计量经济学5ppt课件
合集下载
2024版计量经济学全册课件(完整)pptx

REPORTING
2024/1/28
23
EViews软件介绍及操作指南
EViews软件概述
EViews是一款功能强大的计量经济学 软件,提供数据处理、统计分析、模型
估计和预测等功能。
统计分析与检验
2024/1/28
详细讲解EViews中的统计分析工具, 包括描述性统计、假设检验、方差分
析等。
数据导入与预处理 介绍如何在EViews中导入数据,进行 数据清洗、转换和预处理等操作。
随着大数据时代的到来,机器学 习算法在数据挖掘、预测和分类 等方面展现出强大的能力,为计 量经济学提供了新的研究工具和 方法。
机器学习在计量经济 学中的应用领域
机器学习在计量经济学中的应用 领域广泛,如变量选择、模型选 择、非线性模型估计、高维数据 处理等。
机器学习在计量经济 学中的常用算法
机器学习在计量经济学中常用的 算法包括决策树、随机森林、支 持向量机(SVM)、神经网络等。 这些算法可以用于分类、回归、 聚类等任务,提高模型的预测精 度和解释力。
面板数据特点
同时具有时间序列和截面数据的特征,能够提供更多的信息、更多的变化、更少共 线性、更多的自由度和更高的估计效率。
2024/1/28
20
固定效应模型与随机效应模型
固定效应模型(Fixed Effects Model)
对于特定的个体而言,其截距项是固定的,不随时间变化而变化。
随机效应模型(Random Effects Mode…
经典线性回归模型
REPORTING
2024/1/28
7
一元线性回归模型
模型设定与参数估计
介绍一元线性回归模型的基本形式, 解释因变量、自变量和误差项的含义, 阐述最小二乘法(OLS)进行参数估 计的原理。
计量经济学(第五版)教学课件5

• 检验模型滞后项阶数的确定:以随机项不存在 序列相关为准则。
模型 统计量
1
2
样本容量 25 50 100 250 500 >500 25 50 100 250 500 >500 25 50 100 250 500 >500
0.01 -2.66 -2.62 -2.60 -2.58 -2.58 -2.58 -3.75 -3.58 -3.51 -3.46 -3.44 -3.43 3.41 3.28 3.22 3.19 3.18 3.18
– 则称该随机时间序列是平稳的(stationary),而该
随机过程是一平稳随机过程(stationary stochastic
process)。
宽平稳、广义平稳
• 白噪声(white noise)过程是平稳的: Xt=t , t~N(0,2)
• 随机游走(random walk)过程是非平稳的: Xt=Xt-1+t , t~N(0,2) Var(Xt)=t2
0.01 -4.38 -4.15 -4.04 -3.99 -3.98 -3.96 4.05 3.87 3.78 3.74 3.72 3.71 3.74 3.60 3.53 3.49 3.48 3.46
0.025 -3.95 -3.80 -3.73 -3.69 -3.68 -3.66 3.59 3.47 3.42 3.39 3.38 3.38 3.25 3.18 3.14 3.12 3.11 3.11
0.05 -3.60 -3.50 -3.45 -3.43 -3.42 -3.41 3.20 3.14 3.11 3.09 3.08 3.08 2.85 2.81 2.79 2.79 2.78 2.78
0.10 -3.24 -3.18 -3.15 -3.13 -3.13 -3.12 2.77 2.75 2.73 2.73 2.72 2.72 2.39 2.38 2.38 2.38 2.38 2.38
模型 统计量
1
2
样本容量 25 50 100 250 500 >500 25 50 100 250 500 >500 25 50 100 250 500 >500
0.01 -2.66 -2.62 -2.60 -2.58 -2.58 -2.58 -3.75 -3.58 -3.51 -3.46 -3.44 -3.43 3.41 3.28 3.22 3.19 3.18 3.18
– 则称该随机时间序列是平稳的(stationary),而该
随机过程是一平稳随机过程(stationary stochastic
process)。
宽平稳、广义平稳
• 白噪声(white noise)过程是平稳的: Xt=t , t~N(0,2)
• 随机游走(random walk)过程是非平稳的: Xt=Xt-1+t , t~N(0,2) Var(Xt)=t2
