浅析核电管道计算中楼层反应谱的由来及应用

浅析核电管道计算中楼层反应谱的由来及应用
浅析核电管道计算中楼层反应谱的由来及应用

浅析核电管道计算中楼层反应谱的由来及应用

发表时间:2019-05-31T09:43:36.823Z 来源:《防护工程》2019年第4期作者:刘学芬

[导读] 利用结构动力响应方程并结合适当的数值分析方法,可求得结构的系统响应,计算出管道应力。

核工业工程研究设计有限公司北京 101300

摘要:在核电站设计时,一般会考虑两个地震工况OBE和SSE,在这两个地震作用下如何保证结构的安全性是力学分析的一个重要任务。管道一般安装在各个厂房的不同楼层中,地震时,管道随着楼层振动而振动,采用楼层反应谱法可以对管道进行抗震分析。管道因材料、管径、走向、支架设置等有其自身的动力特性,包括柔性、振动频率、阻尼、振型等,利用结构动力响应方程并结合适当的数值分析方法,可求得结构的系统响应,计算出管道应力。

关键词:地震;地震计算方法;楼层反应谱;系统响应

一、地震的理论概念

地震是一种自然现象。每年全世界约发生地震五百万次,有感地震约占1%左右,造成灾害的平均每年十几次。一次地震可以持续15-30秒,地面加速度为0.1-0.6g范围,强震时间为10秒左右,频带范围在0.01-33Hz。图一是实测并经统计分析得到的地震波记录,反映了时间和加速度的关系。

K称为地震系数。由上式可以看出,静力法未考虑结构的动力特性,且把结构视为刚度无限大的,这不符合现实,故现基本不采用。

2、反应谱法。

反应谱分析法是一种将模态分析的结果与一个已知的谱联系起来计算结构位移和应力的分析技术。谱分析主要用于时间-历程分析,以便确定结构对随机载荷或随时间变化载荷的动力响应分析情况,如地震、飓风、海洋波浪等。谱是谱值与频率之间的关系图,它反映了时间-历程载荷的强度和频率。谱分析主要有3种形式:响应谱、动力设计分析方法及功率谱密度。反应谱分析理论创立以来历经几十年的时间,为地震工程和抗震设计奠定了理论基础,在工程实践中,尤其对结构抗震计算具有十分重要的意义。

地震反应谱是根据实际地震记录求得的加速度反应谱,它是单自由度弹性体系在地震作用下其最大的反应与自振周期的关系曲线。按照反应谱理论,作为一个单自由度弹性体系结构的底部剪力或地震作用为:

反应谱法只考虑了振幅和频谱两个要素,解决了大部分问题,但是未考虑地震持续时间对结构的影响。在管道计算中,地震载荷是土建专业提资的楼层反应谱,考虑的是弹性体系的最大响应,故属于反应谱法。

3、时程分析法

时程分析法是20世纪60年代逐步发展起来的抗震分析方法,主要用于超高层建筑的抗震分析和工程抗震研究等。至20世纪80年代,已成为多数国家抗震设计规范或规程的分析方法之一。时程分析法是由结构基本运动方程输入地震加速度进行积分,求得整个时间历程内结构地震作用效应的一种结构动力计算方法,也为国际通用的动力分析方法。

时程分析法将实际地震加速度时程记录作为动荷载输入,进行结构的地震响应分析。全面考虑地震强度、频谱特性、地震持续时间等

MATLAB程序精确法求解反应谱

MATLAB程序精确法求解反应谱-2008-04-06(本文程序仅供参考,请勿直接抄袭)2010/01/21 09:52 . 1. 反应谱的概念 反应谱是在1932年由引入的,它是用来描述地面运动及其对结构的效应的一种实用工具。现在,反应谱作为地震工程的核心概念,提供了一种方便的手段概括所有可能的线性单自由度体系对地面运动的某个特定分量的峰值反应。它还提供了一种实用的方法,将结构动力学的知识应用于结构的设计以及建筑规范中侧向力条文的制定。 某个反应量的峰值作为体系的固有振动周期Tn,(或者循环频率fn)那样的相关参数的函数图形,称为该反应量的反应谱。每一个这样的图形针对的是有一个具有固定阻尼比的单自由度体系,多个具有不同阻尼比的这类图形联合起来就能覆盖实际结构中遇到的阻尼值范围。 2. 反应谱的计算 反应谱数值计算方法 计算反应谱的方法有很多,又卷积计算法,傅立叶变换法,线性加速度法,中点加速度法,精确法等。 精确法 本文中采用精确法做计算,该方法是和于1969年提出的,此法的出发点是把地面运动的加速度记录相邻点间的值用分段线性差值表示,从而获得地面运动的连续表达式。基于方程本身基础上进行,得到的结果全部采用精确的分析方法,没有任何的舍入误差,也不会产生任何的截断误差,所谓精确法就是指在这个意义上式精确的而然。正因为这种方法不会引起数值计算的误差,所以它有较高的精度,只要进行较少的运算就可以达到采用其他方法需要较多次运算才能达到的精度。由于在博客上的文章发表后,陆续有问参考文献的邮件,因此将参考文献版放上来供pdfsohu“大家学习、参考,请勿用于商业目的。下载链接见强震观测与分析原理(精确法求解)地震动的谱分析入门%%%%%%%%%%%%%%%%%%%%% 反应谱精确法程序Begin With %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% clear % ***********读入地震记录*********** fid = fopen(''); [Accelerate,count] = fscanf(fid,'%g'); %count 读入的记录的量 Accelerate=*Accelerate'; %单位统一为m和s time=0::(count-1)*; %单位s % ***********精确法计算各反应*********** 初始化各储存向量%. Displace=zeros(1,count); %相对位移 Velocity=zeros(1,count); %相对速度 AbsAcce=zeros(1,count); %绝对加速度 % ***********A,B矩阵*********** DampA=[0,,]; %三个阻尼比 TA=::6; %TA=::6; %结构周期 Dt=; %地震记录的步长 %记录计算得到的反应,MDis为某阻尼时最大相对位移,MVel为某阻尼 %时最大相对速度,MAcc某阻尼时最大绝对加速度,用于画图 MDis=zeros(3,length(TA));

