π2r r Sααα⎰⋅=02d sin π2r)cos 1(π22α-=r8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强. 解: 高斯定理0d ε∑⎰=⋅q S E s,02π4ε∑=q rE当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰对(1) 1R r < 0,0==∑E q(2) 21R r R <<λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r > 0=∑q∴ 0=E题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, n E)(21210σσε-=1σ面外, n E)(21210σσε+-= 2σ面外, n E)(21210σσε+= n:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a). (1) ρ+球在O 点产生电场010=E,ρ- 球在O 点产生电场'dπ4π3430320OO r E ερ=∴ O 点电场'd 33030OO r E ερ= ;(2) ρ+在O '产生电场'd π4d 3430301OO E ερπ=' ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E 'OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r',相对O 点位矢为r (如题8-13(b)图)则 03ερrE PO =,3ερr E O P '-=' , ∴ 0003'3)(3ερερερdOO r r E E E O P PO P=='-=+=' ∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6Cd=0.2cm ,把这电偶极子放在1.0×105N ·C-1解: ∵ 电偶极子p在外场E 中受力矩E p M⨯= ∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功?解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r rq q r F A εε )11(21r r - 61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C点,求移动过程中电场力作的解: 如题8-16图示0π41ε=O U 0)(=-R q R q 0π41ε=O U )3(R q R q -Rq 0π6ε-= ∴ Rqq U U q A o C O 00π6)(ε=-=8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E yR0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===A B 200012ln π4π4d π4d R R x x x x U ελελελ同理CD 产生 2ln π402ελ=U半圆环产生 0034π4πελελ==R R U ∴ 0032142ln π2ελελ+=++=U U U U O 8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C) 解: 设均匀带电直线电荷密度为λ,在电子轨道处场强rE 0π2ελ=电子受力大小 re eE F e 0π2ελ== ∴ rv m r e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅ 8-19 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm解: 平行板电容器内部近似为均匀电场∴ 4105.1d ⨯==E U V8-20 根据场强E 与电势U 的关系U E -∇=,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图)解: (1)点电荷 rqU 0π4ε=题 8-20 图 ∴ 0200π4r rq r r U E ε=∂∂-= 0r 为r 方向单位矢量. (2)总电量q ,半径为R 的均匀带电圆环轴上一点电势220π4xR qU +=ε ∴ ()i xR qxi x U E 2/3220π4+=∂∂-=ε (3)偶极子l q p=在l r >>处的一点电势200π4cos ])cos 21(1)cos 2(1[π4r ql l l r q U εθθθε=+--= ∴ 30π2cos r p r U E r εθ=∂∂-= 30π4sin 1rp U r E εθθθ=∂∂-= 8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有 0)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ 又∵ +2σ03=σ ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少? 