0.01 -4.38 -4.15 -4.04 -3.99 -3.98 -3.96 4.05 3.87 3.78 3.74 3.72 3.71 3.74 3.60 3.53 3.49 3.48 3.46
0.025 -3.95 -3.80 -3.73 -3.69 -3.68 -3.66 3.59 3.47 3.42 3.39 3.38 3.38 3.25 3.18 3.14 3.12 3.11 3.11
0.05 -3.60 -3.50 -3.45 -3.43 -3.42 -3.41 3.20 3.14 3.11 3.09 3.08 3.08 2.85 2.81 2.79 2.79 2.78 2.78
0.10 -3.24 -3.18 -3.15 -3.13 -3.13 -3.12 2.77 2.75 2.73 2.73 2.72 2.72 2.39 2.38 2.38 2.38 2.38 2.38
计量经济学课件PPT课件

非线性模型转换方法
多项式回归
通过引入自变量的高次项,将非线性关系转化为线性 关系进行处理。
变量变换
对自变量或因变量进行某种函数变换,以改善模型的 拟合效果。
非参数回归
不假定具体的函数形式,通过数据驱动的方式拟合非 线性关系。
实例分析:金融时间序列预测
数据准备
收集金融时间序列数据,如股票 价格、交易量等,并进行预处理。
模型选择依据
Hausman检验,LM检验等。
实例分析:经济增长收敛性问题研究
研究背景
探讨不同国家或地区间经济增长差异及其收 敛性。
模型构建
选择合适的面板数据模型,设定经济增长收 敛假设。
实证分析
收集相关数据,运用计量经济学软件进行回 归分析,检验收敛性假设是否成立。
结论与政策建议
根据实证结果得出结论,提出促进经济增长 收敛的政策建议。
机器学习算法与计量经济学模型结合
将机器学习算法与传统计量经济学模型相结合,形成更具解释性和预测能力的混合模型。
大数据背景下计量经济学挑战与机遇
01
大数据背景概述
数据量巨大、类型多样、处理速度快等 特点。
02
计量经济学面临的挑 战
数据质量、计算效率、模型可解释性等 问题。
03
计量经济学面临的机 遇
利用大数据技术挖掘更多信息,提高模 型预测精度和政策评估效果;同时推动 计量经济学理论和方法的发展创新。
Geary's C指数
与Moran's I指数类似,也是用于检验全局空间自相关。
LISA集聚图 用于检验局部空间自相关,可以直观展示空间集聚或异常 值区域。
空间滞后和空间误差模型选择
空间滞后模型(SLM)
最新计量经济学课件-第五章教学讲义PPT

模型中的解释变量仅包含X的当期值与被解释 变量Y的一个或多个滞后值
Y t a b 0 X t b 1 Y t 1 b 2 Y t 2 b q Y t q U t
• 3、分布滞后模型的OLS估计 (1)估计中存在的问题: 无限分布滞后:样本有限,无法估计; 有限分布滞后: 没有先验准则确定滞后长度; 滞后期过长导致丧失过多自由度; 容易出现多重共线;
Y b 0 b 1 X b 2 P a 1 D 1 a 2 D 2 a 3 D 3 a 4 D 4 U
存在什么问题?
• 解释变量观测值矩阵为:
1
X1
1
X2
P1
1 0 0 0
P2
0
1
0
0
1
X3
1
X4
P3
0 0 1 0
P4
0 0 0 1
1
X0
1
X n2
Pn 2
• (2)一般处理
各种方法的基本思想大致相同:都是通过对各滞后变 量加权,组成新变量从而有目的地减少滞后变量的数 目,以缓解多重共线性,保证自由度。
经验权数法
根据实际问题的特点、实际经验给各滞后变量指定权 数,滞后变量按权数线性组合,构成新的变量。权数
据的类型有:
• 递减型: 权数是递减的,X的近期值对Y的影响较远期 值大。 如消费函数中,收入的近期值对消费的影响作 用显然大于远期值的影响。 例如:滞后期为 3的一组权数可取值如下: 1/2, 1/4, 1/6, 1/8 则新的线性组合变量为:
W 1 t1 2X t1 4X t 11 6X t 28 1X t 3
• 矩型: 即认为权数是相等的,X的逐期滞后值对值Y 的影响相同。 如滞后期为3,指定相等权数为1/4,则新的线 性组合变量为:
Y t a b 0 X t b 1 Y t 1 b 2 Y t 2 b q Y t q U t
• 3、分布滞后模型的OLS估计 (1)估计中存在的问题: 无限分布滞后:样本有限,无法估计; 有限分布滞后: 没有先验准则确定滞后长度; 滞后期过长导致丧失过多自由度; 容易出现多重共线;
Y b 0 b 1 X b 2 P a 1 D 1 a 2 D 2 a 3 D 3 a 4 D 4 U
存在什么问题?
