基因治疗与基因载体

基因治疗与基因载体
基因治疗与基因载体

基因治疗与基因载体

晏 霆1 朱满洲2

(1国药集团国怡药业有限公司,安徽淮南 232000、2中国科学技术大学,安徽合肥 230026)

摘要 综述基因治疗的原理、方法,用做基因治疗的载体,以及阳离子脂质体作为基因载体的优点等。

关键词 基因治疗;基因载体;阳离子脂质体

20世纪90年代以来,世界各国纷纷将人类基因组研究列为国家重大研究项目,很多人认为这是当代也可能是整个时代最重要的科学事业[1]。随着人类基因组研究的迅速进展,人们对生命基因基础的认识将达到一个新的水平。此外,微生物,例如细菌(methanococus jannaschii)和酵母的基因密码现在已被完全破译,更为复杂的有机体的基因密码也将很快得以阐释[2]。所有这些对基因的新认识给研究疾病的基因本质提供了前所未有的机会,并将迅速推动人类疾病的DNA 诊断及基因治疗研究,从而导致在将来把基因治疗作为治愈疾病的一种整体策略的实现[3]。人类有十万个基因,基因病有四千多种,基因缺陷是造成25%的生理缺陷,50%儿童死亡和60%成年人疾病的原因。因此,一旦基因治疗在临床上实现,将改变医药界的面貌,开创基因作为药物的新纪元,对医药工业产生深远的影响。

基因治疗的原理是:如果一位病人由于缺少某种已知基因而患病,那么把缺少基因通过一种特定的载体输送到病变细胞或组织内,使之表达,有可能会直接纠正基因缺乏,从而达到治愈疾病的目的;如果无法从基因的角度确定病人的病因,但其病理研究已十分清楚,那么可以利用载体把适当的基因或某些核酸类药物(如antisense oligonucleotides或mRNA)输送到病变细胞,通过其他途径破坏该病的机制。因此,基因治疗可以大致定义为“把基因作为药物来治疗疾病”或“为达到治疗的目的,通过载体把核酸传送到病体”[4]。

最早的基因治疗临床研究可追溯到80年代初,1980年, Cline等对两名重症β2地中海贫血患者进行了基因治疗的研究。Cline可以说是临床基因治疗的先驱。1989年1月,美国政府首次批准了一项人体基因转移研究,1990年9月14日首次批准了一项基因治疗临床研究计划———对腺苷脱氨酶(ADA)缺陷的重度联合免疫缺陷病(SCID)患者进行基因治疗,研究人员用携带正常ADA基因的逆转录病毒(RV)载体转染了一名ADA缺乏症患儿的淋巴细胞,然后将处理过的淋巴细胞回输患儿体内,反复几次治疗以后,患儿严重的联合免疫缺陷得到恢复,并能在外正常活动。这一成功轰动了全球,

8 庆大霉素

茶碱可促进庆大霉素的重吸收,使庆大霉素血药浓度升高,联用茶碱时,庆大霉素只需应用原剂量的1/5[4]。

9 磺胺甲口恶唑

磺胺药的蛋白结合率高,当与茶碱合用时,使茶碱从蛋白结合部位置换出来,即游离型茶碱浓度增加,有发生中毒的可能性,因此宜慎用或不宜配伍[4]。

10 β2内酰胺类

头孢呋肟使茶碱血药浓度升高,尤其在肺心病患者出现心衰时,使氨茶碱排泄减慢,导致体内氨茶碱浓度蓄积[14];头孢噻肟、头孢呋肟使茶碱血药浓度明显升高,有可能增强其毒副作用,而头孢噻肟、头孢呋肟血药浓度却明显降低,两药不宜同时应用[4]。

综上所述,茶碱与某些抗菌药物联用时,在药动学方面可表现不同程度的相互作用,从而使茶碱血药浓度过低,影响疗效,或太高,发生中毒。其中氨茶碱与红霉素、螺旋霉素、林可霉素、克林霉素、磺胺甲口恶唑联用4d起,应减量25%,与喹诺酮类药物联用,应减量30%,与异烟肼联用,应减量20~25%,与利福平联用,应增加用量的20%~25%,不宜与氯霉素合用[4]。故掌握抗菌药物与茶碱相互作用机制与规律,对于临床调整剂量,避免发生相互不良反应,致为重要。

参考文献

1 戴光强总主编.医学继续教育系统丛书.医院药学分册(进展篇).合肥:安徽科学技术出版社,2001:2352 刘萍译.细胞色素P450酶对药物生物转化的作用.国外医学?合成药、生化药制剂分册,2000;21(5):306

3 叶丽卡,李国秀,韩广轩et al.慢性阻塞性肺疾病患者服甲红霉素对稳态时氨茶碱药代动力学的影响.中国临床药理学杂志, 1991;7(4):221

4 贾公孚,谢惠民主编.药物联用禁忌手册.第11版,北京:中国协和医科大学出版社,2001:319~21

5 中国药典.二部.临床用药须知,2000:320

6 赵晓红.不宜与茶碱合用的药物.黑龙江医药,1998;11(6): 359

7 汤 光主编.现代药物学.北京:中国医药科技出版社,1997:85 8 黄 显,许建华,方令平.喹诺酮类药物对茶碱药动学的影响.

中国医院药学杂志,2002;20(2):104

9 戴自英,刘裕昆,汪 复主编.实用抗菌药物学.第2版,上海:上海科学技术出版社,1998:279

10 黎月玲,郑企琨.氧氟沙星对健康人茶碱药动学的影响.中国医院药学杂志,1997;17(9):390

11 郑明新,王 越,李 盾et al.氧氟沙星对人体内氨茶碱药动学的影响.中国医院药学杂志,1993;13(1):9

12 蒋 淼,徐丽停,贾正平et al.氟罗沙星对肺心病人体内茶碱药物动力学的影响.中国医院药学杂志,1998;18(10):443

13 贺儒林译.喹诺酮对黄嘌呤类药物的作用.中国新药杂志, 1994;3(1):23

14 郝 建,张安成,丛勤滋et al.头孢呋肟在慢性肺心病患者中的相互作用.中国药理学报,1995;11(4):347

?

2

7

?安 徽 医 药 A nhui Medical and Pharmaceutical Journal 2002Dec;6(4)

标志着经过近10年的研究,基因治疗已进入临床,从而开创了医学治疗学的一个新纪元———从基因水平治疗疾病。自此,全世界掀起了基因治疗的热潮。据不完全统计,迄今全世界已有387个方案进入临床试验,病例数达3278例,其中中国有临床方案两个,病例数14例。可以说“21世纪的医疗革命将取决于基因治疗研究的成功”。

从研究路线上看,基因治疗的内容包括:引起疾病的缺陷基因定位(基因诊断)、选择合适的转基因载体及载体的修饰与包装(基因载体)、外源基因导入人体靶细胞内(基因转移)。

基因治疗不能被看作是一项通过对人类基因的永久性控制,使后代免受基因方面或其他更为复杂疾病的折磨的技术。其实,基因和其它核酸类药物应被看成是小分子药物的替代品,它们一旦进入病体,有可能会真正根治疾病。基因诊断是第一个分享人类基因组计划(HGP)研究成果的领域,HGP的序列库最终完成,随着功能基因组研究的迅速进展,各类疾病异常基因的搜索变得简单。如果基因或其它核酸类替代品是“药物”的话,那么基因治疗所面临的首要困难是与药物传送方面的问题相类似的。换句话说,基因治疗首先要解决如何才能把供治疗用的基因或核酸高效的传送到特定的病变细胞或组织中去。