抗震设计中反应谱的应用

抗震设计中反应谱的应用 一.什么是反应谱理论 在房屋工程抗震研究中,反应谱是重要的计算由结构动力特性所产生共振效应的方法。它的书面定义是“在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应和加速度反应随质点自振周期变化的曲线。用作计算在地震作用下结构的内力和变形”,反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自 振周期、振型和阻尼)所产生的共振效应,但其计算公式仍保留了早期静力理论的形式。地震时结构 所受的最大水平基底剪力,即总水平地震作用为: FEK = kβ(T)G 式中,k为地震系数,β(T)则是加速度反应谱Sa(T)与地震动最大加速度a的比值,它表示地震 时结构振动加速度的放大倍数。 β(T)=Sa(T)/a 反应谱理论建立在以下基本假定的基础上:1)结构的地震反应是线弹性的,可以采用叠加原理进行振型组合;2)结构物所有支承处的地震动完全相同:3)结构物最不利地震反应为其最大地震反应:4)地震动的过程是平稳随机过程。 二.实际房屋抗震设计中的应用 为了进行建筑结构的抗震设计,必须首先求得地震作用下建筑结构各构件的内力。一般而言,求解建筑结构在地震作用下构件内力的方法主要有两种,一种是建立比较精确的动力学模型进行动力时程分析计算,这种方法比较费时费力,其精确度取决于动力学模型的准确性和所选取地震波是否适当,并且对于工程技术人员来说,这种方法不易掌握;第二种方法是根据地震作用下建筑结构的加速度反映,求出该结构体系的惯性力,将此惯性力作为一种反映地震影响的等效力,即地震作用,然后进行抗震计算,抗震规范实际上采用了第二种方法,即地震作用反应谱法。实践也证明此方法更适合工程技术人员采用。 由于目前抗震规范中的地震作用反应谱仅考虑结构发生弹性变形情况下所得的反应谱,因此当结构某些部位发生非线性变形时,抗震规范中的反应谱就不能适用,而应采用弹塑性反应谱来进行计算。因此选用合适的弹塑性反应谱并提出适当的地震作用计算方法在我国抗震设计中具有重要的现实意义。弹塑性反应谱种类繁多,主要包括等延性强度需求谱和等强度延性需求谱,其实质是确定强度折减系数R,延性系数μ,以及结构周期T之间的关系。下面就普通房屋设计中的弹塑性反应谱设计来举例说明。 反应谱是指单自由度体系对于某地面运动加速度的最大反应与体系的自振特性(自振周期和阻尼比)之间的函数关系。抗震规范中所采用的弹性反应谱如图1所示?,它是在计算了大量地面运 动加速度的基础上,确定地震影响系数α与特征周期T之间关系的曲线

振型分解反应谱法matlab

%本程序采用振型分解反应谱法计算框架结构水平地震力 %采用KN.M单位 %运行本程序之前请运行CYGD1.M和CYGD2.M求解框架水平侧移刚度%本程序未考虑扭转耦联振动,只能用于平面框架计算。求解所有振型。%结构地震影响系数按高规3.3.8选取 %地震作用和作用效应按高规3.3.10计算 clear %清理WORKSPACE k0=[263770 %各层框架侧移刚度 263770 263770 263770 123582]; m0=[1.904 %各层质量,重力荷载代表值/g 2.677 2.677 2.677 2.677]*1.0e 3./9.8; n1= 0.21712; %单榀框架地震力分配系数 Tg=0.35; %特征周期(按规范选取) s=0.05; %阻尼比(按规范选取) r=0.9; %衰减系数(按规范选取)

y1=0.02; %阻尼比调整系数1(按规范选取) y2=1; %阻尼比调整系数2(按规范选取) amax=0.08; %水平地震最大影响系数(按规范选取) zjxu=0.7 %周期折减系数(按规范选取) cn=length(m0) %计算楼层数 l=diag(ones(cn)); m=diag(m0); %计算质量矩阵 ik=matrixju(k0,cn); %计算刚度矩阵 [x,d]=eig(ik,m) %求解特征值和特征向量 d=diag(sqrt(d)) %求解结构圆频率 T=zjxu*2*pi./d %求解结构特征周期并作折减,折减系数0.7 for i=1:cn; [dl(i),j]=min(d); xgd(:,i)=x(:,j); d(j)=max(d)+1; end w=dl; %输出结构自振频率 x=xgd; for j=1:cn; %求解结构振型参与系数和各质点的水平相对位移x x(:,j)=x(:,j)/x(cn,j); zhcan(j)=(x(:,j))'*m*l/((x(:,j))'*m*x(:,j));

