基于小波变换的图像阔值降噪算法研究开题报告

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国计量大学

毕业设计(论文)开题报告

学生姓名:马日斯江·库尔班学号:**********专业:测控技术与仪器

班级: 12测控1班

设计(论文)题目:

基于小波变换的图像阈值降噪算法研究

指导教师:***

系:计量测试工程学院

2016年3 月25 日

基于小波变换的图像阈值降噪算法研究

开题报告

一、课题的背景及意义:

图像降噪是图像预处理的主要任务之一,其作用是为了提高图像的信噪比,突出图像的期望特征。不同性质的噪声应采用不同的方法进行消噪。最简单的也比较通用的消噪算法,是用傅立叶变换直接进行低通滤波或带通滤波。这种方法虽然简单、易于实现,但它对滤去有用信号频带中的噪声无能为力,并且带宽的选择和高分辨率是有矛盾的。带宽选的过宽,达不到去噪的目的;选的过窄,噪声虽然滤去的多,但同时信号的高频部分也损失了,不但带宽内的信噪比得不到改善,某些突变点的信息也可能被模糊掉了。将小波变换应用于信号处理中,是因为它的主要优点是在时间域和频率域中同时具有良好的局部化特性,从而非常适合时变信号的分析和处理。特别在图像去噪领域中,小波理论受到了许多学者的重视,他们应用小波进行去噪,并获得了非常好的效果。具体来说,小波去噪方法的成功主要得益于小波变换具有以下特点:

(1)低熵性由于小波系数的稀疏分布,使得图像变换后的熵降低了;

(2)多分辨率由于小波采用了多分辨率的方法,所以可以非常好地刻画信号的非平稳特征,如边缘、尖峰、断点等;

(3)去相关性因为小波变换可以对信号进行去相关,且噪声在变换后有白化趋势,所以小波域比时域更利于去噪;

(4)选基灵活性由于小波变换可以灵活选择变换基,所以对不同应用场合,对不同的研究对象,可以选用不同的小波母函数,以获得最佳的去噪效果。

因此,就信号消噪问题而言,它比传统的傅立叶频率域滤波和匹配滤波器更具有灵活性。以小波变换为基础的时变信号消噪算法是把含噪信号放在二维平面上,利用信号和噪声表现出的截然不同的特性进行分时分频处理,此方法理论上不但能够获得较高的信噪比,而且能够保持良好的时间分辨率。采用小波消噪算

法能够更有效地消除噪声,而且消噪后信号的基线平稳,峰形和峰高失真小,可以满足分析的要求。

从数学上看,小波去噪问题的本质是一个函数逼近问题,即如何在由小波母函数伸缩和平移所展成的函数空间中,根据提出的衡量准则,寻找对原信号的最佳逼近,以完成原信号和噪声信号的区分.由此可见,小波去噪方法也就是寻找从实际信号空间到小波函数空间的最佳映射,以便得到原信号的最佳恢复。二、国内外研究现状

从对图像进行滤波的过程中所采用的滤波方法来分,可分为空间域滤波、变换域滤波;从滤波类型来分,又可以分为线性滤波和非线性滤波。

2002年Do.M.N和Vetterli M.提出了一种“真正”的二维图像稀疏表达方法——Contourlet变换,这种变换能够很好的表征图像的各向异性特征。由于Contourlet变换能更好的捕获图像的边缘信息,因此选择合适的阈值进行去噪就能获得比小波变换更好的效果。Starck等人将Curvelet变换应用于图像的去噪过程中并取得了良好的效果该方法虽然能有效的去除噪声,但往往会“过扼杀”Curvelet系数,导致在消除噪声的同时丢失图像细节。在过去的二十年里,自适应滤波器在通信和信号处理领域引起了人们的极大关注。Terence Wang等人针对二维自适应FIR滤波器提出了一种二维最优块随机梯度算法(TDOBSG)。这种算法对滤波器的所有系数使用了空间可变的收缩因子。基于使后验估计方差矢量的二范数最小的最小方差准则,在块迭代的过程中选出最优的收敛因子。

线性滤波器的最大优点是算法比较简单且速度比较快,缺点是容易造成细节和边缘模糊。在目前对非线性滤波器的研究中,中值滤波器有较明显的优势,很多科学工作者对中值滤波器作了改进或者提出了一些新型的中值滤波器。Loupas等人提出的自适应的加权中值滤波方法(AWMF),但他利用的Speckle噪声模型不够精确,图像细节损失较大。针对中值滤波器在处理矢量信号存在的缺点,Jakko等人提出两种矢量中值滤波器。

近年来,小波分析是当前应用数学中一个迅速发展的新领域,它凭借其卓越的优越性,越来越多的被应用于图像去噪等领域,基于小波分析的图像去噪技术也随着小波理论的不断完善取得了较好的效果。上个世纪八十年代Mallet 提

出了MRA(Multi_Resolution Analysis),并首先把小波理论运用于信号和图像的分解与重构,利用小波变换模极大值原理进行信号的奇异性检测,提出了交替投影算法用于信号重构,为小波变换用于图像处理奠定了基础。后来,人们根据信号与噪声在小波变换下模极大值在各尺度上的不同传播特性,提出了基于模极大值去噪的基本思想。1992年,Donoho和Johnstone提出了“小波收缩”,它较传统的去噪方法效率更高。“小波收缩”被Donoho和Johnstone证明是在极小化极大风险中最优的去噪方法,但在这种方法中最重要的就是确定阈值。1995年,Stanford大学的学者D.L.Donoho和I.M.Johnstone提出了通过对小波系数进行非线性阈值处理来降低信号中的噪声从这之后的小波去噪方法也就转移到从阈值函数的选择或最优小波基的选择出发来提高去噪的效果。影响比较大的方法有以下这么几种:Eero P.Semoncelli和Edward H.Adelson提出的基于最大后验概率的贝叶斯估计准则确定小波阈值的方法;Elwood T.Olsen等在处理断层图像时提出了三种基于小波相位的去噪方法:边缘跟踪法、局部相位方差阈值法以及尺度相位变动阈值法;学者Kozaitis结合小波变换和高阶统计量的特点提出了基于高阶统计量的小波阈值去噪方法;G.P.Nason等利用原图像和小波变换域中图像的相关性用GCV(general cross-validation)法对图像进行去噪;Hang.X和Woolsey等人提出结合维纳滤波器和小波阈值的方法对信号进行去噪处理,Vasily Strela等人将一类新的特性良好的小波(约束对)应用于图像去噪的方法;同时,在19世纪60年代发展的隐马尔科夫模型(Hidden Markov Model),是通过对小波系数建立模型以得到不同的系数处理方法;后又有人提出了双变量模型方法,它是利用观察相邻尺度间父系数与子系数的统计联合分布来选择一种与之匹配的二维概率密度函数。这些方法均取得了较好的效果,对小波去噪的理论和应用奠定了一定的基础。

另外,尽管小波去噪方法现在已经成为去噪和图像恢复的重要分支和主要研究方向,但目前在另类噪声分布(非高斯分布)下的去噪研究还不够。目前国际上开始将注意力投向这一领域,其中非高斯噪声的分布模型、高斯假设下的小波去噪方法在非高斯噪声下如何进行相应的拓展,是主要的研究方向。未来这一领域的成果将大大丰富小波去噪的内容。

总之,由于小波具有低墒性、多分辨率、去相关性、选基灵活性等特点,小

相关文档
最新文档