把供治疗用的基因或核酸传送到特定的病变细胞或组织中去的过程被称为基因转移或转染(transfection)。基因转移可分为体内法(in vivo)和体外法(ex vivo)。Smith等[5]认为基因转移的效率是由转移载体,聚核苷酸及目标细胞的性质共同决定的。磷酸钙沉淀法[6]早在80年代就被用于基因转移,但这种方法对细胞膜有很大破坏作用,故不适用于体内法。一些物理方法如显微注射,电穿孔,基因枪等[7~10]虽可将目的基因直接转入靶细胞,但却存在目的基因随机整合之弊,况且人体只有少数几种细胞或组织可接收直接导入的裸露DNA,其它细胞或组织对这种方法具有抗性。于是帮助转移外源基因的载体被广泛研究。

理想的基因载体应具备:(1)靶向特异性,并且可被免疫系统识别;(2)高度稳定,容易制备,可浓缩和纯化;(3)无毒性,对病人及环境安全无害;(4)有利于基因高效转移和长期表达[11]。

目前,在基因载体的设计上,大致可分为两大类:病毒类和非病毒类。在临床治疗成为可能以前没有一种是对基因的转移万能选择。两类载体都有许多问题亟待解决,都不能够达到理想载体的标准(能够标准转移核酸并无毒副作用)。病毒已进化了上亿年,它们有自己的一套侵染细胞并使自身的遗传信息表达的“策略”。在复制缺陷型的逆转录病毒(retro2 vius)、腺病毒(adenovirus)、腺病毒伴随病毒、疫苗病毒、EB病毒等众多病毒载体中,逆转录病毒和腺病毒是两种较有前途的载体。逆转录载体可容纳9K B的外源信息,整合进入宿主细胞基因组,长期表达外源基因,结合已经建立的与之相配套的包装细胞系统,可以产生高滴度的病毒液,从而高效率地将外源性基因导入靶细胞,其不足之处是整合是非位点特异的,而且只整合进入处于分裂期的细胞,由于包装细胞产生的病毒子非常容易失活,不能经受浓缩过程,所以不能直接用于体内过程。腺病毒可以感染处于非分裂期细胞,病毒稳定,又可经受浓缩纯化,但它可能引起免疫反应。总之病毒类载体具有:(1)在载体中可能产生有传染性,野型或辅助型病毒;(2)可能随机整合于宿主基因组中,从而活化癌基因或使抑制癌基因失活;(3)其自身或编码的基因产物过度表达等不安全因素。正是由于安全性问题及大量获得重组病毒载体相对困难等原因,科学家正在寻找更安全,高效又易识别的非病毒类。其中阳离子脂质体作为临床上一种有效的基因载体系统,因其理论上无毒,易制备,可容纳很大外源基因而受到青睐,应用前景乐观[12]。

阳离子脂质体是一种单一的阳离子两亲化合物,或更为普遍的是正离子类脂分子cytofectin和中性脂质体的混合物。它们控制核酸转移的原理为:带正电的阳离子脂质体与带负电的核酸序列通过静电作用形成能够进入细胞的复合物。然后,复合物缓慢放出核酸序列并在核中得以表达,或控制基因表达。这个具有吸引力的简单原理还面临着许多尚未解决的问题,但阳离子脂质体作为基因载体已经应用于动物实验及临床实验中。

纵观药学发展历史,“药食同源”,但从第一个化学合成药物发明至今不足150年历史,从第一个抗菌素的发现至今不足70年历史。今天,可以说世界上只要有人类的地方就会有化学合成药物与抗菌素。作为造福人类的新技术,基因治疗也必将成为临床现实,使迄今为止最难治的遗传性或获得性疾病,能有治愈或减轻已有症状的可能,用于基因治疗的“基因药物”可望成为临床常规应用药物。

参考文献

1 E Pennisi,Science,1998;280:814

2 Das S,Yu C,G aitatzes R et al.Lindelien,Nature,1997;385:29 3 Friedman T,Nature Med,1996;2:144

4 Miller AD.Angew Chem Int Ed,1998;37:1768

5 Smith J G,Walzem RL,G erman JB.Biochim Biophys Acta,1993;

1154:327

6 Anderson WF,Hum G ene Ther.Science,1992;256:808

7 Hug P,Sleight RG.Biochim Biophys Acta,1991;1097:1

8 Ledley FD,Gurent OP.Biotech,1994;5:262

9 Mulligan RC.Science,1993;260:926

10 Legendre J Y,Szoka J r FC.Pharm Res,1992;9:1235

11 Crystal RG,Science,1995;270:404

12 G ao X,Huang L.G ene Ther,1995;2:710

?

3

7

?

安 徽 医 药 A nhui Medical and Pharmaceutical Journal 2002Dec;6(4)

基因工程在医学上的应用

基因工程及其在医学中的应用 摘要: 作为生物工程技术的核心,及新工程的发展与应用,在医学方面有着非 同凡响的影响。本文首先回顾了基因工程的发展简史,然后在基因工程制药,抗病毒疫苗,疾病治疗及基因诊病等方面综述了基因工程在医学中的应用。基因工程将给医药方面带来更美好的前景。 关键词:基因工程医学应用 1 前言: 分子生物学主要是从分子水平上阐述生命现象和本质的科学,是现代生命科学的“共同语言”。分子生物学又是生命科学中进展迅速的前沿学科,它的理论和技术已经渗透到其他基础生物学科的各个领域,它的主要核心内容是通过生物的物质基础---核酸、蛋白、酶等生物大分子的结构、功能及其相互作用的运动规律的研究来阐明生命分子基础,从而探讨生命的奥秘。这门课与基因工程关系很大,主要讲了核酸、蛋白、酶等生物大分子的结构、功能以及它们之间的相互作用。近年来,随着生物技术的飞速发展,分子生物学在较多领域得以应用。其中在核酸,基因方面医学中的发展迅猛。基因工程在制药,抗病菌疫苗发展前景较广,在疾病治疗及诊断对人们生活影响较大。本文将对基因工程的发展及其在医学中的应用作简单的阐述。 2 基因工程的发展 基因工程又叫遗传工程,是分子遗传学和工程技术相结合的产物,是生物技术的主体。基因工程是指用酶学方法将异源基因与载体DNA在体外进行重组,将形成的重组因子转入受体细胞,使异源基因在其中复制并表达,从而改造生物特性,生产出目标产物的高新技术。 1857年至1864年,孟德尔通过豌豆杂交试验,提出了生物体的性状是由遗传基因子控制的。1909年,丹麦生物学家约翰生首先提出基因一词代替孟德尔的遗传因子。1910年至1915年,美国遗传学家摩尔根通过果蝇实验,首次将代表某一性状的基因同特定的染色体联系起来,创建了基因学说。直到1944年,美国微生物学家埃弗里等通过细菌转化研究,证明基因的载体是DNA而不是蛋白质,从而确立了遗传的物质基础。1953年,美国的遗传学家华生和英国的生物学家克里克揭示了DNA分子双螺旋模型和半保留复制机理,解决了积阴德自我复制和传递问题。开辟了分子生物学的研究时代。之后,1958年克里克确立了中心法则。1961年雅各和莫诺德提出的操纵子学说以及说有64种密码子的破译,成功的揭示了遗传信息的流向和表达问题,为基因工程的发展奠定了坚实的基础。 DNA分子的切除与连接,基因的转化技术,还有诸如核酸分子杂交,凝胶电泳,DNA序列结构分析等分子生物学试验方法的进步为基因的创立和发展奠定了强有力的技术基础。 1972年,美国斯坦福大学的P.Berg构建了世界上第一个重组分子,发展了DNA重组技术,并因此获得了1980年的诺贝尔学奖。1983年,美国斯坦福大