解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图 (1)∵ AB ACU U =,即∴ AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A= 得 ,32S q A =σ Sq A321=σ而 7110232-⨯-=-=-=A C q S q σCC10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC AC AC A E U εσV 8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计(1) (2) *(3) 解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R R qr r q r E U εε (2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q U A εεε得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+RqR q εε得 -='q 3q8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2解: 由题意知 2020π4r q F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =',小球3再与小球2接触后,小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力00220183π483π4"'2F rqr q q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q. ∴ 小球1、2间的作用力00294π432322F r q q F ==ε *8-26 如题8-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势.解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持U U AB =可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+6543215432065430021001σσσσσσσσσσεσσσσεσσd US q S qdU U C S S q B A 解得 S q261==σσS qd U 2032-=-=εσσSqd U 2054+=-=εσσ所以CB 间电场 Sqd U E 00422εεσ+== )2d(212d 02Sq U E U U CB C ε+===注意:因为C 片带电,所以2U U C ≠,若C 片不带电,显然2UU C =8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求:(1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εε ==内; 介质外)(2R r <场强303π4,π4rrQ E r Qr D ε ==外(2)介质外)(2R r >电势rQE U 0rπ4r d ε=⋅=⎰∞外介质内)(21R r R <<电势2020π4)11(π4R QR r qr εεε+-=)11(π420R r Q r r -+=εεε (3)金属球的电势r d r d 221⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=222020π44πdrR R R r r Qdrr Q εεε)11(π4210R R Q r r -+=εεε 8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D得11σ=D ,22σ=D而 101E D ε=,202E D r εε=d21UE E ==∴ r D Dεσσ==1212题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容.解: 取半径为r 的同轴圆柱面)(Srd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内则 rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑∴ rlQD π2= (1)电场能量密度 22222π82l r Q D w εε== 薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222=== (2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε (3)电容:∵ C Q W 22=∴ )/ln(π22122R R lW Q C ε== *8-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求: (1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度. 解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41rq q F ε= 但2q 处于金属球壳中心,它受合力..为零,没有加速度. (2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41r q q F ε=,但此时2q 受合力不为零,有加速度.题8-30图 题8-31图8-31 如题8-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U .解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q = ∴ 355025231123232⨯===C U C C Q U86)35251(5021=+=+=U U U AB V 8-32 1C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V ? 