浅谈薄壁零件的加工方法

合集下载

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析1. 引言1.1 背景介绍薄壁零件是指壁厚较薄,形状复杂的零件,通常用于汽车、航空航天、电子等领域。

随着现代工业的发展,对薄壁零件的需求越来越大,但是薄壁零件的加工过程中容易产生变形、残余应力等问题,给加工工艺提出了更高的要求。

薄壁零件的加工难度主要体现在以下几个方面:一是薄壁零件在加工过程中容易变形,特别是在切削加工过程中会出现振动、共振等问题;二是薄壁零件在加工过程中很容易产生残余应力,影响零件的精度和稳定性;三是薄壁零件通常要求加工精度高,加工表面要求光洁度要求高。

对薄壁零件的机械加工工艺进行深入研究和分析,对提高零件加工质量和效率具有重要意义。

本文将通过对薄壁零件的加工特点、机械加工方法、加工工艺优化、加工设备选择和注意事项等方面进行分析,希望能为薄壁零件的加工提供一些参考和帮助。

1.2 研究目的薄壁零件的机械加工工艺分析本文旨在探讨薄壁零件的机械加工工艺,通过对薄壁零件加工特点、机械加工方法、加工工艺优化、加工设备选择以及加工注意事项等方面进行深入分析,以期为相关行业提供一定的参考和指导。

薄壁零件因其结构特殊、加工难度大、容易变形等特点,在实际生产中存在一定的挑战。

通过对薄壁零件的机械加工工艺进行研究分析,可以帮助企业更加有效地解决加工过程中所面临的问题,提高生产效率、降低生产成本,提升产品质量和市场竞争力。

研究目的的关键在于深入了解薄壁零件的加工特点和加工工艺,找出存在的问题并提出解决方案,为制造工程技术人员提供可行的指导意见和建议。

通过本文的研究,希望能够为薄壁零件的机械加工工艺提供更加系统和全面的分析,为相关领域的技术人员提供参考和借鉴,推动薄壁零件的机械加工技术不断创新和提升。

1.3 研究意义薄壁零件在机械加工领域中起着重要的作用,其加工工艺的优化对于提高产品质量、降低生产成本具有重要意义。

由于薄壁零件的特殊性,其加工过程中容易出现变形、裂纹等问题,因此需要对其加工进行深入研究和优化。

浅谈薄壁零件数控车工加工工艺

浅谈薄壁零件数控车工加工工艺

浅谈薄壁零件数控车工加工工艺摘要:新世纪是提倡节约能源,保护环境的时代。

薄壁零件以重量轻、节约材料和结构紧凑等优点在各个行业得以广泛应用。

然而薄壁零件由于其刚性差和强度弱,在机械加工中很容易变形,导致加工精度难以确保。

关键词:薄壁零件;数控车工;加工工艺前言文章将详细分析薄壁零件的工艺特点以及影响加工精度的因数。

通过实例分析讲解了优化零件结构、工艺设计、工装、刀具几何角度、切削参数等方面知识,进而确保了薄壁零件的数控加工精度。

1.影响薄壁零件数控加工精度的因素1.1工件的装夹工艺产生的变形无论哪种装夹方式薄壁零件的装夹工艺问题都是制造过程中的首要条件,由于薄壁零件自身的结构特点,如果夹紧力支撑点选择不当容易引起弹性变形从而影响到零件的形状精度、尺寸精度、位置精度。

此外,在加工过程中夹紧力与切削力之间力的波动效应产出耦合作用,引起残余应力的分布。

所以工件的装夹的工艺是引起零件变形不可忽视的一个重要原因。

1.2加工过程中刀具对工件的作用产生的变形加工过程中刀具对工件的作用产生的变形主要表现在两个方面首先是切削热,在加工过程中克服材料的弹性变形,塑性变形和刀具与工件之间的摩擦所做的功,大部分转化为切屑热造成各部位温度不均匀,使之产生变形。