专题八作业:基因治疗中病毒载体的研究进展

专题八作业:基因治疗中病毒载体的研究进展? 基因治疗自1990年成功应用于重症联合免疫缺陷综合征(SCID-X1)患者的治疗,已走过了十几个年头,给人类一些疑难杂症如肿瘤的治愈带来了曙光。但其发展却屡遭挫折,比如近来发现经基因治疗的SCID-X1患者之一出现了类白血病反应,可能是基因随机整合染色体所致,使得人们不得不以怀疑的目光审视它的成长。而基因载体是阻碍其发展的主要因素,主要表现为安全性、靶向性、转染效率不高及表达时问短等问题。病毒载体是目前临床基因治疗中应用最多的载体,各种病毒载体有自身的利弊,除了对它们的选择外,病毒载体只有通过自身的不断改造完善,才能更好的服务于基因治疗,进而真正造福于人类。 1 逆转录病毒(retrovirus vectors,RVJ载体 逆转录病毒载体基因转移系统包括两部分:一部分是用外源基因替换病毒结构基因的逆转录病毒载体;另一部分是包装细胞的基因组DNA中整合了逆转录病毒结构基因。1990年世界上首例临床基因治疗采用的就是逆转录病毒载体n]。到目前为止,RV载体是基因治疗临床试验使用最多的载体,较常用的是基于moloney鼠白血病病毒(MMLV)改造而来的各种Rv载体。RV载体具有基因表达持久而稳定、转染效率较高等优点,但只能感染分裂期细胞,载体容量<8kb,与宿主细胞基因组的随机整合可引起基因突变及产生可复制的野生型病毒等危险,故需要进一步的改造完善。将水泡性口炎病毒糖蛋白(VSV-G)整合于逆转录病毒包膜中能加速各种宿主细胞对其进行膜融合和内吞,具有广泛的宿主范围和更高的转染效率,可高效的转染静止细胞,并能抵抗血清补体灭活的作用。诸多的优点使该载体在造血系统疾病和肿瘤的基因治疗方面有潜在的应用前景。为了提高逆转录病毒感染靶细胞的特异性,降低其潜在的危险性,可以在原来的病毒Env蛋白上接上一段具有特异靶向的多肽,目前应用较多的是单链可变区抗体(acFV);还可通过插入组织特异启动子实现靶向表达。第三代包装细胞系aF-crip和m 使载体与包装细胞问至少需要发生4次同源重组才可能产生有复制能力的逆转录病毒,提高了RV载体的安全性。 2 腺病毒(adenovirus,AV)载体 腺病毒载体自1993年首次被应用于临床试验以来,迄今为止大约有40%基因治疗临床试验方案采用腺病毒为载体,仅次于RV载体_3 J。至今AV载体已经发展了4代,第2、3代腺病毒去除EI、E2和E4编码序列,与第一代相比,有更低的免疫原性和更大的载体容量。第四代腺病毒仅含有反向末端重复序列

基因诊断与基因治疗

第二十一章基因诊断与基因治疗 基因诊断与基因治疗能够在比较短的时间从理论设想变为现实,主要是由于分子生物学的理论及技术方法,特别是重组DNA技术的迅速发展,使人们可以在实验室构建各种载体、克隆及分析目标基因。所以对疾病能够深入至分子水平的研究,并已取得了重大的进展。因此在20世纪70年代末诞生了基因诊断(gene diagnosis);随后于1990年美国实施了第一个基因治疗(gene therapy)的临床试验方案。可见,基因诊断和基因治疗是现代分子生物学的理论和技术与医学相结合的范例。 第一节基因诊断 一. 基因诊断的含义 传统对疾病的诊断主要是以疾病的表型改变为依据,如患者的症状、血尿各项指标的变化,或物理检查的异常结果,然而表型的改变在许多情况下不是特异的,而且是在疾病发生的一定时间后才出现,因此常不能及时作出明确的诊断。现知各种表型的改变是由基因异常造成的,也就是说基因的改变是引起疾病的根本原因。基因诊断是指采用分子生物学的技术方法来分析受检者的某一特定基因的结构(DNA水平)或功能(RNA水平)是否异常,以此来对相应的疾病进行诊断。基因诊断有时也称为分子诊断或DNA诊断(DNA diagnosis)。基因诊断是病因的诊断,既特异又灵敏,可以揭示尚未出现症状时与疾病相关的基因状态,从而可以对表型正常的携带者及某种疾病的易感者作出诊断和预测,特别对确定有遗传疾病家族史的个体或产前的胎儿是否携带致病基因的检测具有指导意义。 二. 基因诊断的原理及方法

(一)基因诊断的原理 疾病的发生不仅与基因结构的变异有关,而且与其表达功能异常有关。基因诊断的基本原理就是检测相关基因的结构及其表达功能特别是RNA产物是否正常。由于DNA的突变、缺失、插入、倒位和基因融合等均可造成相关基因结构变异,因此,可以直接检测上述的变化或利用连锁方法进行分析,这就是DNA诊断。 对表达产物mRNA质和量变化的分析为RNA诊断(RNA diagnosis)。 (二)基因诊断的方法 基因诊断是以核酸分子杂交(nucleic acid molecular hybridization)和聚合酶链反应(PCR)为核心发展起来的多种方法,同时配合DNA序列分析,近年新兴的基因芯片可能会发展成为一种很有用的基因诊断方法。 1.DNA诊断 常用检测致病基因结构异常的方法有下列几种。 ⑴斑点杂交:根据待测DNA 样本与标记的DNA探针杂交的图谱,可以判断目标基因或相关的DNA片段是否存在,根据杂交点的强度可以了解待测基因的数量。 ⑵等位基因特异的寡核苷酸探针(allele-specific oligonucleotide probe, ASO probe)杂交:是一种检测基因点突变的方法,根据点突变位点上下游核苷酸序列,人工合成约19个核苷酸长度的片段,突变的碱基位于当中,经放射性核素或地高辛标记后可作为探针,在严格杂交条件下,只有该点突变的DNA样本,才出现杂交点,即使只有一个碱基不配对,也不可能形成杂交点。一般尚合成正常基因同一序列,同一大小的寡核苷酸片段作为正常探针。如果受检的DNA样本只能与突变ASO探针,不与正常ASO探针杂交,说明受检二条染色体上的基因都发生这种突变,为突变纯合子;如果既能与突变ASO探针又能与正常ASO探针杂交,

慢病毒载体的构建及其在基因治疗方面的应用

慢病毒载体的构建及其在基因治疗方面的应用 摘要:慢病毒属于逆转录病毒科,为RNA病毒。经改造的慢病毒作为外源基因载体,具有其独特的特点和优势。基因治疗成功的关键是选择合适的载体系统,慢病毒载体作为一种特殊的逆转录病毒载体,具有可感染分裂细胞及非分裂细胞、转移基因片段容量较大、目的基因表达时间长、不易诱发宿主免疫反应等优点,已成为当前基因治疗载体研究的热点。近年来对其基础生物学特性、载体改造及其应用等研究均取得了较大进展,笔者对慢病毒载体的构建以及其在人类疾病基因治疗方面的应用做简单的介绍。 关键词:慢病毒载体;载体构建;基因治疗 基因治疗是向靶细胞或组织中引入外源基因DNA或RNA片段,以纠正或补偿基因的缺陷,关闭或抑制异常表达的基因,从而达到治疗的目的。其关键问题之一是如何将目的基因导入靶细胞,得到稳定、高效表达。理想的基因载体应具备:靶向特异性;高度稳定、易制备、可浓缩和纯化;无毒性;有利于基因高效转移和长期表达;容量大,易人工合成,缺乏自动复制载体自身的能力[1]。由于病毒基因组结构简单、分子背景比较清楚、易于改造和操作、感染效率高、有较高靶细胞特异性,这些都是其他载体系统无法比拟的,而慢病毒载体由于其对分裂细胞和非分裂细胞均具有感染能力且转染效率高、靶向性好和持久性表达等特点,病毒载体系统就显得格外引人注目。 1 慢病毒及其载体的简介 慢病毒属于逆转录病毒科,为RNA病毒。慢病毒除了具有一般逆转录病毒gag、pol和env3个基本结构基因外,还包含4个辅助基因vif、vpr、nef、vpu 和2个调节基因tat和rev[2]。慢病毒载体(Lentiviral vector,LV)作为外源基因载体,其产生均包括一个遗传割裂基因表达的设计。病毒元件要符合以下条件:①慢病毒组装辅助蛋白至少含有gag-pol基因;②慢病毒转基因载体RNA 包括转基因表达盒;③异质糖蛋白。目前使用不同种属来源的慢病毒载体,包括来源于人类(HIV-1和HIV-2)以及猿猴(SIV)、猫(FIV)等其它物种[3]。 2 病毒载体的构建 由于慢病毒的一些自身因素,我们需对其进行以下的一些改建,使其可以更好地为疾病治疗和科研工作服务。 2.1 最小辅助包装元件 为了减少病毒序列的数量从而减少同源重组的风险,去除了组装慢病毒载体结构中不同辅助元件或用其它的特异序列来代替。其中包括原位癌激活基因序列的调整。另外,去掉附加或调节基因与gag-pol基因一样,已在一些慢病毒载体