解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U ,而100021=+U U ∴ 6001=U V ,4002=U V即电容1C 电压超过耐压值会击穿,然后2C 也击穿.8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求: (1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112*********U U U C U C q qU C U C q q q q解得 (1) =1q U C C C C C q U C C C C C 21212221211)(,)(+-=+-(2)电场能量损失W W W -=∆0)22()2121(2221212221C q C q U C U C +-+= 221212U C C C C += 8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4rrQ E ε = 3R r >时 302π4r rQ E ε =∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r r Q W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4r rQ E ε =,02=W∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R QW C -==ε121049.4-⨯=F习题九9-1 在同一磁感应线上,各点B的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B的方向?解: 在同一磁感应线上,各点B的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B的方向.题9-2图9-2 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)? (2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B=∑⎰==-=⋅0d 021I bc B da B l B abcd μ∴ 21B B= (2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B方向相反,即21B B≠.9-3 用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.9-4 在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管 外面环绕一周(见题9-4图)的环路积分⎰外B L·d l =0但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为⎰外B L ·d l =I 0μ 这是为什么?解: 我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μ外,与⎰⎰=⋅=⋅Ll l B 0d 0d外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B 的轴向分量为零,而垂直于轴的圆周方向分量rI B πμ20=⊥,r 为管外一点到螺线管轴的距离.题 9 - 4 图9-5 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发 生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.9-6 已知磁感应强度0.2=B Wb ·m -2x 轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量.解: 如题9-6图所示题9-6图(1)通过abcd 面积1S 的磁通是24.04.03.00.211=⨯⨯=⋅=S BΦWb(2)通过befc 面积2S 的磁通量 022=⋅=S BΦ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S BΦWb (或曰24.0-Wb )题9-7图9-7 如题9-7图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B、CD 三部分电流产生.其中AB 产生 01=BCD 产生RIB 1202μ=,方向垂直向里CD 段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里.9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B题9-8图解:如题9-8图所示,A B方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T(2)设0=B在2L 外侧距离2L 为r 处则 02)1.0(220=-+rIr I πμπμ解得 1.0=r m题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度. 解: 如题9-9图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。
华侨大学学年《物理化学》期末考试试卷及标准答案
华侨大学学年《物理化学》期末考试试卷及标准答案一、选择题1.下列物质中,哪一个属于非电解质? A. NaCl B. HClC. C6H12O6D. CH3COOH正确答案:C解析:非电解质不会在溶液中产生离子,C6H12O6是一种有机物,不会电离,因此是非电解质。
2.以下哪个化学式表示了氢氧化钠? A. NaOH B.H2SO4 C. HCl D. CH3COOH正确答案:A解析:NaOH为氢氧化钠,含有钠离子(Na+)和氢氧根离子(OH-)。
3.下列离子中,哪一个成键平均键长最短? A. H3O+B. H2OC. OH-D. H2S正确答案:C解析:OH-为氢氧根离子,由于氧原子电负性较大,成键平均键长最短。
4.以下哪个物质的电子亲和能最高? A. Cl B. Br C. F D.I正确答案:C解析:F的电子亲和能最高,因为它的原子核质子数较小,核吸引电子的能力较强。
5.下列物质中,哪个是氧化剂? A. H2 B. Cl2 C. O2 D.SO2正确答案:C解析:氧化剂有能力失去电子或获取氧原子,促使其他物质发生氧化反应,O2具有这样的特性,因此是氧化剂。
二、填空题1.化学式H2O表示的物质是__________。
正确答案:水2.一般来说,离子间的键在固态时有____________的性质。
正确答案:电导3.在盐酸水溶液中,HCl解离成____________和____________离子。
