浅谈如何培养中学生的数学逻辑思维能力[1]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 引言
培养学生的数学逻辑思维能力,数学教材具有优越的条件。数学,是一门研究现实世界的空间形式和数量关系的学科,它具有抽象性严密性和应用的广泛性等特征,现代教学论认为:数学教学是数学思维活动的教学,而不仅是数学活动的结果,即数学知识的教学,数学教育的任务是形成那些具有数学思维特点的智力活动结构。数学的这些特点和数学教学的任务,使得数学教学在培养学生数学逻辑思维能力方面,较之其它学科占有更重要的地位。那究竟怎么样来培养数学逻辑思维能力?为此,有必要作进一步研究。
2 逻辑思维涵义、特点、作用及基本形式
2.1 逻辑思维的涵义及特点
人们在认识过程中借助于概念、判断、推理等思维形式能动地反映客观现实的理性认识过程,又称理论思维。它是作为对认识着的思维及其结构以及起作用的规律的分析而产生和发展起来的。只有经过逻辑思维,人们才能达到对具体对象本质规定的把握,进而认识客观世界。它是人的认识的高级阶段,即理性认识阶段。
数学课培养逻辑思维能力,主要是通过数学课的教学,培养学生自觉的掌握并运用逻辑规律进行思维的能力,也就是遵循逻辑规律,明确的使用概念,恰当地下判断,合乎逻辑地进行推理的能力。
逻辑思维的特点是以抽象的概念、判断和推理作为思维的基本形式,以分析、综合、比较、抽象、概括和具体化作为思维的基本过程,从而揭露事物的本质特征和规律性联系。抽象思维既不同于以动作为支柱的动作思维,也不同于以表象为凭借的形象思维,它已摆脱了对感性材料的依赖。
2.2 逻辑思维能力的作用及基本形式
逻辑思维能力的作用表现在:有助于我们正确认识客观事物;可以使我们通过揭露逻辑错误来发现和纠正谬误;能帮助我们更好地去学习知识;有助于我们准确地表达思想。
逻辑思维的基本形式则包括概念、判断、推理。
概念是通过对认识对象特有属性的反映所指对象的思维形式,其表现形式相当于语言中的词语和词组。判断是对认识对象的情况有所断定的思维形式,它是由概念联结而成的,表现形式相当于语言中的句子。推理则是根据一些判断而得出另一个判断的思维形式,它是判断与判断的联结、过渡,相当于语言中“因为”和“所以”之间的语句关系。
3 数学教学中学生逻辑思维能力的培养
要培养学生的逻辑思维能力,就必须把学生组织到对所学教学内容的分析和综合、比较和对照、抽象和概括、判断和推理等思维的过程中来。
中学生学习数学的主要能力就是逻辑思维能力。培养逻辑思维能力是中学数学教学的主要目的之一。重视培养学生的逻辑思维能力是提高教学质量的重要条件。因此我们在教学过程中应重视学生逻辑思维能力的培养,让学生在思维过程中正确运用各种思维形式,即概念、判断和推理,遵循思维的规律,保证思维的确定性、一贯性和不矛盾性,使学生凭借已有的知识,合乎逻辑地获得新知识,教师在数学课的教学中,也应把起码的形式逻辑知识和辨证逻辑知识贯穿其中。以形式逻辑知识为主,兼顾一点辨证逻辑知识。通过逻辑思维教学,使学生深刻地揭示概念、判断、推理的本质,从而提高学习效率。
3.1 在代数教学中培养学生的逻辑思维能力
数学中的逻辑思维能力是根据正确的思维规律和思维形式,对数学对象的属性进行分析综合、抽象概括、推理证明的能力。而逻辑思维能力的培养直接体现在推理论证能力上。在代数教学中,数、式、方程的运算是重点,其中在运算过程中要求步步有理、有据,否则就无法进行,每一步的依据是什么呢?无非就是已知的定义、定理、性质、法则、公式等。整个运算过程就是一个逻辑推理的过程。所以我们要加强对学生的逻辑思维能力的培养。3.1.1 加强概念的理解,奠定判断和推理基础
让学生理解概念的本质,掌握知识的逻辑联系。比如在学习方程概念的时候,把数、字母、代数式、等式、方程概念之间的逻辑联系和本质特征概括:
数 + 字母→代数式→等式→方程。
这种图示法,在教学中坚持运用,不仅可以使学生掌握概念的本质特征,而且有助于学生学会从整体上去认识知识之间的逻辑联系的方法,也能帮助学生形成和建立科学的认知结构。
在概念教学中要重视感性认识,从具体到抽象。比如,在讲解负数时很多学生对负数的概念很难理解,负数概念教学也是教学中的难点。这时可以举两个实例来帮助理解,可利用温度和海拔高度来引入。把冰的融化温度定为0℃,比0℃高5摄氏度记作5℃,比0℃低5摄氏度记作-5℃;规定海平面的高度为0米,比海平面高8848米记作8848米,比海平面低155米记作-155米。自然地,把大于0的数叫做正数,在正数前面放有个“-”号的数叫做负数,0既不是正数,也不是负数。这样学生对正负数的理解就轻松多了。然后再向学生指
出收入与支出、上升与下降等这一类似的成对出现的“具体相反意义的量”,都可以用正、负数或0表示。这样不仅可以帮助学生理解正负数的意义和应用,并且还进一步培养了学生的抽象思维能力。
然而在学习概念时,有一部分学生并没有真正的理解概念的意义,而是根据老师的要求将其一字不漏的背下来,没有真正的理解它的内涵及外延,不从定义的实质出发去思考问题,而是从形式上观察作出判断,如对有理数的概念,不少学生能背诵或默写其定义:“整数和分数统称有理数”。但在做题的时候却总是出错,比如判断:0、-1、-3.2、0.5、8是不是有理数时,很多同学就弄不清楚了,这时教师可以引导加强理解,全面、正确的掌握有理数的四种不同分类:
○1 正整数○2负整数
○3正分数○4负分数
这样就有助于学生明确有理数概念的内涵和外延,而且为判断推理奠定了基础。
3.1.2 利用判断练习,培养学生的判断能力
判断是思维的基本形式。解题中要作出正确的判断并不是一件容易的事。这就要求在解每一道题的时候,事先必须进行周密的思考。仔细观察,找清运算依据,进行多方面思考。是否与客观现实相符合。比如在解应用题中,要求计算有多少个人的时候,有些学生由于计算错误得出几分之一个人的情况,这是明显的错误。这时就可以判断此题在解题时可能出错了。
例1:问:-2
3
和-
3
4
哪个大?有些学生可能就凭感觉二选一了,这时我们就要启发学
生进行分析(分析:要比较两个负数的大小,实质上就是比较其绝对值的大小,这一推理思
路。)因为-2
3
、-
3
4
都是负数,-
2
3
<-
3
4
,所以-
2
3
>-
3
4
。
评:这看起来是一道判断题,但是具有很强的逻辑性,这对培养学生的逻辑思维有极大的帮助。对这种题不断练习,学生就可以很快、很准的作出判断。这样学生不仅掌握了知识,培养了判断能力,而且还培养了逻辑思维思维能力。
3.1.3 在法则、性质、公式的教学中培养学生的逻辑推理能力
逻辑推理能力是逻辑思维能力的核心,数学中的逻辑思维能力是根据正确的思维规律和思维形式,对数学对象的属性进行综合、抽象概括、推理证明的能力。而逻辑思维能力的培养直接体现在推理论证能力上。