人基因治疗研究和制剂质量控制技术指导原则

人基因治疗研究和制剂质量控制技术指导原则 一、引言 基因治疗是指改变细胞遗传物质为基础的医学治疗。目前仅限于体细胞。 基因治疗的技术和方式日趋多样性。按基因导入的形式,分为体外基因导入(exvivo)及体内基因导入(invivo)两种形式。前者是在体外将基因导入人细胞,然后将该细胞注入人体。其制品形式是外源基因转化的细胞,适合在具有专门技术人才和GMP条件的医疗单位进行。后者则是将基因通过适当的导入系统直接导入人体,包括病毒的与非病毒的方法。其制品形式是基因工程技术改造的病毒或者是重组DNA、或者是DNA复(混)合物。基因治疗制剂种类较多,因此,本指导原则不可能用一个模式来概括,只能提出一个共同的原则,具体的方案应根据这些原则,确定研究技术路线。其基本原则:一是必须确保安全与有效,要充分估计可能遇到的风险,并提出相应的质控要求;二是要促进基因治疗的研究,并加强创新。对一些新的治疗技术路线的相应质控要求,可有一定的灵活性,应注意到基因治疗本身的特点以及它与经典的化学合成药物或基因工程药物的差别。目前,一些基因治疗研究相对比较成熟,而一些则不够完善,更加要求研究者在使用该技术指导原则时不可生搬硬套。为此,研究者应加强咨询和论证,提出一个科学可行的研究方案,最终获得确保安全有效的基因治疗制品。 在向国家药品监督管理局申报临床试验时,除须按本指导原则中"研究内容和制品质量控制"准备材料外,同时需提供下述材料: (1)国内外研究现状和进展(综述)。包括: 1.所用基因的研究现状和进展; 2.所用载体的研究现状和进展; 3.所用基因导入系统和方法的研究现状和进展; 4.该研究或制品相关的体外有效性实验资料; 5.该研究或制品相关的动物试验安全性和有效性资料; 6.该研究或制品相关的临床试验安全性和有效性资料; 7.该研究或制品的生产工艺现状; 8.该研究或制品的质量控制现状;

基因治疗

基因治疗 【摘要】研究发现,以基因为基础,从疾病和健康的角度考虑,人类疾病大多直接或间接地与基因相关,故有“基因病”概念产生。根据这一概念,人类疾病大致可分为三类:单基因病、多基因病和获得性基因病。随着现代生物科学的发展,基因工程已在多个领域得到广泛应用。基因治疗是利用基因工程技术向有功能缺陷的人体细胞补充相应功能基因,以纠正或补偿其疾病缺陷,从而达到治疗疾病的目的。基因治疗作为治疗疾病的一种新手段,已经在肿瘤、感染性疾病、心血管疾病和艾滋病等疾病的治疗方面取得进展。它在一定程度上改变了人类疾病治疗的历史进程,被称为人类医疗史上的第四次革命。本文就基因治疗的载体以及基因治疗在肿瘤、艾滋病治疗方面取得的成就作出介绍,并就基因治疗的现状和问题对基因治疗的未来作出展望。 【关键词】基因治疗、载体、肿瘤、p53、IAP、艾滋病、CCR5 【正文】 一、基因治疗背景及概念 1990年9月,美国政府批准实施世界上第一例基因治疗临床方案,对一名患有重度联合免疫缺陷症(SCID)的女童进行基因治疗并获得成功,从而开创了医学的新纪元。自此以来,基因治疗已从单基因疾病扩大到多基因疾病,从遗传性疾病扩大到获得性疾病,给人类的医疗事业带来革命性变革。 基因治疗(gene therapy)是指通过一定的方式,将正常的功能基因或有治疗作用的DNA 序列导入人体靶细胞去纠正基因突变或表达失误产生的基因功能缺陷,从而达到治疗或缓和人类遗传性疾病的目的,它是治疗分子疾病最有效的手段之一。 基因治疗包括体细胞基因治疗和生殖细胞基因治疗。但由于用生殖细胞进行治疗会产生伦理道德问题,因此通常采用体细胞作为靶细胞。其基本内容包括基因诊断、基因分离、载体构建和基因转移四项。根据功能及作用方式,用于基因治疗的基因可分为三大类:(1)正常基因:可通过同源重组方式置换病变基因或依靠其表达产物弥补病变基因的功能,常用于矫正各种基因缺陷型的遗传病;(2)反义基因:通过其与病毒激活因子编码基因互补,或与肿瘤mRNA互补,从而阻断其表达,常用于治疗病毒感染或肿瘤疾病;(3)自杀基因:能将无毒的细胞代谢产物转变为有毒的化合物,用于治疗癌症。 二、基因治疗载体

(完整版)高中生物选修3第一章基因工程习题及答案

高中生物选修3第一章基因工程习题 1. SARS 病毒能引起非典型肺炎,医生在治疗实践中发现,非典病人治愈后,其血清可用于 治疗其他非典病人。有三位科学家分别从三个不同的方面进行了研究,其研究的方向如下图 所示。请根据下图回答: SARS 病毒 [丙的研究] 抽取血清 蛋白质X [乙的研究] 注射 注射 灭活或 培养 非典病人B 治愈的病人B 非典病人D 减毒处理 动物实验 健康人C 健康人C 健康人C 治愈的病人D (1)从免疫学的角度看,SARS 病毒对于人来讲属于 ,治愈的病人A 的血清中因 为含有 ,所以可用来治疗“非典”病人B 。 (2)甲的研究中,所合成或生产的蛋白质X 是 ,它可以通过化学的方法合成,也 可以通过生物学方法—— 技术生产。 (3)乙的研究目的主要是制造出 以保护易感人群。图中使健康人C 获 得抵抗“非典”病毒能力的过程,属于免疫学应用中的 免疫。 (4)图中丙主要研究不同国家和地区SARS 病毒的异同,再按照免疫学原理,为研究一种 或多种 提供科学依据。 2. 聚合酶链式反应(PCR 技术)是在实验室中以少量样品DNA 制备大量DNA 的生化技术, 反应系统中包括微量样品DNA 、DNA 聚合酶、引物、足量的4种脱氧核苷酸及ATP 等。 反应中新合成的DNA 又可以作为下一轮反应的模板,故DNA 数以指数方式扩增,其简要 过程如右图所示。 (1)某个DNA 样品有1000个脱氧核苷酸,已知它的一条单链上碱基A:G:T:C=1:2:3:4,则 经过PCR 仪五次循环后,将产生 个DNA 分子,其中需要提供胸腺嘧啶脱氧核苷酸的 数量至少是 个。 (2)分别以不同生物的DNA 样品为模板合成的各个新DNA 之间存在差异,这些差异是 。 (3)请指出PCR 技术与转录过程的三个不同之处: ① 。 ② 。 ③ 。 3. 逆转录病毒的遗传物质RNA 能逆转录生成DNA ,并进一步整合到宿主细胞的某条染色 体中。用逆转录病毒作为运载体可用于基因治疗和培育转基因动物等。 (1)病毒在无生命培养基上不能生长,必须依靠活细胞提供 循环重复 [甲的研究] 用激素等治疗 非典病人A 治愈的病人A 健康人合成或生产 其他辅助治疗 接种 提纯、