CARR堆反应堆厂房土壤_结构相互作用与楼层反应谱分析_荣峰

核 动 力 工 程 Nuclear Power Engineering 第27卷 第5 期 2 0 0 6 年10月 V ol. 27. No.5 Oct. 2 0 0 6 文章编号:0258-0926(2006)05-0019-05 CARR 堆反应堆厂房土壤-结构相互作用与 楼层反应谱分析 荣 峰1, 3,汪嘉春2,何树延2,董占发3 (1. 天津大学,300072;2. 清华大学核能技术研究院,北京,100084;3. 核工业第四研究设计院,石家庄,050021) 摘要:土壤-结构动力相互作用(SSI)分析及楼层反应谱(FRS)计算是中国先进研究堆(CARR)工程抗震设计的重要环节。本文采用直接法,通过建立二维土壤-结构共同工作计算模型,并分3个方向进行地震动输入,考虑土壤-结构相互作用对反应堆厂房地震反应进行分析,计算出厂房基础部位和各楼层在不同工况下的地震反应及楼层反应谱。 关键词:反应堆厂房;地震反应;土壤-结构相互作用;计算模型;反应谱 中图分类号:TL35 文献标识码:A 1 引 言 对于非岩石地基土,结构物基础面的运动会受到土壤-结构动力相互作用的影响。这种影响主要来自两个方面:地基土壤的能量辐射效应与结构物基础的散射效应[1]。由于非岩石地基土与岩基在上述两方面的效应有显著差别,对结构反应无论在反应幅值或频谱特性方面均有重要的影响,因而,也对工程结构的抗震分析产生影响。我国核电厂抗震设计规范中规定,对于地基土平均剪切波速不大于1100m/s 的地基,应计入土壤与结构的相互作用。 本工程上部结构刚度较大,地基持力层一定深度范围内土体剪切波速小于1100m/s ,因此,需考虑土壤-结构相互作用(SSI)对厂房结构地震反应的影响进行抗震分析。本文采用直接法中的一步法(国内核电厂抗震分析多采用集中总参数法),在进行土壤-结构耦合动力相互作用的分析时,同时得到结构的楼层反应谱。分析时建立二维土壤-结构共同工作计算模型,分3个方向(两个水平方向和垂直方向)进行地震动输入分析,同时考虑了土体参数不确定性的影响,计算出厂房基础部位和楼层在不同计算工况下的地震反应,取包络结果作为下一阶段的计算输入。把计算的结果经过包络、拓宽和平滑,最后得到厂房在不 同楼层高度处符合核法规要求的设计楼层反应谱。 2 结构与参数 2. 1 反应堆厂房结构概述 CARR 堆反应堆厂房为多层钢筋混凝土结构物,地下一层,地上三层,平面呈矩形(36m×36m),为核安全级、抗震Ⅰ类钢筋混凝土密封厂房。反应堆堆本体座落在厂房中心部位堆水池中,圆形钢筋混凝土池壁同时也作为厂房内部结构各楼层的支承构件。 2.2 工程地质条件及土层参数 CARR 堆址地基土呈层状分布,厂房基础座落在卵石层上。本文采用堆址岩土工程详细勘察报告中提供的钻孔勘测与试验的结果。 土层的非线性本构关系确定:①通过现场土层剪切波速的测定,确定土层的最大剪切模量G max ;②通过室内动三轴试验确定剪应变与剪切模量比及阻尼比的关系(土层动力参数)。试验测得卵石层土样的剪切模量比G /G max 、阻尼比D %与剪应变γ关系如图1所示。由图中可以看出土壤的动力非线性本构关系。 2.3 地震动参数 设计地震动参数采用厂址地震安全性评价及 收稿日期:2005-10-26;修回日期:2006-06-06

高层建筑地震作用下的反应谱法的发展历史.

反应谱法的发展历史 毕奥谱70周年 M.D. Trifunac(南加州大学土木工程系,加利福尼亚州洛杉矶,90089-2531,U.S.A.) 摘要 反应谱法的概念是在1932年系统阐述和提出并用于抗震结构的分析和设计,为了纪念这一事件70周年,本文综述了毕奥创造这个方法的开创性贡献,然后简要概述了里程碑反应谱法的一般演变。该方法频谱幅度的计算和频谱形状的研究被描述为近现代时期的数字计算机时代,反应谱在设计规范的从静态过渡到动态的使用方法的分析说明的发展中起着影响作用,例如来自加利福尼亚州的代码开发。最后,线性响应迭加法局限性被认为是抗震设计方法的未来发展方向。 关键词:反应谱,线性响应,频谱形状 引言 2002年是反应谱法诞生70周年。它也是毕奥在地震工程最后一篇论文中第四次提出如何在设计中使用反应谱法(RSM)的一般原理的60周年。最后,它是继1971年加利福尼亚圣费尔南多地震后,被普遍接受的RSM的大约30周年。为了纪念这些纪念日,本文概述与考察了,第一次是如何利用其局限性制定出的这种方法,以及在过去30年的使用中和它未来使用的发展前景。 强震地面运动的结构反应也许可以用两种不同的方法研究,其中之一包括构建的结构模型和计算准确的动态响应为基础的假设运动。这一方法已被频繁用于重要的结构最终设计。其他近似方法制定的方式,允许特殊结构的特性从地震中被分离出来,后者由“反应谱”给出。这种方法被用于许多抗震结构设计,并且它往往是对初步设计的主要工具,在最终的设计之前,通过第一种方法来进行测试和检查。由于这种利用反应谱的设计的重要性,并因为频谱包含有关记录的强震地面运动的特点有价值的信息,一些基本事实的使用和演变RSM将概述为以下部分。 RSM延伸到结构的非线性响应已被广泛研究并获得不同程度的成功。在下文中,我们将只引用几个例子,为未来的不同的文件留下完整的这种回顾分析。这里我们将关注(1)对于结构“线性”响应的RSM的发展,(2)它在当前设计方法和规范的作用和影响,(3)它与冲击载荷的瞬态响应分析的适应性。 反应谱 1.历史记录

抗震设计中反应谱的应用

抗震设计中反应谱的应用 一.什么是反应谱理论 在房屋工程抗震研究中,反应谱是朿要的计算由结构动力特性所产生共振效应的方法。它的书 面定义是“在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应利加速度反应随 质点自振周期变化的曲线。用作计算在地震作用I、?结构的内力和变形”,反应谱理论占虑了结构动 力特性与地震动特性z间的动力关系,通过反应谱来计算由结构动力持性(n 掠周期、振型和阻尼)所 产生的共振效应,但人计算公式仍保留了早期静力理论的形式。地虑时结构所受的最大水平基底剪 力,即总水平地震作用为: FEK 二kp(T)G 式中,k为地震系数,B(T)则是加速度反应谱Sa仃)与地経动最大加速度a的比值,它表示地震 时结构振动加速度的放大倍数。 B(T)二Sa(T)/a 反应谱理论建立在以卜?基本假定的基础上:1)结构的地震反应是线弹性的,可以采用叠加原理进行撮型组合;2)结构物所有支承处的地震动完全柑同:3)结构物故不利地震反应为其最人地震反应:4)地震动的过程是平稳随机过程。 二.实际房屋抗震设计中的应用 为了进行建筑结构的抗震设计,必须首先求得地震作用卜?建筑结构各构件的内力。一般而言,求解建筑结构在地喪作用卜构件内力的方法主要有两种,一种是建立比较精确的动力学模型进行动力时程分析计算,这种方法比较费时费力,其精确度取决丁?动力学模型的准确性和所选取地震波是否适当,并且对于工程技术人员來说,这种方法不易掌握:第二种方法是根据地爲作用下建筑结构的加速度反映,求出该结构体系的惯性力,将此惯性力作为一种反映地農影响的等效力,即地飛作用,然后进行抗喪计算,抗焦规范实际上釆用了第二种方法,即地篦作用反应谱法。丈践也证明此方法更适合工稈技术人员采用。 由于目前抗震规范中的地窓作用反应谱仅考堪结构发生弹性变形情况下所得的反应谱,因此为结构某比部位发生非线性变形时,抗農规范中的反应谱就不能适用,而布弟用弹塑性反应谱来进行计算。因此选用合适的弹型性反应诰并提出适当的地震作用计算方法在我国抗震设计中只令巫要的现实意义。弹塑性反应谱种类繁多,主要包括等延性强度需求谱和等强度延性需求谱,其实质是确定强度折减系数R,延性系数卩,以及结构周期T之间的关系。下面就普通房屋设计中的弹塑性反应谱设计来举例说明。 反应谱是指单自由度体系对于某地面运动加速度的最大反应与体系的自振特性(自振周期和阻尼比)Z间的函数关系。抗震规范中所采用的弹性反应谱如图1所示???,它是在计算了大量地而运动加速度的基础上,确定地孫影响系数a与特征周期T之间关系的曲线