• 解释变量观测值矩阵为:
1
X1
1
X2
P1
1 0 0 0
P2
0
1
0
0
1
X3
1
X4
P3
0 0 1 0
P4
0 0 0 1
1
X0
1
X n2
Pn 2
• (2)一般处理
各种方法的基本思想大致相同:都是通过对各滞后变 量加权,组成新变量从而有目的地减少滞后变量的数 目,以缓解多重共线性,保证自由度。
经验权数法
根据实际问题的特点、实际经验给各滞后变量指定权 数,滞后变量按权数线性组合,构成新的变量。权数
据的类型有:
• 递减型: 权数是递减的,X的近期值对Y的影响较远期 值大。 如消费函数中,收入的近期值对消费的影响作 用显然大于远期值的影响。 例如:滞后期为 3的一组权数可取值如下: 1/2, 1/4, 1/6, 1/8 则新的线性组合变量为:
W 1 t1 2X t1 4X t 11 6X t 28 1X t 3
• 矩型: 即认为权数是相等的,X的逐期滞后值对值Y 的影响相同。 如滞后期为3,指定相等权数为1/4,则新的线 性组合变量为:
计量经济学课件 第5章 回归模型的函数形式

• 2.选择模型的基本准则:
• 模型选择的重点不是在判定系数大小,而是要考 虑进入模型的解释变量之间的相关性(即理论基 础)、解释变量系数的预期符号、变量的统计显 著性、以及弹性系数这样的度量工具。
线性回归模型的弹性系数计算
• 平均弹性:
E
Y X
X Y
B2
X Y
多元对数线性回归模型
• 偏弹性系数的含义: 在其他变量(如,X3)保持不变的条件下,X2 每变动1%,被解释变量Y变动的百分比为B2;
• (3)菲利普斯曲线
被解释变量:英国货币工资变化率,解释变量:失业率 结论:失业率上升,工资增长率会下降。 在自然失业率UN上下,工资变动幅度快慢不同。即失业率低于自然失业率时,工 资随失业率单位变化而上升快于失业率高于自然失业率时工资随失业率单位变化而下 降。
(P113例5-6) 倒数模型: 菲利普斯曲线
依据经济理论,失业率上升,工资增长率会下降;且 当失业率处于不同水平时,工资变动率变动的程度会 不一样,即Y对X 的斜率(Y / X)不会是常数。
Y / X 20.588*(1/ X 2 )
R2 0.6594
模型选择:
1、依据经济理论
以及经验判断;
2、辅助于对拟合
R2 0.5153 Y / X 0.79
1、B1、B2、B4 0; 2、B3 0 3、B32 3B2B4
WHY? —所以经济理论的学习对于模型的建立、选择
和检验有非常关键和重要的意义。 24
四、模型(形式)选择的依据
经济理论
工作经验
1、模型的建立需要正确地理论、合适可用的数据、 对各种模型统计性质的完整理解以及经验判断。
模型选择的基本准则:进入模型中的解释变量的关系(即 理论基础)、解释变量系数的预期符号、弹性系数等经济 指标、统计显著性等
• 模型选择的重点不是在判定系数大小,而是要考 虑进入模型的解释变量之间的相关性(即理论基 础)、解释变量系数的预期符号、变量的统计显 著性、以及弹性系数这样的度量工具。
线性回归模型的弹性系数计算
• 平均弹性:
E
Y X
X Y
B2
X Y
多元对数线性回归模型
• 偏弹性系数的含义: 在其他变量(如,X3)保持不变的条件下,X2 每变动1%,被解释变量Y变动的百分比为B2;
• (3)菲利普斯曲线
被解释变量:英国货币工资变化率,解释变量:失业率 结论:失业率上升,工资增长率会下降。 在自然失业率UN上下,工资变动幅度快慢不同。即失业率低于自然失业率时,工 资随失业率单位变化而上升快于失业率高于自然失业率时工资随失业率单位变化而下 降。
(P113例5-6) 倒数模型: 菲利普斯曲线
依据经济理论,失业率上升,工资增长率会下降;且 当失业率处于不同水平时,工资变动率变动的程度会 不一样,即Y对X 的斜率(Y / X)不会是常数。
Y / X 20.588*(1/ X 2 )
R2 0.6594
模型选择:
1、依据经济理论
以及经验判断;
2、辅助于对拟合
R2 0.5153 Y / X 0.79
1、B1、B2、B4 0; 2、B3 0 3、B32 3B2B4
WHY? —所以经济理论的学习对于模型的建立、选择
和检验有非常关键和重要的意义。 24
四、模型(形式)选择的依据
经济理论
工作经验
1、模型的建立需要正确地理论、合适可用的数据、 对各种模型统计性质的完整理解以及经验判断。
模型选择的基本准则:进入模型中的解释变量的关系(即 理论基础)、解释变量系数的预期符号、弹性系数等经济 指标、统计显著性等
第五章计量经济学PPT课件

y ~0 ~1x1 ... ~kq xkq u~
现在保留残差u~并且将u~对 x1, x2 ,...,xk (即所有的自变量)进行回归