肿瘤基因治疗技术

577 中国肿瘤2001年第10卷第10期 安瑞生,陈晓峰 (中国科学院北京动物研究所,北京100080) Gene Thera py Techni q ue AN Rui sheng,C HEN Xiao feng 摘要:肿瘤基因治疗就是将一段特定的遗传信息物质DNA 或RN A 通过人工方法导入肿瘤细胞以治疗肿瘤性疾病。目前的 研究主要包括三个方面:肿瘤免疫基因治疗、反义RNA 、三链D NA 。其中研究较多的是肿瘤免疫基因治疗。本文主要对肿瘤免疫基因治疗的构建、接种、应用等方面做了综述,并简要介绍了反义RNA 和三链DNA 技术。 关键词:基因治疗;基因疫苗;DNA 疫苗;反义RNA;三链DN A;肿瘤中图分类号:R730.54文献标识码:B 文章编号:1004-0242(2001)10-0577-03 收稿日期:2001-08-22肿瘤免疫基因治疗就是将具有一定功能的外源基因导入人体细胞,以补充机体所缺乏的基因或纠正机体异常表达的基因。人类基因治疗的探索始于20世纪80年代初,目前已由动物实验向临床试验过渡。本文就肿瘤的基因治疗技术的现状综述如下。 1 肿瘤免疫基因治疗 1 1 载体的构建 获得合适的抗肿瘤编码基因并将它插入到载体DNA 上,是发展肿瘤基因治疗的一个主要工作。不言而喻,目的基因的选择至关重要。抗肿瘤基因可以是单个基因或具有协同保护功能的一组基因,也可以是编码抗肿瘤基因决定簇的一段核苷酸序列。但是,这都是建立在充分了解病原体基因的基础上的。表达文库免疫技术,提供了一种在各种已知或未知病原体基因组中获得目的基因的系统而普遍有效的方法。该技术根据病原体的所有抗原都由其DNA 编码这一基本原理,将病原体基因文库中的病原体DNA 片段插入特定的质粒中,利用基因免疫的方法筛选病原体基因组中具有免疫保护功能的基因片段。目前,基因表达文库免疫技术是发现目的基因的一种最系统、客观的手段。 质粒载体必须是能在大肠杆菌中高拷贝地扩增,而在动物细胞内则能高效表达,但不复制,也不含有向宿主细胞基因组内整合的序列。用于基因治疗的载体主要有质粒和病毒,病毒载体曾经被用作抗原基因载体[1],现在主要用质粒构建载体,由于细菌质粒本身没有很强的免疫原性,这对保证质粒在体内长期稳定地表达有重要意义[2]。 载体一般以PBR322或PUC 质粒为基本骨架,它们能在 大肠杆菌内扩增,但不能在哺乳动物细胞内复制 [3] 。通常使 用的质粒载体有PBR322、PUC18、PUC19、PUC118、PUC119等。常用的质粒载体启动子多为来源于病毒基因组的巨细胞病毒(CMV)早期启动子,具有很强的转录激活作用,带有细菌复制子(ORI),真核生物的启动子和PolyA 加尾信号。启动子大多来源于病毒基因组,如CMV 、PSV 、LTR 等,其中以CMV 的转录活性最高,PolyA 序列具有保证mRNA 在体内的稳定性的作用,这种稳定性因PolyA 来源不同而异,目前认为较好的PolyA 来自牛生长激素基因或兔B 球蛋白基因。另外,还可包含一些合适的增强子、终止子、内含子、免疫激活序列及多聚腺苷酸信号等。筛选载体可以选用卡那霉素、氨苄青霉素或新霉素等抗性基因。1.2 目的基因的导入 主要途径包括间接体内法和直接体内法。间接体内法是指在体外用基因转染肿瘤细胞,然后将经转染的肿瘤细胞输入病体内,最终给予病体的疗效物质是基因修饰的细胞[4]。直接体内法是指基因片段或完整基因直接注入体内进行治疗的办法。就直接体内法而言,目前使用的方法有以下几种: 裸DNA 直接注射,将裸质粒DNA 直接注射到机体的肌肉、皮内、皮下、粘膜、静脉内。这种方法简单易行。脂质体包裹DNA 直接注射,包裹DNA 的脂质体能与组织细胞发生膜融合,而将DNA 摄入,减少了核酸酶对DNA 的破坏。注射途径类似裸DNA 直接注射[5] 。金包被DNA 基因枪轰击法,将质粒DNA 包被在金微粒子表面,用基因枪使包被DNA 的金微粒子高速穿入组织细胞。繁殖缺陷细菌携带质粒DNA 法,选择一种容易进入某组织器官的细菌,将其繁殖基因去掉,然后用质粒DNA 转化细菌,当这些细菌进入某组织器官后,由于能繁殖,则自身裂解而释放出质粒DNA [6]。经改造的mRNA 法,将目的基因的mRNA 结构进行重组后直接送入体内。 肿瘤基因治疗技术 专 题报道

基因工程在疾病治疗方面的应用

浅谈基因工程药物 基因工程药物是指用现代基因重组高科技对基因进行克隆,通过重组DNA导入大肠杆菌、酵母或动物细胞成功构建工程菌株或细胞株,在工程菌株、细胞中所表达生产的新型药物包括细胞因子、多肽类激素、溶血栓药物、疫苗、抗体、反义RNA及基因治疗药物等等多种难治疾病的基因工程药物. 基因工程药物因其疗效好、应用范围广泛、副作用小的特点成为新药研究开发的新宠。也是发展最迅速和最活跃的领域。自1982年美国Lilly公司上市了第一个基因工程产品——人胰岛素以来,至今已有基因工程药物大约140多种上市,尚处于临床试验或申报阶段的基因工程药物有500多种。当传统制药业的增长速度减慢时,基因工程制药正在加速发展,全世界基因工程药物持续6年销售额增长率都在l5%~33%,基因工程制药已成为制药业的一个新亮点[1-2]。 一.目前药物治疗的主要类型 1.胰岛素至今仍是临床上治疗糖尿病最有效的方法。 过去,胰岛素主要从猪等大家畜胰腺中提取。从一头猪的胰腺中只能提取出300单位胰岛素,而一个病人每天就需要40单位胰岛素,因此远远不能满足需要。 基因工程技术一问世,科学家就想到利用该技术来解决胰岛素药源不足的问题。他们首先要找到胰岛素基因,在人的胰岛细胞里有一段特定结构的DNA分子指挥着胰岛素的合成,然后又找到在人的大肠里存在对人体无害的大肠杆菌。把人的胰岛素基因转入到大肠杆菌的细胞中,随着大肠杆菌的繁殖,胰岛素基因