其次是切削力,切削力不仅会引起零件的回弹变形而且还会因为切削力过大,超过零件的弹性极限会引起挤压变形。

同时在切削力的作用下容易产生振动,从而影响到加工精度。

此外刀具的几何角度以及切削用量的合理选择、走刀路径、机床的刚度以及零件的冷却等都会对精度产生影响。

2.如何提高薄壁零件的数控加工精度2.1改善零件结构的工艺性提高零件的刚性对于薄壁零件,增加工艺筋条以增强刚性,或者通过在型腔内加膜胎还可以通过填充石蜡、低熔点的合金等方法来增加零件的刚性,使之减少变形。

2.2优化装夹工艺方案不同的零件结构和加工方法对应不同的装夹工艺。

在已有的装夹工艺的基础上对其进行改进,优化设计是装夹工艺优化的基本方法。

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析1. 引言1.1 简介薄壁零件在机械加工领域中起着重要的作用,其加工难度和技术要求较高。

对薄壁零件的机械加工工艺进行深入分析和研究具有重要意义。

本文旨在探讨薄壁零件加工的相关问题,通过对薄壁零件的定义、加工难点以及机械加工工艺的分析,来探讨如何选择合适的加工方案,并对加工工艺进行优化,提高加工效率和产品质量。

在工艺优化的过程中,需要考虑到薄壁零件的特点和加工需求,不断完善工艺流程,优化加工参数,提高加工质量和生产效率。

本文还将讨论工艺优化的重要性以及未来研究方向,以期为薄壁零件的机械加工工艺提供一定的参考和借鉴。

1.2 研究背景薄壁零件在现代工业生产中得到了广泛应用,其轻量化、高强度和高性能的特点使其在航空航天、汽车制造、电子设备等领域发挥着重要作用。

由于薄壁零件的特殊性,其加工难度较大,容易出现变形、裂纹等质量问题,给生产制造带来了挑战。

通过深入分析薄壁零件的机械加工工艺,探讨加工中存在的难点和问题,并提出相应的加工方案和工艺优化措施,对于提高薄壁零件加工质量和效率具有重要意义。

薄壁零件加工的难点主要包括材料轻薄、刚度低、易变形等特点,导致加工过程中容易出现振动、共振、切削变形等问题。

针对这些问题,现有研究主要集中在加工参数优化、刀具选择、切削力控制等方面进行探讨,但仍存在一定的局限性。

有必要对薄壁零件的机械加工工艺进行进一步深入的研究和分析,以期提出更有效的解决方案,实现薄壁零件加工质量的提升和成本的降低。

2. 正文2.1 薄壁零件的定义薄壁零件是指在加工过程中其壁厚相对较薄的零件。

薄壁零件通常用于各种工业领域,包括航空航天、汽车制造、电子设备等。

由于其壁厚较薄,薄壁零件在机械加工过程中常常面临一些特殊的挑战和难点。

薄壁零件的定义可以从几个方面来说明。

薄壁零件的壁厚通常小于其最小尺寸的10%,这就要求在加工过程中需要特别注意避免壁厚过薄导致变形或破裂的问题。

薄壁零件的结构通常比较复杂,需要高精度的加工,以保证零件的质量和性能。

薄壁零件加工工艺方法分析

薄壁零件加工工艺方法分析

薄壁零件加工工艺方法分析什么是薄壁零件?薄壁零件是指壁厚相对较薄,外形也相对复杂,常见于汽车、电子、机械等领域的零件,如汽车车门、电子设备外壳等。

薄壁零件加工的难点薄壁零件加工的难点主要在于以下两个方面:1.零件壁厚薄:由于零件壁厚相对较薄,所以容易产生振动和翘曲等变形现象,而且易热变形,导致加工难度增加。

