IGBT静态特性与开关特性

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

IGBT ,中文名字为绝缘栅双极型晶体管,它是由 MOSFET (输入级)和 PNP 晶体管(输出级)复合而成的一种器件,既有 MOSFET 器件驱动功 率小和开关速度快的特点(控制和响应),又有双极型器件饱和压降低而容量大的特点(功率级较为耐用),频率特性介于 MOSFET 与功率晶体管之间,可正常 工作于几十 kHz 频率范围内。

理想等效电路与实际等效电路如图所示:

IGBT 的静态特性一般用不到,暂时不用考虑,重点考虑动态特性(开关特性)。动态特性的简易过程可从下面的表格和图形中获取:

IGBT 的开通过程

IGBT 在开通过程中,分为几段时间

1. 与 MOSFET 类似的开通过程,也是分为三段的充电时间

2. 只是在漏源 DS 电压下降过程后期, PNP 晶体管由放大区至饱和过程中增加了一 段延迟时间。

在上面的表格中,定义了了:开通时间Ton ,上升时间Tr 和Tr.i

除了这两个时间以外,还有一个时间为开通延迟时间td.on:td.on=Ton-Tr.i

IGBT在关断过程

IGBT在关断过程中,漏极电流的波形变为两段。

第一段是按照MOS管关断的特性的

第二段是在MOSFET关断后,PNP晶体管上存储的电荷难以迅速释放,造成漏极电流较长的尾部时间。

在上面的表格中,定义了了:关断时间Toff,下降时间Tf 和Tf.i

除了表格中以外,还定义trv 为DS端电压的上升时间和关断延迟时间td(off)。

漏极电流的下降时间Tf 由图中的t(f1)和t(f2)两段组成,而总的关断时间可以

称为toff=td(off)+trv 十t(f),td(off)+trv 之和又称为存储时间。

从下面图中可看出详细的栅极电流和栅极电压,CE电流和CE电压的关系:

从另外一张图中细看MOS管与IGBT管栅极特性可能更有一个清楚的概念:

开启过程

关断过程

尝试去计算IGBT的开启过程,主要是时间和门电阻的散热情况。

C.GE 栅极-发射极电容

C.CE 集电极-发射极电容

C.GC 门级-集电极电容(米勒电容)

Cies =CGE+CGC 输入电容

Cres =CGC 反向电容

Coes =CGC+CCE 输出电容

根据充电的详细过程,可以下图所示的过程进行分析

对应的电流可简单用下图所示:

第1阶段:栅级电流对电容CGE进行充电,栅射电压VGE上升到开启阈值电压VGE(th)。这个过程电流很大,甚至可以达到几安培的瞬态电流。在这个阶段,集电极是没有电流的,极电压也没有变化,这段时间也就是死区时间,由于只对GE电容充电,相对来说这是比较容易计算的,由于我们采用电压源供电,这段曲线确实是一阶指数曲线。

第2 阶段:栅极电流对Cge 和Cgc 电容充电,IGBT 的开始开启的过程了,集电极电流开始增加,达到最大负载电流电流IC ,由于存在二极管的反向恢复电流,因此这个过程与MOS 管的过程略有不同,同时栅极电压也达到了米勒平台电压。第 3 阶段:栅极电流对Cge 和Cgc 电容充电,这个时候VGE 是完全不变的,值得我们注意的是Vce 的变化非常快。

第 4 阶段:栅极电流对Cge 和Cgc 电容充电,随着Vce 缓慢变化成稳态电压,米勒电容也随着电压的减小而增大。Vge 仍旧维持在米勒平台上。

第5 阶段:这个时候栅极电流继续对Cge 充电,Vge 电压开始上升,整个IGBT 完全打开。

我的一个同事在做这个将整个过程等效为一阶过程。如果以这个电路作为驱动电路的话:

驱动的等效电路可以表示为:

利用RC的充放电曲线可得出时间和电阻的功率。

这么算的话,就等于用指数曲线,代替了整个上升过程,结果与等效的过程还是有些差距的。不过由于C.GE,C.CE,C.GC是变化的,而且电容两端的电压时刻在变化,我们无法完全整理出一条思路来。

很多供应商都是推荐使用Qg来做运算,计算方法也可以整理出来,唯一的变化在于Qg是在一定条件下测定的,我们并不知道这种做法的容差是多少。

我觉得这种做法的最大的问题是把整个Tsw全部作为充放电的时间,对此还是略有些疑惑的。

说说我个人的看法,对这个问题,定量的去计算得到整个时间非常困难,其实就是仿真也是通过数字建模之后进行实时计算的结果,这个模型与实际的条件进行对比也可能有很大的差距。

因此如果有人要核算整个栅极控制时序和时间,利用电容充电的办法大致给出一个很粗略的结果是可以的,如果要精确的,算不出来。对于门级电阻来说,每次开关都属于瞬态功耗,

可以使用以前介绍过的电阻的瞬态功率进行验算吧。

电阻抗脉冲能力

我们选电阻的大小是为了提供足够的电流,也是为了足够自身散热情况。前级的三极管,这个三极管的速度要非常快,否则如果进入饱和的时间不够短,在充电的时候将可能有钳制作用,因此我对于这个电路的看法是一定要做测试。空载的和带负载的,可能情况有很大的差异。栅极驱动的改进历程和办法(针对米勒平台关断特性)

前面都讲了一些计算的东西,这次总结一些设计法则。

栅极电阻:其目的是改善控制脉冲上升沿和下降沿的斜率,并且防止寄生电感与电容振荡,限制IGBT集电极电压的尖脉冲值。

栅极电阻值小——充放电较快,能减小开关时间和开关损耗,增强工作的耐固性,避免带来因dv/dt 的误导通。缺点是电路中存在杂散电感在IGBT上产生大的电压尖峰,使得栅极承受噪声能力小,易产生寄生振荡。

栅极电阻值大——充放电较慢,开关时间和开关损耗增大。

一般的:开通电压15V±10%的正栅极电压,可产生完全饱和,而且开关损耗最小,当《12V 时通态损耗加大,》20V时难以实现过流及短路保护。关断偏压-5到-15V目的是出现噪声仍可有效关断,并可减小关断损耗最佳值约为-8~10V。

栅极参数对电路的影响

IGBT内部的续流二极管的开关特性也受栅极电阻的影响,并也会限制我们选取栅极阻抗的最

相关文档
最新文档