也一代代的遗传下去。大肠杆菌繁殖速度相当快,大约20分钟就能繁殖一代,把它放到大型的发酵罐里进行人工培养,就可以大量繁殖,并且生产出大量人的胰岛素。 1981年,基因重组人胰岛素产品正式投入市场,大肠杆菌成了名副其实的生产胰岛素的“活工厂”,胰岛素供不应求的问题彻底解决了 胰岛素是治疗糖尿病的特效药,长期以来只能依靠从猪、牛等动物的胰腺中提取,100Kg胰腺只能提取4-5g的胰岛素,其产量之低和价格之高可想而知。将合成的胰岛素基因导入大肠杆菌,每2000L培养液就能产生100g胰岛素!大规模工业化生产不但解决了这种比黄金还贵的药品产量问题 2.干扰素: 是哺乳动物细胞在诱导下产生的一种淋巴因子,能够加强巨噬细胞的吞噬作用和对癌细胞的杀伤作用,抑制病毒在细胞内的增殖,用于肿瘤和其他病毒病的治疗。基因工程干扰素干扰素治疗病毒感染简直是“万能灵药”!过去从人血中提取,300L血才提取1mg!其“珍贵”程度自不用多说。基因工程人干扰素α-2b(安达芬)是我国第一个全国产化基因工程人干扰素α-2b,具有抗病毒,抑制肿瘤细胞增生,调节人体免疫功能的作用,广泛用于病毒性疾病治疗和多种肿瘤的治疗,是当前国际公认的病毒性疾病治疗的首选药物和肿瘤生物治疗的主要药物。 生长激素人体生长激素能够治疗侏儒症和促进伤口愈合,动物生长激素能够加速畜禽生长发育。目前,人和动物的生长激素基因都已经在大肠杆菌中成功表达.在医学和畜牧业领域取得了很好的应用效果。

第二十三章 基因治疗——复习测试题

第二十三章基因治疗——复习测试题 (一)选择题 A型题 1. 全世界第一例基因治疗成功的疾病是 A. β地中海贫血 B. 血友病 C. 重症联合免疫缺陷症 D. 高胆固醇血症 E. 糖尿病 2. 理论上讲,基因治疗最理想的策略是 A. 基因置换 B. 基因替代 C. 基因失活 D. 免疫调节 E. 导入“自杀基因” 3. 目前基因治疗所采用的方法中,最常用的是 A. 基因置换 B. 基因替代 C. 基因失活 D. 免疫调节 E. 导入“自杀基因” 4. 利用反义核酸阻断基因异常表达的基因治疗方法是

A. 基因置换 B. 基因替代 C. 基因矫正 D. 基因失活 E. 免疫调节 5. 将白细胞介素-2基因导入肿瘤病人体内,提高病人IL-2的表达水平,进行抗 肿瘤辅助治疗。这种基因治疗方法是 A. 基因置换 B. 基因替代 C. 基因矫正 D. 基因失活 E. 免疫调节 6. 下列哪种方法不是目前基因治疗所采用的方法 A. 基因缺失 B. 基因置换 C. 基因替代 D. 基因失活 E. 免疫调节 7. 基因治疗的基本程序中不包括 A. 选择治疗基因 B. 选择载体 C. 选择靶细胞 D. 将载体直接注射体内 E. 将治疗基因导入靶细胞

8. 下列哪种方法不属于非病毒介导基因转移的物理方法 A. 电穿孔法 B. 脂质体法 C. DNA直接注射法 D. 显微注射法 E. 基因枪技术 9. 下列哪种方法属于非病毒介导基因转移的化学方法 A. 电穿孔法 B. 基因枪技术 C. DNA直接注射法 D. 显微注射 E. DEAE-葡聚糖法 10. 将外源治疗性基因导入哺乳动物细胞的方法不包括 A. 显微注射法 B. 电穿孔法 C. 脂质体法 D. CaCl2法 E. 病毒介导的基因转移 11. 目前在基因治疗的临床实施中,最常使用的载体是 A. 逆转录病毒载体 B. pBR322 C. λ噬菌体 D. pUC18 E. YAC

基因治疗在疾病防治中的应用

基因治疗在疾病防治中的应用 120311102 张宇鑫 [摘要] 传染病是目前人类所面临的一类重大疾病,在某些疾病状态下,人类还未寻找到理想的治疗方法,如病毒感染等。现代基因治疗是一种应用基因工程技术和分子遗传学原理,对人类疾病进行治疗的新疗法。主要是指对致病基因的修正和基因增强及采用外源性细胞因子基因、核酶、基因药物进行疾病治疗的方法。经过多年的发展,技术逐步走向成熟,在传染性疾病的防治中显示了重大的临床应用前景。传染性疾病的基因治疗包括:基因疫苗、RNA干扰、反义技术、药物靶向治疗等。 [关键词] 基因疫苗反义技术药物靶向治疗 一、现状 1.1我国传染病预防现状 21世纪人类依然面临着传染病的挑战,就全球而言,艾滋病是当前首恶,由于其病毒极易发生变异,所以到目前为止疫苗仍在试验阶段,缺乏理想的特效药物,免疫损伤治疗难度大。我国2003年比2002年发病率上升44.39%,人类免疫缺陷病毒检出率提高了55%。并且防治工作面临来自传统传染病和新发传染病的双重压力:传统传染病威胁持续存在,新发传染病不断出现。近10年来,我国几乎每一两年就有1种新发传染病出现,许多新发传染病起病急,早期发现及诊断较为困难,缺乏特异性防治手段,早期病死率较高。其次,人口大规模流动增加了防治难度,预防接种等防控措施难于落实。三是环境和生产生活方式的变化增加了传染病防治工作的复杂性。一些地区令人堪忧的城乡环境卫生状况,以及传统的生产生活方式,使一些人畜共患病持续发生。 1.2基因治疗研究的现状 (1) 复合免疫缺陷综合征的基因治疗 1991年美国批准了人类第一个对遗传病进行体细胞基因治疗的方案,即将腺苷脱氨酶(ADA)采用反转录病毒介导的间接法导入一个4岁患有严重复合免疫缺陷综合征(SCID)的女孩,大约1-2月治疗一次,8个月后,患儿体内ADA水平达到正常值的25%,未见明显副作用。此后又进行第2例治疗获得类似的效果。 (2)黑色素瘤的基因治疗 对肿瘤进行基因治疗是人们早已期望的事,在进行了多方面探索的基础上,发现了肿瘤浸润淋巴细胞(即能在肿瘤部位持续存在而无副作用的一种淋巴细胞)在肿瘤治疗中的作用。于1992年实施了TNF/肿瘤细胞和IL-2/肿瘤细胞方案,即分别将IL-2基因肿瘤坏死细胞(TNF)基因导入取自患者自身并经培养的肿瘤细胞,再将这些培养后的肿瘤细胞注射至病人臀部,3周后切除注射部位与其引流的淋巴结,在适合条件下培养T细胞,将扩增的T细胞与IL-2合并用于病人,结果5名黑色素瘤病人中1名肿瘤完全消退,2名90%的肿瘤消退,另2人在治疗后9个月死亡。由于携有TNF的TIL可积于肿瘤处,因而TIL的应用提高了对肿瘤的杀伤作用。