2.外形复杂:薄壁零件外形通常比较复杂,加工难度也大。

薄壁零件加工的常用方法单点加工法单点加工法是指通过刀具对薄壁零件进行加工的方法。

该方法适用于对平面零件和简单形状的薄壁零件进行加工。

常见的单点加工法包括:1.铣削:用铣刀对薄壁零件进行加工,可实现高速、高效、高精度的加工。

2.钻孔:用钻头对薄壁零件进行加工,也可加工一定程度的凸凹面。

3.车削:用刀具对薄壁零件进行加工,通常适用于对旋转体进行加工。

轧制加工法轧制加工法是指通过轧制的方式对薄壁零件进行加工。

该方法适用于对较大尺寸的薄壁零件进行加工,如汽车车身等。

常见的轧制加工法包括:1.深冲模:利用模具对薄壁零件进行加工,可加工多曲面、异形和复杂形状的零件。

2.拉伸模:利用模具对薄壁零件进行加工,适合加工尺寸大、平面面积较小的零件。

其他加工法除了上述两种方法外,还有一些其他的薄壁零件加工方法,如:1.冷却加工法:通过冷却液对薄壁零件进行加工,可减少热变形和振动。

2.激光加工法:通过激光对薄壁零件进行加工,可实现高精度、高效率的加工。

结论薄壁零件的加工难度比较大,但是通过一些常用的加工方法,如单点加工法和轧制加工法,以及一些其他的加工方法,如冷却加工法和激光加工法,就可以有效地解决加工难题,对薄壁零件进行高精度、高效率的加工。