反应谱

5.1.4 建筑结构的地震影响系数应根据烈度、场地类别、设计地震分组和结构自振周期以及阻尼比确定。其水平地震影响系数最大值应按表5.1.4-1采用;特征周期应根据场地类别和设计地震分组按表 5.1.4-2采用,计算罕遇地震作用时,特征周期应增加0.05s。 注:周期大于6.Os的建筑结构所采用的地震影响系数应专门研究。 注:括号中数僮分别用于设计基本地震加速度为0. 15g和0.30g的地区。 5.1.5 建筑结构地震影响系数曲线(图 5.1.5)的阻尼调整和形状参数应符合下列要求: 1 除有专门规定外,建筑结构的阻尼比应取0.05,地震影响系数曲线的阻尼调整系数应按1.O采用,形状参数应符合下列规定: 1)直线上升段,周期小于0.1s的区段。 2)水平段,自0.1s至特征周期区段,应取最大值(αmax)。 3)曲线下降段,自特征周期至5倍特征周期区段,衰减指数应取0.9。 4)直线下降段,自5倍特征周期至6s区段,下降斜率调整系数应取0.02。 图5.1.5 地震影响系数曲线 α一地震影响系数;αmax一地震影响系数最大值; η1一直线下降段的下降斜率调整系数;γ—衰减指数; Tg一特征周期;η2—阻尼调整系数;T—结构自振周期 2 当建筑结构的阻尼比按有关规定不等于0.05时,地震影响系数曲线的阻

尼调整系数和形状参数应符合下列规定: 1)曲线下降段的衰减指数应按下式确定: γ=0.9+(0.05-ζ)/(0.3+6ζ)…………(5.1.5-1) 式中:γ——曲线下降段的衰减指数; ζ——阻尼比。 2)直线下降段的下降斜率调整系数应按下式确定: η1=0.02+(0.05-ζ)/(4+32ζ)…………(5.1.5-2) 式中:η1——直线下降段的下降斜率调整系数,小于0时取O。 3)阻尼调整系数应按下式确定: η2=1+(0.05-ζ)/(0.08+1.6ζ)…………(5.1.5-3) 式中:η2——阻尼调整系数,当小于0.55时,应取0.55。 5.1.5 弹性反应谱理论仍是现阶段抗震设计的最基本理论,规范所采用的设计反应谱以地震影响系数曲线的形式给出。 本规范的地震影响系数的特点是: 1 同样烈度、同样场地条件的反应谱形状,随若震源机制、震级大小、震中距远近等的变化,有较大的差别,影响,因素很多。在继续保留烈度概念的基础上,用设计地震分组的特征周期Tg予以反映。其中,Ⅰ、Ⅱ、Ⅲ类场地的特征周期值,2001规范较89规范的取值增大了0.05s;本次修订,计算罕遇地震作用时,特征周期Tg值又增大0.05s。这些改进,适当提高了结构的抗震安全性,也比较符合近年来得到的大量地震加速度资料的统计结果。 2 在T≤0.1s的范围内,各类场地的地震影响系数一律采用同样的斜线,使之符合T=O时(刚体)动力不放大的规律;在T≥Tg时,设计反应谱在理论上存在二个下降段,即速度控制段和位移控制段,在加速度反应谱中,前者衰减指数为1,后者衰减指数为2。设计反应谱是用来预估建筑结构在其设计基准期内可能经受的地震作用,通常根据大量实际地震记录的反应谱进行统计并结合工程经验判断加以规定。为保持规范的延续性,地震影响系数在T≤5Tg范围内与2001规范维持一致,各曲线的衰减指数为非整数;在T>5Tg的范围为倾斜下降段,不同场地类别的最小值不同,较符合实际反应谱的统计规律。对于周期大于6s的结构,地震影响系数仍专门研究。 3 按二阶段设计要求,在截面承载力验算时的设计地震作用,取众值烈度下结构按完全弹性分析的数值,据此调整了本规范相应的地震影响系数最大值,其取值继续与按78规范各结构影响系数C折减的平均值大致相当。在罕遇地震的变形验算时,按超越概率2%~3%提供了对应的地震影响系数最大值。 4 考虑到不同结构类型建筑的抗震设计需要,提供了不同阻尼比(0.02~0.30)地震影响系数曲线相对于标准的地震影响系数(阻尼比为0.05)的修正方法。根据实际强震记录的统计分析结果,这种修正可分二段进行:在反应谱平台段(α=αmax),修正幅度最大;在反应谱上升段(TTg),修正幅度变小;在曲线两端(Os和6s),不同阻尼比下的α系数趋向接近。 本次修订,保持2001规范地震影响系数曲线的计算表达式不变,只对其参