LM nRu2 , 其中 Ru2 是来自于该回归的R平方
可编辑
18
拉格朗日乘数统计量 (续)
a
LM
~
2 q
,
因此我们能从一个
2 q
ˆ j j
se ˆ j
a
~ tnk 1
注意到虽然我们不再需要假定一个大 样本的正态性, 但是我们仍然需要同 方差性假定
可编辑
15
渐近标准误差
如果u不是正态分布, 那么我们有时将称标准误
差为渐近标准误差, 因为
se ˆ j
ˆ 2
SSTj
1
R
2 j
可编辑
2
当n增大时的抽样分布
n3
n1 < n2 < n3
n2
n1
b1
可编辑
3
普通最小二乘估计量的一致性
在高斯-马尔科夫假定下, 普通最小二乘 估计量具有一致性(并且是无偏的) 对于简单回归情形,我们能用证明无偏 性的类似方式来证明一致性 我们将需要取概率极限 (plim)来建立一 致性
可编辑
4
证明一致性
可编辑
20
2020/1/11
21
可编辑
8
大样本推断
回想在经典线性模型假定下抽样分布是
正态的, 我们据此导出检验用的t分布和F
分布 这种严格的正态性应归于假定总体误差 分布是正态的
正态误差的这个假定暗含给定x,y的分
布也是正态的
可编辑
9
大样本推断 (续)
现在保留残差u~并且将u~对 x1, x2 ,...,xk (即所有的自变量)进行回归
LM nRu2 , 其中 Ru2 是来自于该回归的R平方
可编辑
18
拉格朗日乘数统计量 (续)
a
LM
~
2 q
,
因此我们能从一个
2 q
ˆ j j
se ˆ j
a
~ tnk 1
注意到虽然我们不再需要假定一个大 样本的正态性, 但是我们仍然需要同 方差性假定
可编辑
15
渐近标准误差
如果u不是正态分布, 那么我们有时将称标准误
差为渐近标准误差, 因为
se ˆ j
ˆ 2
SSTj
1
R
2 j
可编辑
2
当n增大时的抽样分布
n3
n1 < n2 < n3
n2
n1
b1
可编辑
3
普通最小二乘估计量的一致性
在高斯-马尔科夫假定下, 普通最小二乘 估计量具有一致性(并且是无偏的) 对于简单回归情形,我们能用证明无偏 性的类似方式来证明一致性 我们将需要取概率极限 (plim)来建立一 致性
可编辑
4
证明一致性
可编辑
20
2020/1/11
21
可编辑
8
大样本推断
回想在经典线性模型假定下抽样分布是
正态的, 我们据此导出检验用的t分布和F
分布 这种严格的正态性应归于假定总体误差 分布是正态的
正态误差的这个假定暗含给定x,y的分
布也是正态的
可编辑
9
大样本推断 (续)
斯托克计量经济学课件 (5)

19
6.3 多元回归的OLS 估计量
以二元回归变量为例 两个回归变量时的 OLS 估计量是下式的解:
min b0 ,b1 ,b2 [Yi (b0 b1 X 1i b2 X 2i )]2
i 1
n
OLS 估计量使 Yi 的真值与基于回归线估计的预测值之差的 平均平方和最小. 该最小化问题可通过微积分求解 由此得0 和 1 的 OLS 估计量. OLS 在多元回归模型中的理解和运用同一元情形
在加利福尼亚数据集中确实发了这种情况吗?
8
具有较少英语学习者的学区往往具有较高的测试成绩 具有较少英语学习者百分率(PctEL)的学区往往具有较小 的班级 在 PctEL 相当的学区中,班级规模的效应较小 (记住:整体的 “测试成绩差距” = 7.4) 怎么处理遗漏变量偏差?
9
寻求克服遗漏变量偏差的方法
其中小标 i 表示 n 个观测中的第 i 个观测, 是存在两个回归变量 X 1i 和 X 2i 时的总体多元回归模型(population multiple regression model)。
16
术语
考虑两个回归变量的情形: Yi = 0 + 1X1i + 2X2i + ui, i = 1,…,n Y 为因变量 X1, X2 为两个自变量 (回归变量、控制变量) (Yi, X1i, X2i) 表示 Y, X1, 和 X2 的 ith 个观测. 0 = 未知总体截距(常数项) 1 = 固定 X2 不变情况下, X1 变化一个单位对 Y 的效应(Y 的期 望变化) 2 = 固定 X1 不变情况下, X2 变化一个单位对 Y 的效应(Y 的期 望变化) ui = 回归误差 (遗漏因素) 同方差和异方差
6.3 多元回归的OLS 估计量
以二元回归变量为例 两个回归变量时的 OLS 估计量是下式的解:
min b0 ,b1 ,b2 [Yi (b0 b1 X 1i b2 X 2i )]2
i 1
n
OLS 估计量使 Yi 的真值与基于回归线估计的预测值之差的 平均平方和最小. 该最小化问题可通过微积分求解 由此得0 和 1 的 OLS 估计量. OLS 在多元回归模型中的理解和运用同一元情形
在加利福尼亚数据集中确实发了这种情况吗?