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析薄壁零件是指其壁厚比较薄,通常小于等于1mm的零件。

由于壁厚薄,导致材料之间的连接薄弱,易受力变形和振动产生,因此在加工过程中需要格外注意,以避免加工不合格或产生质量问题。

本文将对薄壁零件的机械加工工艺进行分析。

1. 材料选择对于薄壁零件的机械加工,材料的选择是至关重要的一步。

一般来说,薄壁零件要求材料具有高强度、良好的韧性和刚度,并且要耐腐蚀、抗疲劳和抗热变形。

常用的材料包括不锈钢、铜、铝、钛、镍基合金等。

在选择材料时,还应注意材料的厚度,以确保在加工和组装时能有足够的强度和稳定性。

2. 设计与加工工艺的匹配在进行薄壁零件的设计时,需要考虑到加工工艺的限制,以避免造成加工难度和工艺问题。

具体而言,需要注意以下几个方面:(1) 避免长而狭窄的几何形状长而狭窄的几何形状会导致加工难度大,容易发生弯曲和变形等问题。

因此,在设计时应避免采用这种几何形状。

(2) 设计圆角和缺口圆角和缺口可以减少应力集中,降低变形和裂纹的风险。

因此,在设计时应尽可能添加这些元素。

(3) 避免切向切削和钻孔切向切削和钻孔会产生较大的横向力和挤压力,导致变形和振动。

因此,在加工时应尽量避免使用这些方式。

3. 先试后加工在对薄壁零件进行机械加工前,应先进行试验或模拟,以确保加工过程中不会发生变形或其他质量问题。

试验的方式可以是材料试验、构件试验或但部分试验等,以检验零件强度和可靠性。

4. 选用适当的加工技术在薄壁零件加工中,应选用适当的加工技术,包括切削、钻孔、冲压、锻造、焊接等。

在进行切削加工时,需注意切削参数的选择和加工速度的控制,以避免刃口和切削力对零件造成影响。

对于钻孔,应选择适当的钻头和工艺,并控制出钻孔后的质量问题。

冲压与锻造时,需要考虑加工次数、力度和质量要求。

采用焊接时,需注意焊接布局和焊缝质量。

5. 保证设备精度和稳定性在进行薄壁零件加工时,需要保证设备的精度和稳定性。

设备精度应符合加工要求,并保证设备的稳定性和工作效率,以确保加工零件尺寸精度和表面质量。

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析薄壁零件是指壁厚相对较薄的零件,通常壁厚小于3毫米。

由于薄壁零件的特殊性,其机械加工工艺需要特殊的处理方法,以下是对薄壁零件机械加工工艺的分析。

1. 加工前的准备:在进行薄壁零件的机械加工前,需要进行充分的准备工作。

要对薄壁零件的尺寸、形状和加工要求进行详细的了解和测量,确定加工方案。

要选择合适的材料以满足薄壁零件的强度和刚度要求。

还需要检查加工设备和刀具的状况,确保其正常工作。

2. 机床选择:在选择加工薄壁零件的机床时,需要考虑其承载能力和减振性能。

薄壁零件的加工对机床的稳定性有很高的要求,因此应选择具有较高刚性和较低振动的机床。

常用的机床有龙门铣床、数控机床等。

3. 夹紧方式:薄壁零件的夹紧方式也需要特别注意。

由于薄壁零件的刚度较低,夹紧力过大会导致变形或破坏,因此需要采用一些特殊的夹紧方法。

可以使用气体夹紧或真空吸盘夹紧来避免变形。

4. 工艺参数的选择:对于薄壁零件的机械加工,工艺参数的选择非常重要。

在确定切削速度、进给速度和切削深度时,需要综合考虑零件的材料、壁厚和加工要求等因素。

一般来说,应采用较小的切削深度和进给速度,以减小振动和变形的可能性。

5. 刀具选择:在加工薄壁零件时,刀具的选择也十分重要。

应优先选择刚度较高、刀片角度合适的刀具,以确保刀具与工件的接触面积尽可能小。

要定期对刀具进行检查和磨削,保持其良好的切削性能。

6. 切削方式:在薄壁零件的机械加工中,切削方式也需要特殊考虑。

应尽量采用切削速度高、进给速度小的方法,以减小振动和变形的风险。

避免使用过大切削力的方法,以减少对零件的变形影响。

7. 加工顺序:薄壁零件的加工顺序也需要合理安排。

一般来说,应从外表面向内部进行加工,逐渐减小夹持力度,以减小变形的可能性。

要合理选择加工路径,避免过长的刀具移动距离,减少振动和变形。

薄壁零件的机械加工工艺需要特别的谨慎和认真。

在加工前的准备、机床选择、夹紧方式、工艺参数的选择、刀具选择、切削方式和加工顺序等方面都需要特殊的考虑。

薄壁件的三种加工方法

薄壁件的三种加工方法

薄壁件的三种加工方法
薄壁件是指壁厚相对较薄的零件,通常用于汽车、电子、航空航天等工业领域。

由于其特殊的结构和加工要求,薄壁件的加工方法也有一些特殊之处。

本文将介绍三种常见的薄壁件加工方法。

一、拉伸法
拉伸法是一种常用的薄壁件加工方法,通过拉伸薄壁板材来改变其形状和尺寸。

该方法适用于形状简单、壁厚均匀的薄壁件加工。

首先,将薄壁板材固定在拉伸机上,然后施加拉力使其产生塑性变形,最终得到所需形状的薄壁件。

这种方法可以快速高效地加工薄壁件,但对板材的材质和加工工艺要求较高。

二、冲压法
冲压法是一种常见的薄壁件加工方法,适用于形状复杂、壁厚较薄的薄壁件加工。

冲压法利用冲压设备将金属板材加工成所需形状的薄壁件。

首先,将金属板材放置在冲压机上,然后通过冲压模具对板材进行冲击,使其产生塑性变形,最终得到所需形状的薄壁件。

冲压法具有加工速度快、精度高的优点,但对冲压设备和模具的要求较高。

三、焊接法
焊接法是一种常用的薄壁件加工方法,适用于薄壁件的连接和修补。

焊接法通过熔化和连接金属材料,将多个薄壁件组合成一个整体。

焊接法可以用于不同材质、不同厚度的薄壁件的连接,具有连接牢固、结构简单的优点。

常见的焊接方法包括电弧焊、气体保护焊、激光焊等。

焊接法的缺点是加工过程中会产生热变形和应力集中等问题,需要通过控制焊接参数和采取适当的焊接工艺来解决。

薄壁件的加工方法包括拉伸法、冲压法和焊接法。

不同的加工方法适用于不同形状、不同壁厚的薄壁件加工。

在实际应用中,需要根据具体的要求和条件选择合适的加工方法,以确保薄壁件的质量和性能。

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析薄壁零件是指在工程结构中壁厚很薄的零件,其壁厚一般小于3mm。