基因工程在医药工业中的的应用

基因工程及其在医学中的应用基因工程及其在医学中的应用基因工程及其在医学中的应用基因工程及其在医学中的应用 摘要: 作为生物工程技术的核心,及新工程的发展与应用,在医学方面有着非同凡响的影响。本文首先回顾了基因工程的发展简史,然后在基因工程制药,抗病毒疫苗,疾病治疗及基因诊病等方面综述了基因工程在医学中的应用。基因工程将给医药方面带来更美好的前景。关键词关键词关键词关键词: 基因工程医学应用1 前言前言前言前言:分子生物学主要是从分子水平上阐述生命现象和本质的科学,是现代生命科学的“共同语言”。分子生物学又是生命科学中进展迅速的前沿学科,它的理论和技术已经渗透到其他基础生物学科的各个领域,它的主要核心内容是通过生物的物质基础---核酸、蛋白、酶等生物大分子的结构、功能及其相互作用的运动规律的研究来阐明生命分子基础,从而探讨生命的奥秘。这门课与基因工程关系很大,主要讲了核酸、蛋白、酶等生物大分子的结构、功能以及它们之间的相互作用。近年来,随着生物技术的飞速发展,分子生物学在较多领域得以应用。其中在核酸,基因方面医学中的发展迅猛。基因工程在制药,抗病菌疫苗发展前景较广,在疾病治疗及诊断对人们生活影响较大。本文将对基因工程的发展及其在医学中的应用作简单的阐述。2 基因工程的发展基因工程的发展基因工程的发展基因工程的发展基因工程又叫遗传工程,是分子遗传学和工程技术相结合的产物,是生物技术的主体。基因工程是指用酶学方法将异源基因与载体DNA在体外进行重组,将形成的重组因子转入受体细胞,使异源基因在其中复制并表达,从而改造生物特性,生产出目标产物的高新技术。1857年至1864年,孟德尔通过豌豆杂交试验,提出了生物体的性状是由遗传基因子控制的。1909年,丹麦生物学家约翰生首先提出基因一词代替孟德尔的遗传因子。1910年至1915年,美国遗传学家摩尔根通过果蝇实验,首次将代表某一性状的基因同特定的染色体联系起来,创建了基因学说。直到1944年,美国微生物学家埃弗里等通过细菌转化研究,证明基因的载体是DNA 而不是蛋白质,从而确立了遗传的物质基础。1953年,美国的遗传学家华生和英国的生物学家克里克揭示了DNA分子双螺旋模型和半保留复制机理,解决了积阴德自我复制和传递问题。开辟了分子生物学的研究时代。之后,1958年克里克确立了中心法则。1961年雅各和莫诺德提出的操纵子学说以及说有64种密码子的破译,成功的揭示了遗传信息的流向和表达问题,为基因工程的发展奠定了坚实的基础。DNA分子的切除与连接,基因的转化技术,还有诸如核酸分子杂交,凝胶电泳,DNA序列结构分析等分子生物学试验方法的进步为基因的创立和发展奠定了强有力的技术基础。1972年,美国斯坦福大学的P.Berg构建了世界上第一个重组分子,发展了DNA重组技术,并因此获得了1980年的诺贝尔学奖。1983年,美国斯坦福大学的S.Chen等人也成功的进行了另一个体外DNA重组试验并发现了细菌间性状的转移。这是基因工程发展史上第一次成功实现重组转化成功的例子,基因工程从此诞生了。基因工程问世近30年,不论是基因理论研究领域,还是在生产实践中的应用,均已取得了惊人的成绩。给国民经济的发展和人类社会的发展带来了深远而广泛的影响。3 基因工程在药学方面的应用基因工程在药学方面的应用基因工程在药学方面的应用基因工程在药学方面的应用运用基因工程技术对基因的转导和整合来获取新的抗体,及新药的制取及研究都具有较高效益;基因技术在诊断疾病及刑事案件的侦破方面发挥着不可小觑的力量,因此基因工程在药学发展有着深远影响。 3.1 基因工程制药基因工程制药基因工程制药基因工程制药基因工程制药开创了制药工业的新纪元,解决了过去不能生产或者不能经济生产的药物问题。现在,人类已经可以按照需要,通过基因工程生产出大量廉价优质的新药物和诊断试剂,诸如人生长激素、人的胰岛素、尿激酶、红细胞生成素、白细胞介素、干扰素、细胞集落刺激因子、表皮生长因子等。令人振奋的是,具有高度特异性和针对性的基因工程蛋白质多肽药物的问世,不仅改变了制药工业的产品结构,而且为治疗各种疾病如糖尿病、肾衰竭、肿瘤、侏儒症等提供了有效的药物。 3.2 基因工程抗病毒疫苗基因工程抗

用于基因治疗的慢病毒载体(一)

用于基因治疗的慢病毒载体(一) 基因治疗有望成为治疗遗传病、肿瘤、病毒感染及其它难治性疾病的有效手段,但目前基因转移方法的局限性成为实现这一希望的最大障碍。非病毒学的基因转移方法效率较低;已用于人体试验的基因治疗方案绝大多数是以病毒学方法进行基因转移的,其中以逆转录病毒载体和腺病毒载体最为成熟。常用的逆转录病毒载体从小鼠白血病病毒(MLV)改造而来,虽可使目的基因整合至靶细胞基因组、实现稳定表达,但只能转导分裂细胞,目前主要用于基因治疗的离体方案;腺病毒载体既能转导分裂细胞,亦可转导静止细胞,转导效率也较高,但目的基因不整合至靶细胞基因组,仅能短暂表达,而且腺病毒本身某些抗原的表达可引起人体免疫反应,阻止其重复转导;其它一些病毒载体如腺相关病毒(AAV)载体、单纯疱疹病毒(HSV)载体亦因各种原因不能令人满意。 理想的病毒载体能同时提供高效的基因转移、长期稳定的基因表达及生物安全性。近来,一些研究者把目光投向了以Ⅰ型为人免疫缺损病毒(HIV-1)为代表的慢病毒。研究表明〔1-5〕,以HIV-1为基础构建的这类慢病毒载体具有可感染非分裂细胞、目的基因整合至靶细胞基因组长期表达、免疫反应小等优点,适于体内基因治疗,因此有望成为理想的基因转移载体。本文即对该类载体的研究进展做一简介。 1HIV-1基因组的基本结构〔6〕 HIV-1DNA前病毒的主要结构基因及其排列形式与其它逆转录病毒相同,均为5'LTR-gag-pro-pol-env-3'LTR。其中gag基因编码病毒的核心蛋白,pol基因编码病毒复制所需的酶类,env基因编码病毒的包膜糖蛋白,pro基因则编码切割蛋白前体所需的蛋白酶。与其它逆转录病毒不同的是,HIV-1基因组尚有较多调节基因,其中属于HIV-1基因复制所必需的tat基因和rev基因,分别编码两个反式激活因子Tat蛋白和Rev蛋白,前者在HIV-1基因组复制和转录延伸过程中发挥重要作用,后者则可促使HIV-1基因的表达由早期向晚期转化。非HIV-1复制所必需的调节基因有nef、vif、vpr和vpu。这些基因的编码产物都有各自的功能,有些尚未完全阐明,在此不一一赘述。 2构建HIV-1载体系统的基本原理〔7〕 HIV-1载体系统由两部分组成,即包装成分和载体成分。包装成分由HIV-1基因组去除了包装、逆转录和整合所需的顺式作用序列而构建,能够反式提供产生病毒颗粒所必需的蛋白;载体成分则与包装成分互补,即含有包装、逆转录和整合所需的HIV顺式作用序列,同时具有异源启动子控制下的多克隆位点及在此位点插入的目的基因。为降低两种成分同源重组恢复成野生型病毒的可能,需尽量减少二者的同源性,如将包装成分上5'LTR换成巨细胞病毒(CMV)立即早期启动子、3'LTR换成SV40polyA等。包装成分通常被分开构建到两个质粒上,一个质粒表达Gag和Pol蛋白,另一个质粒表达Env蛋白,其目的也是降低恢复成野生型病毒的可能。图1所示为Trono等建立的HIV-1载体系统中的一种〔1〕。将包装成分与载体成分的3个质粒共转染细胞(如人肾293T细胞),即可在细胞上清中收获只有一次性感染能力而无复制能力的、携带目的基因的HIV-1载体颗粒。 3HIV-1载体系统的改进 近年来,已有多个实验室建立了复制缺陷的HIV-1载体系统,用于不同目的的研究,如分析病毒的感染力〔8〕、筛选抗病毒药物〔9〕、评价Env糖蛋白的不同区域在介导病毒进入细胞中的作用〔10〕等。而目前对于以基因治疗为目的的HIV-1载体系统,研究的焦点集中在如何扩大其嗜性范围、确保其安全性及提供其滴度和转导能力上。1996年以来,Trono领导的课题组发表了一系列令人鼓舞的研究结果〔1~3〕,主要包括以下几方面的改进。 3.1包膜蛋白 最初的HIV-1载体颗粒,均由其本身的包膜蛋白Env所包裹,仅对CD4+的细胞具有亲嗜性。1996年,Trono课题组的Naldini等〔1〕设计的HIV-1载体系统(见图1)采用表达水疱性口炎

