小功率直流电机的测速和控制

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小功率直流电机的测速和控制

[摘要] 本设计采用两片MCU(AT89S52),完成了小型直流电机转速的采集、计算、显示、键盘设定,并将非均匀采样情况下的增量式积分分离PID控制算法应用于直流电机的PWM调速,实现了对电机转速的测量和控制,解决了通常低采样周期时系统的超调以及PID算法的积分饱和问题。

[关键词]转速PID控制mcu AT89S52 PWM

目前见到的许多关于直流电机的测速与控制类文献中,虽然能实现直流电机的无级调速,但还存在一些问题,如无法与计算机直接接口,许多较为复杂的控制算法无法在不增加硬件成本的情况下实现,控制器的人机界面不理想。总的来讲,控制器的智能化程度不高,可移植性差。虽然采用PWM芯片来实现电机无级调速的方案成本较低,但当控制器针对不同的应用场合增加多种附加功能时,其灵活性不够,而且反而增加硬件的成本[5]。还有一些使用PLC控制器或高档处理器芯片(如DSP器件)的文献,它们虽然具有较高的控制性能,但由于这些高档处理器价格过高,需要更多的外围器件,因此也不具备在通常情况下大规模使用的条件。从发展趋势上看,总体的研究方向是提出质量更高的算法和调速方案,以及在考虑成本要求的前提下选择适合这种算法的核心控制器。

1设计方案论证

根据设计任务,要求调速采用PID控制器,因此需要设计一个闭环直流电机控制系统。该系统采用脉宽调速,使电机速度等于设定值,并且实时显示电极的转速值。通过对设计功能分解,设计方案论证可以分为:系统结构方案论证,速度测量方案论证,电机驱动方案论证,键盘显示方案论证,PWM软件实现方案论证。

1.1系统结构方案论证

方案一:采用一片单片机(AT89S52)完成系统所有测量、控制运算,并输出PWM控制信号。

方案二:采用两片单片机(AT89S52),其中一片做成PID控制器,专门进行PID运算和PWM 控制信号输出;另一片则系统主芯片,完成电机速度的键盘设定、测量、显示,并向PID控制器提供设定值和测量值,设定PID控制器的控制速度等。

方案一的优点是系统硬件简单,结构紧凑。但是其造成CPU资源紧张,程序的多任务处理难度增大,不利与提高和扩展系统性能,也不利于向其他系统移植。方案二则与方案一相反,虽然硬件增加,但在程序设计上有充分的自由去改善速度测量精度,缩短测量周期,优化键盘,显示及扩展其它功能。与此同时,PID控制算法的实现可以精益求精,对程序算法或参数稍加改动即可移植到其他PID控制系统中。因此通过比较,选择方案二。

1.2转速测量方案论证

方案一:采用记数的方法。具体是通过单片机记单位时间S(秒)内的脉冲数N,每分钟的转速:M=N/S×60。

方案二:采用定时的方法。是通过定时器记录脉冲的周期T,这样每分钟的转速:M=60/T。

比较两个方案,方案一的误差主要是±1误差(量化误差),设电机的最低设计转速为120转/分,则记数时间S=1s,所以其误差得绝对值|γ|=|(N±1)/S×60-N/S×60|=60(转/分),误差计算公式表明,增大记数时间可以提高测量精度,但这样做却增大了速度采样周期,会降低系统控制灵敏度。而方案二所产生的误差主要是标准误差,并且使采样时间降到最短,误差γ=[60/(T±1)-60/T],设电机速度在120—6000转/分之间,那么0.01s≤T≤0.5s,代入公式得:0.00024≤|γ|≤0.6(转/分)。由此明显看出,方案二在测量精度及提高系统控制灵敏度等方面优于方案一,所以本设计采用方案二。

1.3电机驱动方案论证

方案一:采用专用小型直流电机驱动芯片。这个方案的优点是驱动电路简单,几乎不添加其它外围元件就可以实现稳定的控制,使得驱动电路功耗相对较小,而且目前市场上此类芯片种类齐全,价格也比较便宜。

方案二:采用继电器对电动机的开或关进行控制,通过开关的切换对电机的速度进行调整。这个方案的优点是电路较为简单,缺点是继电器的响应时间慢、机械结构易损坏、寿命较短、可靠性不高。

方案三:采用由达林顿管组成的H型PWM电路。用单片机控制达林顿管使之工作在占空比可调的开关状态,精确调整电动机转速。这种电路由于工作在管子的饱和截止模式下,效率非常高;H型电路保证了可以简单地实现转速和方向的控制;电子开关的速度很快,稳定性也极佳,是一种广泛采用的PWM调速技术。

通过比较和对市场因素的考虑,本设计采用方案一,使系统的设计核心在PID控制上。1.4键盘显示方案论证

方案一:采用4×4键盘,可直接输入设定值。显示部分使用4位数码管,优点是显示亮度大,缺点是功耗大,不符合智能化趋势而且不美观。

方案二:使用4个按键,进行逐位设置。显示部分是使用支持中文显示的LCD,优点是美观大方,有利于人与系统的交互,及显示内容的扩展;缺点是成本高,抗干扰能力教差。

为了系统容易扩展、操作以及美观,本设计完全采用方案二。

1.5 PWM软件实现方案论证

脉宽调制的方式有三种:定频调宽、定宽调频和调宽调频。本设计采用了定频调宽方式,采用这种方式的优点是电动机在运转时比较稳定,并且在采用单片机产生PWM脉冲的软件实现上比较方便。对于实现方式则有两种方案。

方案一:采用定时器做为脉宽控制的定时方式,这一方式产生的脉冲宽度极其精确,误差只在几个us。

方案二:采用软件延时方式,这一方式在精度上不及方案一,特别是在引入中断后,将有一定的误差。但是基于不占用定时器资源,且对于直流电机,采用软件延时所产生的定时误差在允许范围。由于本设计采用了两片AT89S52单片机,MCU资源充足,因此选择方案一。

2系统原理框图设计

系统原理框图如图2.1所示,是一个带键盘输入和显示的闭环测量控制系统。主体思想是通过系统设定信息和测量反馈信息计算输出控制信息。

图2.1 系统原理框图

3各模块的分析、计算与硬件电路设计

3.1速度测量电路的设计

3.1.1转速/频率转换电路的设计

理论上,是先将转速转化为某一种电量来测量,如电压,电流等。设计中将转速测量转化为电脉冲频率的测量。基于这一思想,可以采用一对霍尔感应传感器,使输出信号的一只在转轮一侧固定,另一只则粘在对应位置的转轮上,这样,电机每转一圈,传感器将会输出一个脉冲,然后将脉冲放大、整形后即可通过单片机测量其频率求出转速。实际实验中,由于市场采购原因,暂用三极管输出型红外光电耦合器代替霍尔传感器。如图3.1所示,在电机转轮一处开孔,这样,每转一圈,三级管(红外接收头)透光导通一次,OUT端输出一个上脉冲,即完成了转速/频

相关文档
最新文档