薄壁零件因其壁厚薄,加工难度大,所以在工艺上有着独特的要求。

本文将对薄壁零件的机械加工工艺进行分析,希望能够为相关行业提供参考。

一、薄壁零件的特点1. 壁厚薄:薄壁零件的壁厚一般小于3mm,有的甚至只有几毫米,这就要求在加工过程中必须考虑到其薄壁的性质,避免因加工引起的变形和破裂。

2. 结构复杂:由于薄壁零件在工程结构中常常承担比较复杂的功能,因此结构也相对复杂,这就对加工工艺提出了更高的要求。

3. 材质优质:为了保证薄壁零件的承载能力和使用寿命,通常采用高强度、优质的金属材料进行加工,如不锈钢、铝合金等。

4. 精度要求高:薄壁零件通常用于精密仪器、汽车零部件等领域,对其加工精度要求也很高,所以加工工艺更要精益求精。

二、薄壁零件的机械加工工艺1. 工艺规划:在进行薄壁零件的机械加工之前,必须进行详细的工艺规划和制定加工工艺流程。

根据零件的结构特点和加工要求,合理确定加工顺序、刀具选择、切削参数等,确保在加工过程中能够保持零件的尺寸、形状和表面质量。

2. 材料选择:针对不同的薄壁零件,需选择合适的材料进行加工。

常用的材料有铝合金、不锈钢、镁合金等,其机械性能和切削性能各不相同,需要根据实际情况进行选择。

3. 加工工艺控制:在进行薄壁零件的机械加工过程中,必须严格控制加工工艺。

尤其是在切削过程中要注重刀具的刀具形状和刃口状态、切削速度、进给量和切削深度等参数的合理选择和控制,避免因切削引起的变形和表面质量问题。

4. 刀具选择:薄壁零件的机械加工过程中,需要选择合适的刀具进行加工。

通常情况下,采用高硬度、高强度的硬质合金刀具或刻线刀具,以保证加工效率和加工质量。

5. 夹紧与支撑:薄壁零件在加工过程中要进行合理的夹紧和支撑,避免因切削引起的振动和变形问题,提高加工稳定性和精度。

6. 加工检测:在薄壁零件的机械加工过程中,需要进行合理的加工检测工序。

加工薄壁零件的方法浅析

加工薄壁零件的方法浅析

加工薄壁零件的方法浅析摘要:薄壁件具有很多优点,但加工上的变形控制,是一个长期以来困扰我们的难题,针对这种情况,我们有针对性的对薄壁件的加工方法、工装夹具的应用以及变形的控制等方面进行了总结、研究,以便于在生产中指导实践,保证相关产品的加工精度。

一选择和制定合理的工艺方案和路线薄壁零件的几何形状和技术要求各不相同,要根据零件的特点和要求选择合理的工艺方案,是保证薄壁零件加工质量的关键。

在加工过程中防止产生变形和保证产品精度要求,工序的设置、夹具的设计等均应以此为基础。

工艺规程在编制开始时,就要从零件的毛坯形状、余量大小、热处理方法等方面考虑零件加工过程中的变形。

薄壁零件的毛坯,加工前,都必须经过退火或正火处理,一些零件在粗加工时要经过调质或时效处理。

钢制薄壁零件毛坯在热处理过程中,会产生很大的变形,需要进行校正后才能进行后续的加工,对于精度要求较高的薄壁件,粗加工后需要进行调质或时效处理,进一步消除其内应力,稳定零件的尺寸精度,具有高的韧性和足够的刚度,防止在精加工时产生变形。

薄壁件的加工,粗加工和精加工分开进行,粗加工后进行热处理,对于一些高精度的薄壁件,在粗加工和精加工中间要增加半精加工等工序,首先保证基准的准确和统一,要反复对簿壁零件的内、外表面进行加工,能大大减小零件的变形。

在薄壁零件的加工过程中,加工余量的分配是否得当,将影响零件的加工质量。

对于薄壁零件,加工余量的分配,主要是粗加工和精加工之前的余量要留的适当。

同时为了保证零件的加工精度,精加工工序虽然余量很小,但一般仍要分几次走刀将其加工到最终尺寸。

在进行薄壁件加工过程中,一些精度要求很高的产品,要将车削和磨削相结合来进行薄壁件内、外径的加工。

二防止零件装夹时的变形薄壁零件在加工过程中,采用合理的工艺路线等工艺措施,是保证产品精度的重要保证,在薄壁件加工中另一个重要的环节就是零件的装夹。

零件加工前的合理装夹,是防止因装夹不当引起零件变形,保证薄壁件加工质量的一项重要措施。

浅谈薄壁套零件的加工

浅谈薄壁套零件的加工

浅谈薄壁套零件的加工薄壁零件的加工问题,一直是较难解决的,通过探讨薄壁类零件在加工中存在的易变形、零件尺寸及表面粗糙度不易保证等技术问题,对加工难点进行分析,给出了工艺路线和加工方案,通过优化、完善装夹方法,从而有效解决此类薄壁类零件的车削加工难题,为以后加工此类薄壁零件提供了经验借鉴。

