gps误差分析及校正

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

GPS误差分析及校正

GPS误差分析及校正

摘要:GPS是以卫星为基础的无线电卫星导航定位系统,它具有全能性、全球性、全天候、连续性和实时性的精密三维导航与定位功能,而且具有良好的抗干扰性和保密性,因此,GPS技术率先在大地测量、工程测量、航空摄影测量、海洋测量、城市测量等测绘领域得到了应用,并在军事、交通、通信、资源、管理等领域展开了研究并得到广泛应用。本文阐述和分析了全球定位系统(GPS)的基本结构、测量原理和GPS卫星定位误差,提出了有效地针对GPS误差所应采取的措施。

关键词:GPS 误差分析误差校正

1.GPS原理

全球定位系统(Global Positioning System,简称GPS)是美国从20世

纪70年代开始研制的用于军事部门的新一代卫星导航与定位系统,历时20年,耗资200多亿美元,分三阶段研制,陆续投入使用,并于1994年全面建成。GPS是以卫星为基础的无线电卫星导航定位系统,它具有全能性、全球性、全天候、连续性和实时性的精密三维导航与定位功能,而且具有良好的抗干扰性和保密性。因此,GPS技术率先在大地测量、工程测量、航空摄影测量、海洋测量、城市测量等测绘领域得到了应用,别且在其他各个领域使用广泛。GPS主要由空间卫星星座、地面监控站及用户设备三部分构成;GPS地面监控站主要由分布在全球的一个主控站、三个注入站和五个监测站组成;GPS 用户设备由GPS接收机、数据处理软件及其终端设备(如计算机)等组成。

2.GPS测量误差的分类

GPS测量是利用接收机接受卫星播发的信息来确定点的三维坐标。影响测量结果的误差来源于GPS卫星、卫星信号的传播过程和地面接收设备。GPS测量误差按其生产源可分3大部分:GPS信号的自

身误差,包括轨道误差(星历误差)和SA,AS影响;GPS信号的传输误差,包括太阳光压,电离层延迟,对流层延迟,多路径传播和由它们影响或其他原因产生的周跳;GPS接收机的误差,主要包括钟误差,通道间的偏差,锁相环延迟,码跟踪环偏差,天线相位中心偏差等。在高精度的GPS测量中还应该考虑与地球整体运动有关的地球潮汐、负荷潮及相对论效应等。为了便于理解,通常将各种误差的影响投影到观测站至卫星的距离上,以相应距离误差来表示,称之为等效距离误差。表1列出了GPS测量的误差类型及等效的距离误差。

表1 GPS误差来源及相应影响

项目误差来源对距离测量的影响/m

卫星部分星历误差;钟误差;相对论效应 1.5-15

信号传播电离层;对流层;多路径效应 1.5-15

信号接收钟的误差;位置误差;天线相位中心变化 1.5-5

其他影响地球潮汐;负荷潮 1.0

2.1与卫星有关的误差

(1)卫星星历误差

卫星星历误差是指卫星星历给出的卫星空间位置与卫星实际位

置间的偏差,由于卫星空间位置是由地面监控系统根据卫星测轨结果计算求得的,所以又称为卫星轨道误差。它是一种起始数据误差,其大小取决于卫星跟踪站的数量及空间分布、观测值的数量及精度、轨道计算时所用的轨道模型及定轨软件的完善程度等。星历误差是GPS 测量的重要误差来源.

(2)卫星钟差

卫星钟差是指GPS卫星时钟与GPS标准时间的差别。为了保证时钟的精度,GPS卫星均采用高精度的原子钟,但它们与GPS标准时之间的偏差和漂移和漂移总量仍在1ms~0.1ms以内,由此引起的等效误差将达到300km~30km。这是一个系统误差必须加于修正。

(3)SA干扰误差

SA误差是美国军方为了限制非特许用户利用GPS进行高精度点定位而采用的降低系统精度的政策,简称SA政策,它包括降低广播星历精度的ε技术和在卫星基本频率上附加一随机抖动的δ技术。