振型分解反应谱法

结构设计系列之振型分解反应谱法 苏义

前言 我国规范对于常规结构设计有两个方法:底部剪力法和振型分解反应谱法。其中,底部剪力法视多质点体系为等效单质点体系,且其地震作用沿高度呈倒三角形分布,当结构层数较高或体系较复杂时,其计算假再用,因部剪时,其计算假定不再适用,因此规范规定底部剪力法仅适用于高度不超过40m、以剪切变形为主且质量和刚度沿高度分布比较均匀的结构。因此,一般结构均采用振型分解反应谱法。

振型分解反应谱法的基本步骤: 通过体系的模态分析,求出多自由度体系的振型通过体系的模态分析求出多自由度体系的振型向量、参与系数等等;然后把每个振型看作单自由度体系,求出其在规定反应谱的地震加速度作用下产生的地震效应;最后把所有振型的地震效应式进行叠,得到体系震应应按一定方式进行叠加,就会得到体系地震效应的解。 注意 注意: 振型分解反应谱法只适用于弹性分析,对于弹塑性体系,由于力与位移不再具有对应关系,性体系,由于力与位移不再具有一一对应关系, 该法不再适用。

目录 一模态分析二 反应谱分析 三 振型组合方法 四 方向组合方法

一、模态分析 模态分析也被称作振型叠加法动力分析,是线性体系地震分析中最常用且最有效的方法。它最主要的 优势在于其计算一组正交向量之后,可以将大型 整体平衡方程组缩减为相对数量较少的解耦二阶平解阶微分方程,这样就明显减少了用于数值求解这些 方程的计算时间。模态分析为结构相关静力分析 提供相关结构性能,包括结构静力地震作用分析 和静力风荷载分析。 模态分析是其它动力分析的基础,包括反应谱分析和时程分析。

三 设计地震动反应谱确定的规范方法

三设计地震动反应谱确定的规范方法 设计地震动是通过对地震环境和场地环境的分析判断和分类方法确定。工程勘察单位至少提供: 设计基本地震加速度和设计特征周期 场地环境:覆盖层厚度、剪切波速、土层钻孔资料 1.设计基本地震加速度和设计特征周期 根据场地在中国地震动参数区划图上的位置判断确定。

土层剪切波速的测量应符合下列要求: 1 在场地初步勘察阶段对大面积的同一地质单元测量土层剪切波速的钻孔数量不宜少于3。 2 在场地详细勘察阶段对单幢建筑测量土层剪切波速的钻孔数量不宜少于2 个数据变化较大时可适量增加对小区中处于同一地质单元的密集高层建筑群测量土层剪切波速的钻孔数量可适量减少但每幢高层建筑下不得少于一个。 3 对丁类建筑及层数不超过10 层且高度不超过30m 的丙类建筑当无实测剪切波速时可根据岩土名称和性状按表 4.1.3 划分土的类型再利用当地经验在下表的剪切波速范围内估计各土层的剪切波速.

建筑场地覆盖层厚度的确定应符合下列要求: 1 一般情况下应按地面至剪切波速大于500m/s 的土层顶面的距离确定(且其下卧层沿途的剪切波速均不小于500m/s)。 2 当地面5m 以下存在剪切波速大于(其上部各土层)相邻上层土剪切波速2.5 倍的土层且其下卧岩土的剪切波速均不小于400m/s 时可按地面至该土层顶面的距离确定 3 剪切波速大于500m/s 的孤石、透镜体应视同周围土层 4.土层中的火山岩硬夹层应视为刚体其厚度应从覆盖土层中扣除

例题:某类建筑场地位于7度烈度区,设计地震分组为第一组,设计基本地震加速度为0.1g,建筑结构自振周期T=1.4s,阻尼比为0.08,该场地在建筑多遇地震条件下地震影响系数a为多少。 同一个场地上甲乙两座建筑物的结构自震周期分别为T甲=0.25sT乙=0.60s,一建筑场地类别为Ⅱ类,设计地震分组为第一组,若两座建筑的阻尼比都取0.05,问在抗震验算时甲、乙两座建筑的地震影响系数之比最接近下列那个选项。 A 1.6 B 1.2 C 0.6 D 条件不足无法计算 例题:吉林省松原市某民用建筑场地地质资料如下: (1)0-5m粉土,=150 =180m/s (2) 5-12m中砂土=200 =240m/s (3)12-24m粗砂土=230 =310m/s (4) 24-45m硬塑粘土=260 =300m/s (5)45-60m泥岩=500 =520m/s 建筑物采用浅基础,埋深2m,地下水位2.0m,阻尼比为0.05,自震周期为1.8s该建筑进行抗震设计时 (1)进行第一阶段设计时,地震影响系数应取多少 (2)进行第二阶段设计时,地震影响系数应取多少 例题:吉林省松原市某民用建筑场地地质资料如下: (1)0-5m粉土,=150 =180m/s (2) 5-12m中砂土=200 =240m/s