正确答案:氢离子;氯离子4.标准状态下,气体的状态方程为____________。
正确答案:PV=nRT5.混合物的物质组成可以通过___________进行分离。
正确答案:物理方法三、计算题1.计算3.95 g NaCl 溶于 250 mL 水中的摩尔浓度。
解析:摩尔质量:NaCl = 23 + 35.5 = 58.5 g/mol摩尔浓度 = mol/L = (质量 / 摩尔质量) / 体积 = (3.95 g / 58.5 g/mol) / 0.25 L = 0.225 mol/L所以NaCl溶液的摩尔浓度为0.225 mol/L。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习一 (磁)1. (C)2.a4I0πμ, ⊗ 3.)412(R 2I 0ππμ+-, ⊗4. 可看成许多平行的无限长载流直导线组成,其中一宽为θRd dl =的直导线载有电流dl RIdI π=θθπμθπd sin R 2I )2cos(dB dB 20x -=+= ⎰-=-=ππμθθπμ02020x RId sin R 2I B θθπμθπd cos R 2I )2sin(dB dB 20y =+= 0d cos R2I B 020y ==⎰πθθπμ )T (i1037.6i RI B 620O -⨯-=-=πμ5. 将此盘看成无数同心带电圆环组成,半径为r 的圆环带电 rdr 2dq πσ⋅=圆环转动形成的电流为 rdr dq 2dI ωσπω==则 dr r dIdB ωσμμ00212== 各B d 同向 R 21dr 21dB B 00Rσωμωσμ===∴⎰⎰练习二 (磁)1. (B)2. 变量 ,1I ομ-3. 1∶1, 304. 由电流的对称性分析可知,磁感线形成同心圆,与轴等距离的圆环上B的大小相等,方向沿圆周的切向。
在横截面上以轴点为圆心,作半径为r 的圆形环路则 (1) a r < ⎰=⋅Ll d B 0, 0=∴B(2) b r a << I a b a r rB l d B L )()(22222--==⋅⎰ππμπο ,ra b Ia r B )(2(22)22--=∴πμο (3) b r >I rB l d B L⎰==⋅ομπ2,rIB πμο2=∴ 5. 取电流元 dI=(I/b)dx则 )x r b (b 2Idx)x r b (2dIdB 00-+=-+=πμπμ各B d同向,故rbr lnb 2I )x r b (b 2IdxB b00+=-+=⎰πμπμ 方向向里练习三 (磁)1.(B )2. 03. 1∶14.取面积元xdx ahydx dS ==,它距长直载流导线为 (b+x ) m d φ=S d B ⋅=xdx ahx b I⋅+)(2πμο=dx xb ba hI )1(2+-πμο ∴ m φ=⎰m d φ=ahIπμο2dx xb ba)1(0⎰+-=ahI πμο2[b ab ln b a +-]5. 在横截面上以轴点为圆心作半径为r 的圆形环路,由环路定理可得:R r < 222r R I rB ππμπο⋅= r R I B 22πμο=内R r ≥ I rB ομπ=2 rIB πμο2=外 矩形纵截面 外内S S S +=,其总磁通量为:⎰⎰⋅+⋅=S 外S 内m S d B S d Bφ)m 1l (2ln 212I ldr r 2I ldr R2Ir R 2R 0R20=+=+=⎰⎰)(πμπμπμο练习四 (磁)1. (D)2. (B)3. (B)4. AB 处的B )6a3b (2IB AB -=πμο,⊗,受力)6a3b (2aI I F 211-=πμο, 方向AB ⊥向左1I 在BC 上与1I 相距x 的电流元l d I 2处的xIB πμο21=,⊗,由B l d I F⨯=⎰22 及 2330cos dxdx dl ==得 6a 3b 3a 3b ln 3I I 23dx x 2I I F 21a 33b a63b 212-+=⋅=⎰+-πμπμοο 方向:在∆平面里BC ⊥向外 同理知23F F =,CA F ⊥3向外(在∆平面里)。
由对称性知合力无y 分量60cos 6a 3b 3a 3b ln 3I I 2)a 63b (2I aI F F 2121x -+⨯+--==∴πμπμοο5.(1)由安培环路定律和磁场叠加原理,可得导线间的B 为)3(44x d Ix I B -+=πμπμοο, 滑块受到的磁力 5ln 2252⎰==d d I IBdx f πμο常量===∴5ln 22πμοm I m fa又00=U 5ln 22ομπmlI a l t ==∴(2) πμm l Iat V t 5ln 0== 练习五 (磁)1. (C)2. (D)3. 矫顽力大,剩磁也大 永久磁铁4. I R 221π, IB R 221π,ϕsin RIB 2 5. B 垂直于y 轴而与x 轴成锐角6. (1) 朝东(2) 已知电子的能量 E k =(1/2)mv 2=1.2³104eV所以电子的速度 v=(2E k /m)1/2(1)电子的电量 e=1.6³19-19 C 电子的质量 m=9.11³10-31kg 设电子通过的距离为s 、偏转间距为 x 则有Rmv evB f 2== (2)222)x R (s R -+= (3) 联解(1),(2),(3)得 m 1098.2mE 8eBs R 2s x 3k22-⨯==≈7. 证: 将此盘看成无数同心带电圆环组成,半径为r 的圆环带电 rdr 2dq πσ⋅=圆环转动形成的电流为 rdr dq 2dI ωσπω==该圆电流的磁矩为 rdr r SdI dp 2m ωσπ⋅== 方向沿盘面轴线 该圆电流在磁场中受到的磁力矩为 dr r B B dp dM 3m πωσ==各M d同向 4BR dr r B M 4R3σωππωσ==⎰证毕.练习六 (磁)1.(B )2.(D )3. ① (D),② (B),③ b , 2RBv4.-VBL 215. dx Kxl S d B d m 1=⋅=φθφθθcos l Kl 21xdx Kl 2212)cos 1(l 2)cos 1(l 1m 22==⎰+-θωθθφεsin 21sin 21221221l Kl dt d l Kl dt d m i =⋅=-= 练习七 (磁)1.(A )2.(D )3. 0.15T4.(1)自感 21222ln 212D Dh N S d B INI N L D D ⎰=⋅==πμφο (2)H D D h N L 138.0ln 2212==πμο5. 在棒上取一长度元dl ,该长度元的速度 θωsin l v =,该长度元上的电动势为ldl sin B dl sin vB d 2i θωθε==OP 棒上的电动势为 2L02i )sin L (B 21ldl sin B θωθωε==⎰ 练习八 (磁)1. 变化的磁场,E q F=2. 导体在磁场中运动(切割磁力线)时,自由电荷受洛仑兹力而在导体内定向移动所致;磁场随时间变化所产生的涡旋电场可对载流子做功。