8
具有较少英语学习者的学区往往具有较高的测试成绩 具有较少英语学习者百分率(PctEL)的学区往往具有较小 的班级 在 PctEL 相当的学区中,班级规模的效应较小 (记住:整体的 “测试成绩差距” = 7.4) 怎么处理遗漏变量偏差?
9
寻求克服遗漏变量偏差的方法
其中小标 i 表示 n 个观测中的第 i 个观测, 是存在两个回归变量 X 1i 和 X 2i 时的总体多元回归模型(population multiple regression model)。
16
术语
考虑两个回归变量的情形: Yi = 0 + 1X1i + 2X2i + ui, i = 1,…,n Y 为因变量 X1, X2 为两个自变量 (回归变量、控制变量) (Yi, X1i, X2i) 表示 Y, X1, 和 X2 的 ith 个观测. 0 = 未知总体截距(常数项) 1 = 固定 X2 不变情况下, X1 变化一个单位对 Y 的效应(Y 的期 望变化) 2 = 固定 X1 不变情况下, X2 变化一个单位对 Y 的效应(Y 的期 望变化) ui = 回归误差 (遗漏因素) 同方差和异方差
经济学计量经济学第五章PPT课件

• 当a>0、0<b<1时,y 随着t 的增加而趋向于0
• 描述以几何极数递增或递减的现象
• 序列的观察值按指数规律变化
• 序列的逐期观察值按一定的增长率增长或衰减
• 参数估计方法 • 采用对数变换法将模型化为线性进行估计
29
第29页/共45页
修正指数型增长曲线模型
• 一般形式
y L ab •
•
~yi ˆ0 yi f xi , ˆ0 zi ˆ0 ˆ0
• 易平~y求方i 出和ˆ其式0参最数小zi 的ˆ0普 通ˆ最小二i 乘估计值
•
ˆ
,该估计值使得残差
2
ˆ1
n
S ˆ1
~yi ˆ0 zi ˆ0 ˆ1 2
i 1
17
第17页/共45页
Gauss-Newton迭代法(续2)
• 类别 • 多项式增长曲线模型 • 简单指数型增长曲线模型 • 修正指数型增长曲线模型 • Logistic增长曲线模型 • Gompertz增长曲线模型
27
第27页/共45页
多项式增长曲线模型
• 一般数学形式
•
y• t
yt:a第0t
期
的a1某t
个经a济2t指2
标
;t :时a间k t
k
• a0,a1,…,ak:模型参数
• 至此完成非线性模型的OLS估计
18
第18页/共45页
Gauss-Newton迭代法(续3)
• 步骤
• 给出参数估计值 近似值
的初值 ,将
ˆ
在 处展开泰勒级数,取一阶
ˆ0
f xi , ˆ
ˆ0
• 计算
和
的样本观z测i 值ˆ0
计量经济学课件全完整版

ARIMA模型
自回归移动平均模型,适用于平 稳和非平稳时间序列的预测,通 过识别、估计和诊断模型参数来 实现预测。
05
面板数据分析方法及应用
面板数据基本概念及特点
面板数据定义
面板数据,也叫时间序列截面数据或混合数 据,是指在时间序列上取多个截面,在这些 截面上同时选取样本观测值所构成的样本数 据。
介绍空间滞后模型(SLM)、空间误差模型(SEM)等空间计量经济模型的建立与估 计方法,包括极大似然估计、广义矩估计等。
贝叶斯计量经济学原理及应用
01
02
贝叶斯统计推断基础
阐述贝叶斯统计推断的基本原理和方法, 包括先验分布、后验分布、贝叶斯因子 等概念。
贝叶斯计量经济模型 的建立与估计
介绍贝叶斯线性回归模型、贝叶斯时间 序列模型等贝叶斯计量经济模型的建立 与估计方法,包括马尔科夫链蒙特卡罗 (MCMC)模拟等。
模型假设
广义线性模型假设响应变量与解释变量之间存在一 种可通过链接函数转化的线性关系,而非线性模型 则不受此限制,可以拟合任意复杂的非线性关系。
模型诊断与检验
对于广义线性模型,常用的诊断方法包括残差分析、 拟合优度检验等;对于非线性模型,由于模型的复 杂性,诊断方法可能更加多样化,包括交叉验证、 可视化分析等。
与其他社会科学的关系 计量经济学也可以应用于其他社会科学领域,如 社会学、政治学等,对社会科学现象进行定量分 析。
计量经济学发展历史及现状
发展历史
计量经济学起源于20世纪初,随着计算机技术的发展和普及,计量经济学得到 了广泛的应用和发展。
现状
目前,计量经济学已经成为经济学领域的重要分支,广泛应用于宏观经济、微 观经济、金融、国际贸易等领域。同时,随着大数据和人工智能技术的发展, 计量经济学面临着新的机遇和挑战。
自回归移动平均模型,适用于平 稳和非平稳时间序列的预测,通 过识别、估计和诊断模型参数来 实现预测。
05
面板数据分析方法及应用
面板数据基本概念及特点