隔震结构基于功率谱密度函数法的楼层反应谱分析

第28卷第2期 振动与冲击 JOURNALOFVIBRATIONANDSHOCK 隔震结构基于功率谱密度函数法的楼层反应谱分析 曾奔1’2,周福霖2,徐忠根2 (1.西安建筑科技大学,西安710055,2.广州大学工程抗震研究中心,广州510405) 摘要:采用锥体模型求得地基基础阻抗函数,推导出非结构构件(NSC)的绝对加速度传递函数,利用随机振动理论。通过功率谱密度函数法(PSDF)建立楼层反应谱(FRS),并和人工合成地震波分析所得结果进行了对比。研究结果表明,PSDF法用较少计算量就可以得到相当准确的FRS,同时能与现行抗震规范很好的相结合。基础隔震结构NSC的峰值反应主要出现在隔震频率附近的低频段,增加隔震装置后土一结构相互作用(SSI)出现不同程度的削弱,在隔震频率段最为显著。 关键词:非结构构件;基础隔震;功率谱密度函数;楼层反应谱;土-结构相互作用 中图分类号:TU352.1+2文献标识码:A 在一些重要建筑(如医院,核电站等)中,非结构构件(NSC)(如家具,各种设备,管道等)在地震时对维持正常运作和生命安全都起着非常重要的作用。当结构受到地震激励时,结构可能会起到放大地震的作用,使得楼层加速度大于地面峰值加速度(PGA)。如果NSC的自然频率与结构物的自然频率接近,那么NSC的峰值加速度(PCA)就会远大于楼层峰值加速度(PFA),从而遭受到严重破坏。目前主要是通过建立楼层反应谱(FRS)来考虑NSC的安全和运作。1。2o。同时,基础隔震通过调整结构的振动周期,避开地震的卓越周期来减小结构的加速度反应,并通过隔震系统的阻尼来吸收地震输入的能量,从而控制结构的反应-3‘;而考虑SSI后会对隔震体系的隔震机理产生直接的影响一。。因此有必要在考虑SSI的影响后来对隔震结构中NSC作FRS分析。建立FRS大致有两种方法:1)确定性方法,即通过合成与期望反应谱相一致的人工地震波对结构作时程分析,从而求得特定时程下的FRS;2)概率方法p。o,即根据随机振动理论求出与目标反应谱相一致的功率谱密度函数(r丐OF),再由NSC与基底激励的传递函数得到其响应的PSDF,进而计算其均方根值(r.m.s)与相应的峰值因子从而得到统计意义上的FRS。 1运动方程 如图l所示,考虑一多层剪切结构体系,隔震层设在结构底部位置,基础为一矩形明置板。假设基础的输入运动为地基土自由场运动互,(f)并且基础底板表现为刚性,则可以忽略自由场输入的摆分量动性相互作 基金项目:国家自然科学基金项目(50608021);科技部重大基础研究前期研究专项(2004CCA03300) 收稿日期:2008—07—12修改稿收虱J日期:2008—04一u 第一作者曾奔男,博士生,1979年生用。此时,基础底板的绝对平移和摆动分量为菇。(t)和移。(t),隔震层的平移分量为菇。(t)。利用子结构法,上部结构所受的作用有:1)基底激励茹。(t)+互。(t)和日6(t);2)基础和地基土的相互作用(即基底剪力V(t)和弯矩M(t)。于是上部结构的运动方程可写成: Mx(t)+西(t)+Kx(t)= 一M1zo(t)~M1名6(t)一Mh06(t)+{以t)}(1) ___-一% / / _-~‰ 啊4p■-~7坍. ,? 砩产-、0。 M,C和K分别代表上部结构的质量、阻尼和刚度矩阵,x(t)为结构相对于隔震层的位移向量,1代表单位向量,h(={h。,h:,…,h。})代表结构各楼层至基础底板的高度,{,(t)}为NSC作用于相应楼层的力向量。利用振型正交特性,结构运动方程可表示如下: q,(£)+2孝,c£J,q,(t)+∞;g,(£)= 一O/,[戈o+戈6(t)]一y,06(t)+币:¨口(t) r=1,2,…,n(2)q,(t)是正交化后振型幅值向量,a,(={西¨’}1MI)为平移振型参与系数,y,(={咖¨’}rMh)摆动振型参与系数,秽(t)是第P层NSC的作用力,∞,和f,分别是自然频率和阻尼比。把方程(2)中q,(t)和各正交振型相乘后再叠加可得结构第P层的结构位移为:譬

振型分解反应谱法知识讲解

振型分解反应谱法

振型分解反应谱法 振型分解反应谱法是用来计算多自由度体系地震作用的一种方法。该法是利用单自由度体系的加速度设计反应谱和振型分解的原理,求解各阶振型对应的等效地震作用,然后按照一定的组合原则对各阶振型的地震作用效应进行组合,从而得到多自由度体系的地震作用效应。振型分解反应谱法一般可考虑为计算两种类型的地震作用:不考虑扭转影响的水平地震作用和考虑平扭藕联效应的地震作用。 适用条件 (1)高度不超过40米,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法计算。(此为底部剪力法的适用范围) (2)除上述结构以外的建筑结构,宜采用“振型分解反应谱法”。 (3)特别不规则的建筑、甲类建筑和规范规定的高层建筑,应采用时程分析法进行补充计算。 刚重比 刚重比是指结构的侧向刚度和重力荷载设计值之比,是影响重力二阶效应的主要参数 刚重比=Di*Hi/Gi Di-第i楼层的弹性等效刚度,可取该层剪力与层间位移的比值Hi-第i楼层层高

Gi-第i楼层重力荷载设计值 刚重比与结构的侧移刚度成正比关系;周期比的调整将导致结构侧移刚度的变化,从而影响到刚重比。因此调整周期比时应注意,当某主轴方向的刚重比小于或接近规范限值时,应采用加强刚度的方法;当某主轴方向刚重比大于规范限值较多时,可采用削弱刚度的方法。同样,对刚重比的调整也可能影响周期比。特别是当结构的周期比接近规范限值时,应采用加强结构外围刚度的方法规范上限主要用于确定重力荷载在水平作用位移效应引起的二阶效应是否可以忽略不计。见高规5.4.1和5.4.2及相应的条文说明。刚重比不满足规范上限要求,说明重力二阶效应的影响较大,应该予以考虑。规范下限主要是控制重力荷载在水平作用位移效应引起的二阶效应不致过大,避免结构的失稳倒塌。见高规5.4.4及相应的条文说明。刚重比不满足规范下限要求,说明结构的刚度相对于重力荷载过小。但刚重比过分大,则说明结构的经济技术指标较差,宜适当减少墙、柱等竖向构件的截面面积。 长细比 长细比=计算长度/回转半径。 所以很显然,减小计算长度或者加大回转半径即可。 这里需要注意的是,计算长度并非实际长度,而是实际长度乘以长度系数,长度系数则与柱子两端的约束刚度有关。说白了就是