3. 0 4. 3.7 H 5. 800 Wb/s6. 在正方形线圈取一长条形面积元dr d dS ⋅= ,其所在处的磁感强度dr )r1d r 1(2I B 0--=πμ )34ln(2Id dr )r 1d r 1(2Id BdS 0d3d 20m πμπμφ=--==⎰⎰dtdI )34ln(2d dt d 0m i πμφε==7. (1) 取面积元 ldr dS = ldr r2IBdS d 0m πμφ== ada ln 2Il ldr r 2I 0da a0m +==⎰+πμπμφ (2) ad a ln 2l N I N M 0m +==πμφ(3) t cos )ad a ln(2l NI dt dI M00M ωπωμε+-=-= 练习九 (磁)1. (C)2. 0 ,42228R r I πμο3. 略4. R 2vB i ⋅=ε P 端电势高5. (1)两线圈内电流绕向相反,各点B=0,则0=ψ 0==∴IL ψ(2)此时两线圈完全耦合 121L L L M ==I L 4)M L M L (I 121122211=+++=+++=ψψψψψH L I L 2.041===ψ(3) 此时也为完全耦合,但二者磁通不能相加 21ψψψ==I L L IM L I LI 11122)(2=⋅=+=H L L 05.01== 练习十 (磁)1. (C)2. 0 ,221ab B ωε=,高 3. 1.5 mH 4. 22.6 J/m 3 5. 线框中只有两条坚直边切割磁力线,以顺时针方向为正,线框中的感应电动势为 ))l d (2I d 2I (vl l vB l vB 10022221i +-=-=πμπμε)l d (d 2vl Il 1210+=πμ, 顺时针方向 6. (1) 00I i ,x2i B ==πμ10l l l 0000l l l l ll ln 2I v dx x 2I vvBdx 100100+===⎰⎰++πμπμε V a >V b (2) t cos I i 0ω=, 以abcda 作为回路正方向1020l l l 202l l l ln 2il dx x 2il dx Bl 100+===⎰⎰+πμπμφ)t cos v t sin l (l l l ln 2I ]il [dt d l l l ln 2dt d 20100020100ωωωπμπμφε-+=+-=-=练习十一 (磁)1. B2. D3. B4.t cos a 2r I 20ωμπt sin Ra 2r I 20ωωμπ 5.θtg BL mgRaθtg BLmg由b 向a6. 解:(1) 设线圈转至任意位置时圆线圈的法向与磁场之间的夹角为θ,则通过该圆线圈平面的磁通量为θcos r πB 2=Φ, nt 2t π==ωθ∴nt 2cos r πB 2π=Φ在任意时刻线圈中的感应电动势为nt 2sin n 2r NB td d N2πππ=-=Φε nt 2sin n BNr 222ππ=t Τ2sin I nt 2sin R n NBr 2R i m 2πππ2===☜当线圈转过π /2时,t =T /4,则 987.0R /NBn r 2I i 2m ===2π A(2) 由圆线圈中电流I m 在圆心处激发的磁场为==')r 2/(NI B m 0μ 6.20³10-4T 方向在图面内向下,故此时圆心处的实际磁感强度的大小 500.0)B B (B 2/1220≈'+= T方向与磁场B的方向基本相同.解:筒以ω旋转时,相当于表面单位长度上有环形电流π2L Q ω⋅,它和通电流螺线管的nI 等效.按长螺线管产生磁场的公式,筒内均匀磁场磁感强度为: Lπ2Q B 0ωμ=(方向沿筒的轴向)筒外磁场为零.穿过线圈的磁通量为: L2a Q B a π202ωμΦ==在单匝线圈中产生感生电动势为=-=t d d Φ☜)t d d (L 2Qa 20ωμ-0020Lt 2Qa ωμ=感应电流i 为 020RLt 2Qa R i ωμ==i 的流向与圆筒转向一致.练习一(振动)1.(C ) 2.(B ) 3.(B ) 4. km 2π5. 15³10-2COS (6πt+π/2) 6.(1) t=0时, a=2.5ms -2N 5ma F == (2) 5a max =, 其时1)t 5sin(=-πN 10a m F max max == x=±0.2m7. 由曲线可知A =10cm. t=0 ⎩⎨⎧<-==-=0sin 10cos 105ϕωϕVo Xo ⇒=ϕ32π由图可知质点由位移为Xo =-5cm 和Vo<0的状态,到x =0和V>0的状态所需时间t=2s ,代入方程得 O=10cos (2ω+2π/3)即 2ω+2π/3=3π/2 ∴ ω=5π/12故得 X = 0.1cos (5πt/12+2π/3) (SI )练习二(振动)1. (B)2. (C)3. (A)4. (1) s 19.4T s5.1A /v Av 1m m =⇒==∴=-ωω(2) 222m s /m 105.4A a -⨯==ω (3) )SI ()2/t 5.1cos(02.0x 2/ππφ+==5. (1) 对小物体在竖直方向有 mg-N=ma N=m (g-a )当N=0,即 a=g 时,小物体开始脱离振动物体.已知 A=10cm . =ωmk=50 rad ²s-1∴a max = A ω2= 5ms -2< g 故小物体不会离开.