面板数据定义
面板数据,也叫时间序列截面数据或混合数 据,是指在时间序列上取多个截面,在这些 截面上同时选取样本观测值所构成的样本数 据。
介绍空间滞后模型(SLM)、空间误差模型(SEM)等空间计量经济模型的建立与估 计方法,包括极大似然估计、广义矩估计等。
贝叶斯计量经济学原理及应用
01
02
贝叶斯统计推断基础
阐述贝叶斯统计推断的基本原理和方法, 包括先验分布、后验分布、贝叶斯因子 等概念。
贝叶斯计量经济模型 的建立与估计
介绍贝叶斯线性回归模型、贝叶斯时间 序列模型等贝叶斯计量经济模型的建立 与估计方法,包括马尔科夫链蒙特卡罗 (MCMC)模拟等。
模型假设
广义线性模型假设响应变量与解释变量之间存在一 种可通过链接函数转化的线性关系,而非线性模型 则不受此限制,可以拟合任意复杂的非线性关系。
模型诊断与检验
对于广义线性模型,常用的诊断方法包括残差分析、 拟合优度检验等;对于非线性模型,由于模型的复 杂性,诊断方法可能更加多样化,包括交叉验证、 可视化分析等。
与其他社会科学的关系 计量经济学也可以应用于其他社会科学领域,如 社会学、政治学等,对社会科学现象进行定量分 析。
计量经济学发展历史及现状
发展历史
计量经济学起源于20世纪初,随着计算机技术的发展和普及,计量经济学得到 了广泛的应用和发展。
现状
目前,计量经济学已经成为经济学领域的重要分支,广泛应用于宏观经济、微 观经济、金融、国际贸易等领域。同时,随着大数据和人工智能技术的发展, 计量经济学面临着新的机遇和挑战。
计量经济学(共11张PPT)

分析与模型应 用阶段
是否可用于决策? 应用
修改整理模型
结构分析
预测未来
模拟
检验发展理论
第五节 经济计量学和其它学科的关系
数理经济学是运用数学研究有关经济理论
数理统计学是运用数学研究统计问题 经济统计学是对经济现象的统计研究
经济计量学是经济学、统计学、数学三者结合在一起的交叉学科。
经济学
数理经济学
经济统计学
四、我国经济计量学的发展
70-80年代
80-90年代 1998年
开始介绍《经济计量学》的学科内 容和国外发展情况
1995年《经济计量学》的教学大纲 正式发表;全国许多高校相继开设 《经济计量学》课程。
将《经济计量学》列入经济类各专 业八门公共核心课程之一
五、经济计量学的内容体系
按照研究的方 法不同
《Econometrics》。
从30年代到今天,尤其是二次大战以后,计量经济学在西方各 国的影响迅速扩大。曾说:“二次世界大战以后的经济学是计量经 济学的时代”。1969年首届诺贝尔经济学奖授予弗里希和丁伯根。 自1996年设立诺贝尔经济学奖至1989年27为获奖者中有15位是计量 经济学家,其中10位是世界计量经济学会的会长。
(时间序列数据、截面数据)
二、参数估计
三、模型检验(拟合优度、t 检验、F 检验) 四、模型应用(预测、结构分析、 模拟)
第三节 经济计量学的特点
1.它是研究经济现象的,它不但给出质的解释,而且给出确切的量的 描述,从而使经济学成为一门精密的科学。 定性分析-定量分析(简单的数量对比-模型分析)
2.能综合考虑多种因素,通过描述客观经济现象中极为复杂的因果关系,对 影响某一经济现象的众多因素(哪些是主要、次要因素)给出一目了然的 回答。
完整的计量经济学 计量经济学第五章 线性回归的PPT课件

被忽略的因素对被解释变量的影响,会从 误差项中表现出来,导致误差不再是纯粹 的随的变量关系为
X 若采用变量关系 E () ( 0 0 ) ( 1 1 )X 1 0 (2 2 )X 2 3 X 3
Y 0 1 X 1 2 X 2
Y Y
或
D 1i
0,当 i是男性时 1,当 i是女性时
38
对于截面数据计量分析的例子
对于截面数据计量分析中,观测对象特征差异导致的规律 性扰动,也可以利用虚拟变量加以处理。
如观测对象的性别是一个影响因素,解决的办法就是在模 型中引进虚拟变量,即
D1,D2,D3和D4,
这个虚拟变量就能解决由于观测对象的性别因素所导 致的误差项均值非0问题。
非线性变量关系的残差序列图
e
i
8
(三)问题的处理和非线性回归
1、模型修正和变换 恢复模型的合理非线性形式 然后再变换成线性模型
9
泰勒级数展开法
2、泰勒级数展开法 假设一个非线性的变量关系为:
Y f X 1 , ,X K ;1 P
在 处对 B 0b 1,0 ,b P 0 β1, ,P 作泰勒级数展开:
第五章 线性回归的定式偏差
1
标题添加
点击此处输入相 关文本内容
标题添加
点击此处输入相 关文本内容
总体概述
点击此处输入 相关文本内容