基因工程之基因治疗

基因治疗 摘要: 生物技术在生命科学领域扮演者重要得角色,基因治疗在治疗方面,将新得遗传物质转移到某个个体得体细胞内使其获得治疗效果;在基因工程方面,将正常得有功能得基因置换或增补缺陷基因。近些年来,已对若干人类单基因遗传病与肿瘤开展了临床得基因治疗。基因治疗作为治疗疾病得一种新手段,正愈来愈受到人们得重视与关注。 关键词:基因工程基因治疗基因 一、基因治疗得历史 随着DNA双螺旋结构得发现与以DNA重组技术为代表得现代分子生物学技术得发展以及人类对疾病认识得不断深入,越来越多得证据证明,多种疾病与基因得结构或功能改变有关,因而萌生了从基因水平治疗疾病得念头与梦想。 早在1968年,美国科学家发表了“改变基因缺损:医疗美好前景”得文章,首次在医学界提出了基因疗法得概念。1989年美国批准了世界上第一个基因治疗临床试验方案。1990年美国NIH得Frenuch Anderson博士开始了世界上第一个基因治疗临床试验,用腺苷酸脱氨酶基因治疗了一位ADA基因缺陷导致得严重免疫缺损得四岁女孩,并获得成功[1]。 1994年美国科学家利用经过修饰得腺病毒为载体,成功地将治疗遗传性囊性纤维化病得正常基因cfdr 转入患者肺组织中。2000年,法国巴黎内克尔儿童医院利用基因治疗,使数名有免疫缺陷得婴儿恢复了正常得免疫功能,取得了基因治疗开展近十年最大得成功[2]。 2004年1月,深圳赛百诺基因技术有限公司将世界第一个基因治疗产品重组人p53抗癌注射液正式推向市场,这就是全球基因治疗产业化发展得里程碑[3]。迄今报道已有数千例基因治疗患者,病种主要就是恶性肿瘤、艾滋病、血友病B、病毒性肝炎等等。 二、基因治疗得概念 基因治疗就是指向有功能缺陷得细胞补充相应得基因,以纠正或补偿其基因缺陷,从而达到治疗得目得。 广义得说,基因治疗就就是应用基因或基因产物治疗疾病得一种方法。狭义得说,基因治疗就是把外界得正常基因或治疗基因,通过载体转移到人体得靶细胞,进行基因修饰与表达,治疗疾病得一种手段。

基因工程之基因治疗

基因治疗 摘要: 生物技术在生命科学领域扮演者重要的角色,基因治疗在治疗方面,将新的遗传物质转移到某个个体的体细胞内使其获得治疗效果;在基因工程方面,将正常的有功能的基因置换或增补缺陷基因。近些年来,已对若干人类单基因遗传病和肿瘤开展了临床的基因治疗。基因治疗作为治疗疾病的一种新手段,正愈来愈受到人们的重视和关注。 关键词:基因工程基因治疗基因 一、基因治疗的历史 随着DNA双螺旋结构的发现和以DNA重组技术为代表的现代分子生物学技术的发展以及人类对疾病认识的不断深入,越来越多的证据证明,多种疾病与基因的结构或功能改变有关,因而萌生了从基因水平治疗疾病的念头和梦想。 早在1968年,美国科学家发表了“改变基因缺损:医疗美好前景”的文章,首次在医学界提出了基因疗法的概念。1989年美国批准了世界上第一个基因治疗临床试验方案。1990年美国NIH的Frenuch Anderson博士开始了世界上第一个基因治疗临床试验,用腺苷酸脱氨酶基因治疗了一位ADA基因缺陷导致的严重免疫缺损的四岁女孩,并获得成功[1]。 1994年美国科学家利用经过修饰的腺病毒为载体,成功地将治疗遗传性囊性纤维化病的正常基因cfdr 转入患者肺组织中。2000年,法国巴黎内克尔儿童医院利用基因治疗,使数名有免疫缺陷的婴儿恢复了正常的免疫功能,取得了基因治疗开展近十年最大的成功[2]。 2004年1月,深圳赛百诺基因技术有限公司将世界第一个基因治疗产品重组人p53抗癌注射液正式推向市场,这是全球基因治疗产业化发展的里程碑[3]。迄今报道已有数千例基因治疗患者,病种主要是恶性肿瘤、艾滋病、血友病B、病毒性肝炎等等。 二、基因治疗的概念 基因治疗是指向有功能缺陷的细胞补充相应的基因,以纠正或补偿其基因缺陷,从而达到治疗的目的。 广义的说,基因治疗就是应用基因或基因产物治疗疾病的一种方法。狭义的说,基因治疗是把外界的正常基因或治疗基因,通过载体转移到人体的靶细胞,进行基因修饰和表达,治疗疾病的一种手段。

关于基因工程在医药领域发展以及前景的若干思考

关于基因工程在医药领域双重性的若干思考 (政法1102班111070043 黄光志序号3)【摘要】基因工程作为一门理论性与实践性的较强的学科,其方法与技术已经渗透到现代生命科学的各个分支领域,成为生命科学的一门核心技术。基因工程包含许多独特的实验方法和技术,不仅内容丰富,涉及面广,实用性也强。基因工程技术广泛应用于农业、医学、食品工业等。本文主要阐述基因工程在制药领域的应用,包括生物制药、基因诊断、基因治疗的应用及其前景,同时事物具有双重性,认识基因工程的一些问题,趋利避害,让基因工程能带给我们更多福音。 【关键词】基因工程;医药领域;生物制药;基因诊断;基因治疗 [Abstract] Emphasizing both on practice and theory, genetic engineering has been applied to various fields of life science in terms of its methods and technologies and becomes the core technology of life science. Genetic engineering consists of many unique experiment methods and technologies and is highly and widely practiced in agriculture, medical science, and food industry and so on. This thesis will focus on its applications in pharmacy, including biopharming, genetic diagnose and gene therapy as well their prospects. As each coin has two sides, it is important to realize the deficiencies of genetic engineering. Only if the genetic engineering is made use of in the right way will it truly benefit us. [Key words] Genetic engineering; Medical field; Biological pharmaceutical; Gene diagnosis; Gene therapy 基因为DNA中的一部分,虽然只占整个DNA质量的2%~4%,却主宰着人类由生到死的整个生命旅程。基因工程是指人工使某特定基因(目的基因)经载体携带,进入某生物细胞并重组入其DNA分子中,经筛选、纯化、扩增,并使之表达出人类所需要的蛋白质或对人类有益的生物性状的技术。伴随“人类基因组序列”分析工作的完成,基因工程会在各领域给人类带来福音,目前基因工程已经应用在医学、农业生产、环境科学等诸多领域。本文主要探究基因工程在医学领域方面的发展以及其前景,面对其出现的一些问题,展望其未来,希望随着科学技术的发展,基因工程能给我们带来更多的福音。 一、基因工程的概况 基因工程(genetic engineering)又称基因拼接技术或DNA重组技术,是在在分子水平上对基因进行操作的复杂技术,按照人们的想法,以分子遗传学为理论基础,以分子生物学

相关文档
最新文档