(2)若a max >g 小物体与振动物体分离,开始分离的位置由N=0求得:g= a max = -ω-2x x=-g/ω2=-19.6cm即在平衡位置上方19.6cm 处开始分离.由 a max =ω2A >g可得 A >g/ω2=19.6cm练习三(振动)1. (E )2.(C )3.43,g l ∆π24.(1)令22P kA 412E kx 21E ===, 则 x 2=A 2/2 ∴)m (54.3A 22x ±=±= (2)令=t ∆ωπ/4,则 43)3/(44t =⨯==ππωπ∆(S ), 5, 解:(1) 由题意 kA F m =,m x A =,m m x F k /=.16.021212===m m m x F kx E J (2) π===2mm m x A vv ω rad /s由 t = 0, φcos 0A x ==0.2 m , 0sin 0<-=φωA v可得 π=31φ则振动方程为)312cos(4.0π+π=t x练习四(振)1. (B)2. (B)3. 5³10-2m 4. 4³10-2m ,2π 5. 依题画出旋转矢量图,由图可知两谐振动的相位差为π/2.6. 解:设合成运动(简谐振动)的振动方程为 )cos(φω+=t A x则 )cos(2122122212φφ-++=A A A A A ① 以 A 1 = 4 cm ,A 2 = 3 cm ,π=π-π=-212112φφ代入①式,得5cm 3422=+=A cm又 22112211cos cos sin sin arctg φφφφφA A A A ++= ②≈127°≈2.22 rad∴)22.22cos(05.0+π=t x (SI)练习五(波)1.(C )2.(B )3. 2π/54. 0.06sin(πt/2-5π/4)5. (1) 由P 点的运动方向,则可判定该波向左传播.对原点O 处质点,t=0时,有⎪⎩⎪⎨⎧<-==0sin A V cos A 2/A 20ϕωϕ∴4πϕ= ∴O 处振动方程为:y 0=Acos (500πt+π/4)波动方程为:y=Acos[2π(250t+x/200)+π/4] (SI ) (2)距O 点100m 处质点振动方程是: y 1=Acos (500πt+5π/4) (SI )振动速度为 V=-500πAsin (500πt+5π/4) (SI )6.练习六(波)1. (C)2. (A)3. (D)4. a/b5. 解:(1) O 处质点,t = 0 时 0cos 0==φA y , 0sin 0>-=φωA v 所以 π-=21φ 又 ==u T /λ (0.40/ 0.08) s= 5 s 故波动表达式为 ]2)4.05(2cos[04.0π--π=x t y (SI) (2) P 处质点的振动方程为 ]2)4.02.05(2cos[04.0π--π=t y P )234.0cos(04.0π-π=t (SI) 6. 解:由图,λ = 2 m , 又 ∵u = 0.5 m/s ,∴ ν = 1 /4 Hz ,T = 4 s .题图中t = 2 s =T 21.t = 0时,波形比题图中的波形倒退λ21,见图. 此时O 点位移y 0 = 0(过平衡位置)且朝y 轴负方向运动,x (m)y (m)0u 0.512t = 0-1∴ π=21φ ∴ )2121cos(5.0π+π=t y (SI)练习七(波)1. (B )2. (B )3. R 22/R 21 4. 1.27³10-2Wm -2, 3.18³10-3Wm-25.(1) P=ω/t=2.7³10-3J ²S -1(2) I = P/S = 9.00³10-2Js -1m -2(3)341065.2/--⨯==Jm u I ω6. 已知 A=0.1m , T=1S , λ=8m 波沿x 轴负向传播,则波函数y=0.1cos[2π(t+x/λ)+ϕ]在x=λ/2处有 )t 2cos(1.0y 0ϕππ++=而4/0πϕπ=+ 4/30πϕ-=∴∴ 波函数为y=0.1cos[2π(t+x/8)-3π/4]于是有 (1)x=λ/4处的振动方程为 y=0.1cos (2πt-π/4)(2)x=-λ/4处的振动方程为 y=0.1cos (2πt-5π/4)其振动速度为 )45t 2sin(2.0dt dy πππ--= 且 12/T t ms 444.0)45sin(2.0dt dy -==--=πππ练习八(波)1.(D )2. 03. 0.5m4. 4. 相同,相同,2π/35. 解:=-π--=∆)(21212r r λφφφ422412/r r π-=π+π-πλλ464.0)cos 2(2/1212221=++=∆φA A A A A m6. (1) )/x 2t cos(A y λππω-+= (2) )/x 2/L 4t cos(A y λπλπω+-'='练习九(波)1. (B )2. (B)3. Acos2π(t/T-x/λ),A4. 1³102,0.15.(1)L=3³λ/2, λυ= u ∴L=3u/2υ=(3/2)³(320/400)=1.2m (2)弦的中点是波腹,故 y=3³10-3cos (2πx/0.8)cos (800πt+ϕ) 式中ϕ可由初始条件来选择.6.(1)由图知B 点的初相为ϕ=π,波向x 轴正向传播,则波动方程为y=cos[2πυ(t-x/u )+π](2)若以反射点为D 为原点,并以此时刻为t=0,由条件X o =0,υ0﹥0, 得ϕ=-π/2 则入射波波函数为y 1=Acos[2πυ(t-x/μ)-π/2]因反射点为节点,有半波损失,故反射波的波函数为 y 2=Acos[2πυ(t+x/μ)+π/2](3)合成波的波函数为:y= y 1+y 2=2Acos(2πx/λ+π/2)cos2πυt因原点在反射点,x ﹤0,且反射点是波节∴波节坐标为 x=0,-λ/2,-λ,-3λ/2,……波腹坐标为x=-λ/4,-3λ/4,-5λ/4,……练习十(波)1. (A)2. ωλSw/2π3. 5π4. 由0Su uννυ-=知驶向观察者时有 440=3300ν/(330-s ν) (1)离开观察者时有 392=3300ν/(330+s ν) (2)两式解得392(330+s ν)=440(330-s ν)。