点击此处输入 相关文本内容
2
线性回归的定式偏差
本章讨论变量关系非线性、存在异常值、 规律性扰动和解释变量缺落等导致的线性 回归模型前两条假设不成立的定式偏差, 包括它们对线性回归分析的影响、判断和 处理的方法等。
1 0 2 0
1 1 X 2 1 X
1 2
X 若采用变量关系 E () ( 0 0 ) ( 1 1 )X 1 0 (2 2 )X 2 3 X 3
Y 0 1 X 1 2 X 2
Y Y
或
D 1i
0,当 i是男性时 1,当 i是女性时
38
对于截面数据计量分析的例子
对于截面数据计量分析中,观测对象特征差异导致的规律 性扰动,也可以利用虚拟变量加以处理。
如观测对象的性别是一个影响因素,解决的办法就是在模 型中引进虚拟变量,即
D1,D2,D3和D4,
这个虚拟变量就能解决由于观测对象的性别因素所导 致的误差项均值非0问题。
非线性变量关系的残差序列图
e
i
8
(三)问题的处理和非线性回归
1、模型修正和变换 恢复模型的合理非线性形式 然后再变换成线性模型
9
泰勒级数展开法
2、泰勒级数展开法 假设一个非线性的变量关系为:
Y f X 1 , ,X K ;1 P
在 处对 B 0b 1,0 ,b P 0 β1, ,P 作泰勒级数展开:
第五章 线性回归的定式偏差
1
标题添加
点击此处输入相 关文本内容
标题添加
点击此处输入相 关文本内容
总体概述
点击此处输入 相关文本内容
点击此处输入 相关文本内容
2
线性回归的定式偏差
本章讨论变量关系非线性、存在异常值、 规律性扰动和解释变量缺落等导致的线性 回归模型前两条假设不成立的定式偏差, 包括它们对线性回归分析的影响、判断和 处理的方法等。
1 0 2 0
1 1 X 2 1 X
1 2
《计量经济学》ppt课件

04
时间序列分析
时间序列基本概念与性质
时间序列定义
按时间顺序排列的一组数据,反映现象随时间 变化的发展过程。
时间序列构成要素
现象所属的时间(横坐标)和现象在某一时间 上的指标数值(纵坐标)。
时间序列性质
长期趋势、季节变动、循环变动和不规则变动。
时间序列平稳性检验方法
图形判断法
通过观察时间序列的折线图或散点图,判断 其是否具有明显的趋势或周期性变化。
05
非参数和半参数估计方法
非参数估计方法原理及应用
原理
非参数估计方法不对总体分布做具体假设,而是利用样本数据直接进行推断。其核心思想是通过核密度估计、最 近邻估计等方法,对样本数据的分布进行平滑处理,从而得到总体分布的估计。
应用
非参数估计方法广泛应用于各种实际问题中,如金融市场的波动率估计、生物医学中的生存分析、环境科学中的 气候变化预测等。其优点在于灵活性高,能够适应各种复杂的数据分布,但同时也存在计算量大、对样本量要求 较高等问题。
计量经济学研究方法与工具
研究方法
主要包括理论建模、实证分析和政策评估等方法。
工具
运用数学、统计学和计算机技术等多种工具,如回归分析、时间序列分析、面 板数据分析等。
02
经典线性回归模型
线性回归模型基本概念
线性回归模型定义
描述因变量与一个或多个自变量之间线性关系的数学模型。
回归方程
表示因变量与自变量之间关系的数学表达式,形如 Y=β0+β1X1+β2X2+…+βkXk。
利用指数平滑技术对时间序列进行预测, 适用于具有线性趋势和一定周期性变化的 时间序列。
ARIMA模型
神经网络模型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Chapter 5
STATISTICAL INFERENCE: ESTIMATION AND HYPOTHESES
TESTING
Statistical inference draws conclusions about a population [i.e.,
probability density function (PDF) ] from a random sample that has
Sampling or probability distribution:
s2 X ~ N (m x , n )
(X m )
Z
X ~ N ( 0 ,1 )
s/ n
P(-n-1 ≤t≤n-1)=1-α
t
X m X S/ n
~t (n 1)
critical t values:±n-1 confidence interval:
(lower limit-upper limit)
Xtn1nSmX
Xtn1S n
P(Xtn n 1SμXXtn n 1S1α
confidence coefficient: 1-α
.