反应谱理论与人工模拟地震波技术简介

第33卷第26期?106?2007年9月山西建筑 SHANXIARCHITECTURE Vd33No.26 Sep.2007 文章编号:1009—6825{2007)26—0106—03 反应谱理论与人工模拟地震波技术简介 邱玉国王玉富 摘要:介绍了反应谱理论的发展历程和国内外研究现状,分析了研究问题的思路,指出了利用反应谱理论来解决实际工程时遇到的问题,并简单介绍了国外对人工模拟地震波技术的应用和研究,为抗震理论提供了参考依据。 关键词:反应谱理论,地震波,随机振动,非弹性地震波 中图分类号:TU352文献标识码:A 1概述 反应谱理论是建筑结构抗震设计的重要理论基础之一。从20世纪50年代开始,反应谱理论逐渐成为结构抗震设计的重要方法,经过50多年的发展,目前这种方法已经为世界上大多数国家的设计规范所采用。但是,由于地震产生机理和作用效果的复杂性,采用反应谱理论进行分析和设计与工程实践还存在很多与实际不相符合之处。此外,对于反应地震重要特性的时间问题,反应谱法也无能为力。 人工模拟地震波技术是近年来才发展起来的一项新的结构抗震设计的技术手段,目前主要用于计算机模拟和特别重要结构模型的振动台试验。它能够通过模拟地震波的特性来用于对结构进行时程分析,是~种新兴的、具有革命性意义的试验手段。 图2数值模拟结果2.3计算结果分析 通过数值模拟和试验得到瓦斯管承载力等数值如表2所示。 表2数值模拟和试验结果 I研究方法承载力仆但a最大应变/%最大剪应力/SPaI数值模拟7.14O.0842160室内试验6.620.0964 3结语 通过对丁集煤矿瓦斯管材质和整体抗外压的试验研究以及数值模拟分析,可以获得如下重要结论: 1)通过对管材材质的试验研究表明:工作管材质采用Q345,尺寸为柘30rfllTl×14inln,能够满足强度和稳定性要求。 2)瓦斯管整体抗外压试验结果表明:工作管抗外压承载力为6,62MPa;通过大变形有限元数值计算,采用变形稳定性控制其承载力,结果为7.14MPa,两者数值十分接近,说明用文中方法模拟大直径瓦斯管的承载力是可行的。 参考文献: [1]李正来.瓦斯抽排钻孔定向技术的改进[J].安徽科技,2006(3):49—50. [2]汪东生.瓦斯抽排技术治理本煤层采空区瓦斯涌出的实践[J].煤矿安全,2006(1):13—15. [3]张敦伍,任胜杰.瓦斯抽排钻孔防偏斜实践[J].矿业安全与环保,2005(8):67—68. [4]刘克功,范再良,赵新华.采空区瓦斯抽排法治理综放面瓦斯超限[J].煤,1998(2):48—50. Studyingonradialstabilitynumericalsimulationoflargepipeinmine TONGWen-lin Abstract:TheexperimentalandvaluesimulationmethodshavestudiedtheDingiicoalminelargediametergastubeundermechanicscharacter—istie.Resultindicated:thelargediametergastubeispresentedstabilityfailuremodelinencirclespressesshape,itssafetyfactorreaches3.0,itisdesignthelargediametergastubeandtheconstructpmvidesthereference. Keywords:largediametergastube,experimentalinlab,numericalsimulation,stabilityfailuremodel 收稿日期:2007.04.06 作者简介:邱玉国(1973。),男,工程师,辽宁工程技术大学软件学院,辽宁阜新123000 王玉富(1970.),男,工程师,中铁十九局集团第三工程有限公司,辽宁辽阳111000

抗震设计中反应谱的应用

抗震设计中反应谱的应用 一.什么就是反应谱理论 在房屋工程抗震研究中,反应谱就是重要的计算由结构动力特性所产生共振效应的方法。它的书面定义就是“在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应与加速度反应随质点自振周期变化的曲线。用作计算在地震作用下结构的内力与变形”,反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自振周期、振型与阻尼)所产生的共振效应,但其计算公式仍保留了早期静力理论的形式。地震时结构所受的最大水平基底剪力,即总水平地震作用为: FEK = kβ(T)G 式中,k为地震系数,β(T)则就是加速度反应谱Sa(T)与地震动最大加速度a的比值,它表示地震时结构振动加速度的放大倍数。 β(T)=Sa(T)/a 反应谱理论建立在以下基本假定的基础上:1)结构的地震反应就是线弹性的,可以采用叠加原理进行振型组合;2)结构物所有支承处的地震动完全相同:3)结构物最不利地震反应为其最大地震反应:4)地震动的过程就是平稳随机过程。 二.实际房屋抗震设计中的应用 为了进行建筑结构的抗震设计,必须首先求得地震作用下建筑结构各构件的内力。一般而言,求解建筑结构在地震作用下构件内力的方法主要有两种,一种就是建立比较精确的动力学模型进行动力时程分析计算,这种方法比较费时费力,其精确度取决于动力学模型的准确性与所选取地震波就是否适当,并且对于工程技术人员来说,这种方法不易掌握;第二种方法就是根据地震作用下建筑结构的加速度反映,求出该结构体系的惯性力,将此惯性力作为一种反映地震影响的等效力,即地震作用,然后进行抗震计算,抗震规范实际上采用了第二种方法,即地震作用反应谱法。实践也证明此方法更适合工程技术人员采用。 由于目前抗震规范中的地震作用反应谱仅考虑结构发生弹性变形情况下所得的反应谱,因此当结构某些部位发生非线性变形时,抗震规范中的反应谱就不能适用,而应采用弹塑性反应谱来进行计算。因此选用合适的弹塑性反应谱并提出适当的地震作用计算方法在我国抗震设计中具有重要的现实意义。弹塑性反应谱种类繁多,主要包括等延性强度需求谱与等强度延性需求谱,其实质就是确定强度折减系数R,延性系数,以及结构周期T之间的关系。下面就普通房屋设计中的弹塑性反应谱设计来举例说明。 反应谱就是指单自由度体系对于某地面运动加速度的最大反应与体系的自振特性(自振周期与阻尼比)之间的函数关系。抗震规范中所采用的弹性反应谱如图1所示? ,它就是在计算了大量地面运动加速度的基础上,确定地震影响系数与特征周期T之间关系的曲线