实施SA技术后,SA误差已经成为影响GPS定位误差的最主要因素。虽然美国在2000年5月1日取消了SA,但是战时或必要时,美国可能恢复或采用类似的干扰技术。

(4)相对论效应的影响

这是由于卫星钟和接收机所处的状态(运动速度和重力位)不同引起的卫星钟和接收机钟之间的相对误差。

(5)太阳光压对GPS卫星产生摄动加速度

太阳光压对卫星产生摄动影响卫星的轨道,它是精密定轨的最主要误差源。太阳光压对卫星产生的摄动加速度受太阳与地球间距离的变化(地球轨道偏心距)而引起太阳辐射压力的变化,也与太阳光强度、卫星受到的照射面程和照射面积与太阳的几何关系及照射面的反射和吸收特性有关,由于卫星表面材料的老化、卫星姿态控制的误差等也使太阳光压发生变化。

已有的太阳光压改正模型有:标准光压模型、多项式光压模型和ROCK4光压摄动模型,这几种光压模型精度基本上相当,可以满足1m 定轨的要求。最近有人提出,用附加随机过程参数的方法或者对较长的轨道用一阶三角多项式逼近非模型化的长期项影响,可得到更理想的结果,甚至可以满足0.1~0.2m精度的定轨要求。

(6)电离层的信号传播延迟

电离层引起码信号传播延迟,它与沿卫星和用户接收机视线方向上的电子密度有关,在垂直方向上延迟值在夜间平均可达3m左右,白天可达15m,在低仰角情况下分别可达9m和45m,在反常时期这个值还会加大。为了削弱电离层延迟所引起的定位精度损失,在长基准测量中用双频接收机采集GPS数据,对观测成果进行实时电离层延迟改正,可以获得很好的效果。对于单频接收机的用户,虽然可以用数学模型进行改正,但其残差仍然很大,也可以用提高卫星高度截止角减少其影响。

在赤道和地极附近存在着严重的电离层赤道扰动和地极扰动,因而,利用双频GPS接收机观测,只适用于没有电离层扰动的中纬度地区来进行电离层改正。 2.2与传播途径有关的误差(1)电离层折射

在地球上空距地面50~100 km 之间的电离层中,气体分子受到太阳等天体各种射线辐射产生强烈电离,形成大量的自由电子和正离子。当GPS 信号通过电离层时,与其他电磁波一样,信号的路径要发生弯曲,传播速度也会发生变化,从而使测量的距离发生偏差,这种影响称为电离层折射。对于电离层折射可用3 种方法来减弱它的影响:①利用双频观测值,利用不同频率的观测值组合来对电离层的延尺进行改正。②利用电离层模型加以改正。③利用同步观测值求差,这种方法对于短基线的效果尤为明显。

(2)电离层的信号传播延迟

电离层引起码信号传播延迟,它与沿卫星和用户接收机视线方向上的电子密度有关,在垂直方向上延迟值在夜间平均可达3m左右,白天可达15m,在低仰角情况下分别可达9m和45m,在反常时期这个值还会加大。为了削弱电离层延迟所引起的定位精度损失,在长基准测量中用双频接收机采集GPS数据,对观测成果进行实时电离层延迟改正,可以获得很好的效果。对于单频接收机的用户,虽然可以用数学模型进行改正,但其残差仍然很大。也可以用提高卫星高度截止角减少其影响。

(3)赤道扰动

最坏的电离层影响是在赤道附近。强烈影响大概在±10°以内的区域,此影响可延续至赤道两边的±30°。扰动一般在日落到午夜发生,延续到第二天黎明。它是由电离层中电子含量小规模无规律引起的,它有几米到几千米的波长,这些无规律的电子密度能够产生衍射和反射效应,接收的信号能使相位和振幅变异,它能妨碍GPS卫星信号跟踪,引起周跳,甚至基线在10km以内时,强烈的电子水平分布梯度能使模糊度解算不能进行。

(4)地极扰动

它没有赤道附近那么强烈,它的发生与磁暴活动有关,它主要是位于磁纬的69°~70°的极光带。在强磁暴期间,这些极光影响能延伸到中纬度地区,使周跳数增多。

(5)对流层折射

对流层的高度为40km 以下的大气底层,其大气密度比电离层更

相关文档
最新文档