5
level of significance/the prob. of committing type I error:
1. Point estimate
A point estimator, or a statistic, is an r.v., its value will vary from sample to sample.
How can we rely on just one estimate X of the true population mean.
estimate: the particular numerical value of the estimator
sampling variation /sampling error: the variation in estimation from samplthesis testing
In hypothesis testing we may have a prior judgment or
expectation about what value a particular parameter may
assume.
.
3
5.3 ESTIMATION OF PARAMETERS
The usual procedure of estimation:
FIGURE 5-1
The t distribution
n-1
n-1
.
6
Note: The interval is random, and not the parameterμx.
The confidence interval: a random interval, because it is based on X and S / n which will vary from samX ple to sample.
supposedly been drawn from that population.
.
1
5.1 THE MEANING OF STATISTICAL INFERENCE
Statistical inference: the study of the relationship between a population and a sample drawn for that population.
.
4
2. Interval estimate
Although Xis the single “best” guess of the true population mean, the interval, say, from 8 to 14, most likely includes the true μχ ? This is interval estimation.
You should say: the probability is 0.95 that the random interval, contains the trueμx.
.
7
Interval estimation, in contrast to point estimation, provides a range of values that will include the true value with a certain degree of confidence or probability (such as 0.95).
BRANCHES OF STATISTICAL INFERENCE
1. Estimation
Estimation: the first step in statistical inference. X : an estimator/statistic of the population parameter E(X),
The population mean: although unknown, is some fixed number and it is not random.
You should not say: the probability is 0.95(1-α) that μx lies in this interval.
The process of generalizing from the sample value ( X ) to the population value E(X) is the essence of statistical inference.
.
2
5.2 ESTIMATION AND HYPOTHESIS TESTING: TWIN
—— to assume that we have a random sample of size n from the known probability distribution and use the sample to estimate the unknown parameters, that is, use the sample mean as an estimate of the population mean (or expected value) and the sample variance as an estimate of the population variance.
STATISTICAL INFERENCE: ESTIMATION AND HYPOTHESES
TESTING
Statistical inference draws conclusions about a population [i.e.,
probability density function (PDF) ] from a random sample that has
Sampling or probability distribution:
s2 X ~ N (m x , n )
(X m )
Z
X ~ N ( 0 ,1 )
s/ n
P(-n-1 ≤t≤n-1)=1-α
t
X m X S/ n
~t (n 1)
critical t values:±n-1 confidence interval:
(lower limit-upper limit)
Xtn1nSmX
Xtn1S n
P(Xtn n 1SμXXtn n 1S1α
confidence coefficient: 1-α
.
5
level of significance/the prob. of committing type I error:
1. Point estimate
A point estimator, or a statistic, is an r.v., its value will vary from sample to sample.
How can we rely on just one estimate X of the true population mean.
estimate: the particular numerical value of the estimator
sampling variation /sampling error: the variation in estimation from samplthesis testing
In hypothesis testing we may have a prior judgment or
expectation about what value a particular parameter may
assume.
.
3
5.3 ESTIMATION OF PARAMETERS
The usual procedure of estimation:
FIGURE 5-1
The t distribution
n-1
n-1
.
6
Note: The interval is random, and not the parameterμx.
The confidence interval: a random interval, because it is based on X and S / n which will vary from samX ple to sample.
supposedly been drawn from that population.
.
1
5.1 THE MEANING OF STATISTICAL INFERENCE
Statistical inference: the study of the relationship between a population and a sample drawn for that population.
.
4
2. Interval estimate
Although Xis the single “best” guess of the true population mean, the interval, say, from 8 to 14, most likely includes the true μχ ? This is interval estimation.
You should say: the probability is 0.95 that the random interval, contains the trueμx.
.
7
Interval estimation, in contrast to point estimation, provides a range of values that will include the true value with a certain degree of confidence or probability (such as 0.95).
BRANCHES OF STATISTICAL INFERENCE
1. Estimation
Estimation: the first step in statistical inference. X : an estimator/statistic of the population parameter E(X),
The population mean: although unknown, is some fixed number and it is not random.
You should not say: the probability is 0.95(1-α) that μx lies in this interval.
The process of generalizing from the sample value ( X ) to the population value E(X) is the essence of statistical inference.
.
2
5.2 ESTIMATION AND HYPOTHESIS TESTING: TWIN
—— to assume that we have a random sample of size n from the known probability distribution and use the sample to estimate the unknown parameters, that is, use the sample mean as an estimate of the population mean (or expected value) and the sample variance as an estimate of the population variance.