高层时程分析论文:高层时程分析 反应谱 剪力墙 有限元 层间位移角

高层时程分析论文:高层结构地震放大作用及反应分析 【中文摘要】我国高层建筑越来越多,实际震害表明,即使离震中较远的地区,高层反应也比较强烈,引起较大恐慌。一般而言,地震反应随着楼层增高逐渐增大。我国地震烈度表中提到:在高楼上人的感觉要比地面上室内人的感觉明显,但并不清楚具体放大程度和规律。本文对六栋典型混凝土高层结构进行了计算分析,对比了不同场地条件和不同高度结构对地震的放大作用,得出了具体的放大程度及规律。这样高层上的人可以通过所在层的反应,来判断实际的烈度,减小高层上的人对地震的恐慌。剪力墙是高层结构普遍采用的抗侧力构件,然而剪力墙非线性数值模拟问题一直没有得到很好的解决,本文尝试采用壳单元建立剪力墙结构数值模型,并通过与实验结果对比验证其可靠性。本文的主要工作内容及结论如下:1、为研究不同场地条件和不同高度结构对地震动的放大关系及规律,选择了能充分反映典型高层及超高层建筑的6栋建筑进行时程分析,分析结果表明:坚硬场地 上的高层反应较弱,楼层的放大作用不明显;中等场地上的高层顶部 楼层反应较为明显,20层左右顶层放大约1.4~2.6倍,40层左右的高层顶层放大约2.8倍;软弱场地上的高层建筑反应最强,楼层放大作 用特别明显,20层左右结构顶层放大约... 【英文摘要】There are more and more high-rise buildings in China, and the actual earthquake shows that, even in areas far from the epicenter, high-level responses are more intense,

反应谱

1.2 弹性反应谱 在Maurice A. Biot []首先提出弹性反应谱的概念之后,经若干学者的发展,反应谱的概念已得到了较大程度的推广,且反应谱现在已被广泛地应用于地震工程的各个方面(如地震危险性分析、结构抗震设计、地震加速度记录的选择和调整及基于性能的地震工程等)。目前,反应谱主要包括:傅立叶谱、弹性反应谱、弹塑性反应谱、能量反应谱和损伤谱等。以下主要介绍弹性反应谱的定义,其余反应谱的定义与弹性反应谱类似。 所谓弹性反应谱就是在给定的地震加速度输入下,单自由度弹性系统的最大反应和体系的自振特征(自振周期或频率和阻尼比)之间的函数关系。单自由度弹性系统的最大反应可以是:相对于地面的最大位移、相对于地面的最大速度、最大绝对加速度、拟速度和拟加速度。 在地面加速度的激励下,单自由度弹性系统的动力平衡方程为: )()()()(t u m t ku t u c t u m g -=++ (1.1) 式(1)的解可由Duhamel 积分求得: ττωτωτξωd t e u t u D t t g D )(sin )(1 )() (0 -- =--? (1.2) 将式(1.2)求导可得相对速度反应为: ττωτωτξωd t e u t u D t t g D )(sin )(1 )()(0 --=--? (1.3) 将式(1.3)求导再与地面加速度相加可得绝对加速度反应为: ττωτωτξωd t e u t u t u D t t g D g )(sin )(1 )()()(0 -- =+--? (1.4) 在式(1.1)~(1.4)中,m 为单自由度弹性体系的质量;c 为阻尼系数;k 为体系的刚度系数;u(t)为体系相对于地面的位移;)(t u 为体系的相对速度;)(t u 为体系的相对加速度;)(t u g 为地面加速度;ω为体系的无阻尼自振圆频率(ω2=2π/T=k/m );T 为体系自振周期;ζ为阻尼比(ζ=c/2m ω);ωD 为体系的有阻尼自振圆频率(21ξωω-=D )。 根据弹性反应谱的定义可知,绝对加速度反应谱、速度反应谱和位移反应谱分别为: ττωτωξτξωd t e u t u t u T S D t t g D g a )(sin )(1 )()(),() (0 max --=+=--? (1.5) ττωτωξτξωd t e u t u T S D t t g D v )(sin )(1 )(),() (0 max --==--? (1.6)

反应谱曲线及公式

4.2地震作用和地震反应计算 4.2.1隔震房屋为砌体房屋或与砌体房屋结构基本周期相当的房屋,并且满足第4.1.1条的要求时,可采用等效侧力法计算。 4.2.2采用等效侧力法时,隔震房屋的地震作用可按第4.2.3~4.2.9条和第4.2.13条计算。采用时程分析法时,隔震房屋的地震作用可按第4.2.10~4.2.14条计算。 4.2.3 结构阻尼比为0.05时的地震影响系数α,应根据烈度、场地类别、特征周期分区和结构自振周期按图4.2.3采用,其最大值αmax按第4.2.5条的规定确定。场地特征周期T g,根据场地类别和特征周期分区按《建筑抗震设计规范》GB50011的有关规定确定。隔震结构的自振周期T可采用与隔震结构相应的计算模型经计算确定。

图4.2.3 地震影响系数曲线 图中,α—地震影响系数; max α—地震影响系数最大值; T —结构自振周期; T g —场地相关反应谱特征周期,按《建筑抗震设计规范》GB50011确定; γ—曲线下降段的衰减指数 1η—直线下降段的斜率; 2η—阻尼调整系数。 4.2.4结构阻尼比不等于0.05时,水平地震影响系数α曲线仍按图4.2.3确定,其中的形状参数应按下列规定调整: 1 曲线下降段的衰减指数,应按下式确定: ζ ζ γ55.005.09.0+-+ = (4.2.4-1) 式中 γ—曲线下降段的衰减指数; ζ—阻尼比,隔震结构可近似取隔震层的有效阻尼比。 2 直线下降段的斜率,应按下式确定: 8 05.002.01ζ η-+ = (4.2.4-2) 式中 η1—直线下降段的斜率,当η1小于零时应取η1=0。 4.2.5计算隔震房屋地震作用时,应符合下列规定: 1 结构阻尼比为0.05时,房屋结构的水平地震影响系数最大值应按表4.2.5采用。 表4.2.5 水平地震影响系数最大值α (阻尼比0.05)及设计基本地震加速度值 max 45.0αmax 2αη0 0.1 T g 5T g 6.0 α

相关文档
最新文档