标签:薄壁零件;变形;夹具薄壁零件应用越来越广范,它具有重量轻,节约材料,结构紧凑等特点,但薄壁零件刚性差,强度弱,装夹基准面小,加工过程中容易变形,不易保证加工质量和精度,因此如何正确的加工薄壁零件也是一个棘手的问题。

1 基本情况介绍该薄壁套零件,材料为45#钢,壁厚最薄2mm,薄壁套最大直径为Ф70mm,内孔粗糙度为0.8,同时内孔精度要求在0.021mm内;外圆要求在0.021mm内,且精度要求较高,零件左端面有端面圆弧,其形状及尺寸如图一所示:2 薄壁零件的工艺分析2.1 工艺难点影响该薄壁零件加工精度的主要因素主要有三方面的问题①易受力变形薄壁零件不易装夹,工件壁薄,在较大的夹紧力下,容易产生夹紧变形。

②易受热变形因工件壁薄,过大的切削热会使工件产生热变形,不易保证工件精度要求。

③易振动变形在高速切削过程中,工件易产生振动,从而影响工件的形位精度和表面粗糙度。

2.2 工艺方案过程零件初始的工艺方案为:①夹持毛坯料,钻孔,内外交叉车削薄壁内外圆和Ф80外圆保证精度。

②对零件切断,为保证总长,长度提前预留1mm 。

③为保证薄壁零件的形位精度,我们采用扇形软爪和开缝套筒对薄壁进行装夹。

④零件调头,切削端面保证总长。

⑤切削端面圆弧。

通过这种方案加工出的工件经过三坐标测量机的检测,零件薄壁外圆和内孔的圆度已经发生变化,为了保证工件的形位公差,我们变径向装夹为轴向装夹。

零件改后的方案为:①对零件薄壁进行粗精车选用Ф24的钻头钻深度为80的孔,用内孔刀粗车内孔留精加工余量,对于Ф30的端面孔可以直接用Ф24钻头钻孔,留余量为轴向装夹定位时使用。

薄壁零件加工方法论文

薄壁零件加工方法论文

薄壁零件的加工方法摘要:薄壁零件在工业部门得到了广泛的应用,但其刚性弱,加工中变形难以控制,通过传统的切削加工方法的改进以及数控补偿切削加工、高速切削加工和振动切削加工的应用,都能够很好的打到较好的加工精度要求。

关键词:薄壁零件传统切削加工数控补偿切削高速切削薄壁零件的特点薄零壁件具有质量轻、节约材料、结构紧凑等特点,在航空、汽车、机械等个工业部门得到了广泛的应用。

但薄壁零件其刚性差、强度弱,在加工中变形难以控制,同时还会产生切削振动,使零件的机械加工质量难以保证。

二、防变形装夹技术和装夹适当的装夹零件装夹可分成定位和夹紧。

定位使零件处于稳定状态,对平面来说应采3点定位。

在定位点一般要承受一定的夹紧力,并应具有一定的强度和刚性。

从定位稳定性与定位精度看,接触面是越小越好;而从夹紧力功能来看,接触面需要越大越好,可以用最小的单位面积压力来获得最大的摩擦力。

在精密加工中,是由夹紧机构和夹紧力大小的确定,都是以小的切削力为前提。

因此要仔细的分析零件的定位与夹紧机构,以及刀具对零件的施力情况,预算引起变形力的部位大小和作用方向。

如果径向上不受力是薄壁环形工件的最好加工状态。

在薄壁套筒件的加工中,夹紧点和变形量的关系,根据西德福尔卡特国际夹具技术公司关于夹紧点和变形量的测试表明;在同一夹紧条件下,如以3点夹紧的零件变形量为1,则均匀6点夹紧产生的变形量仅为3 点的1/16。

而12点的夹紧变形量几乎为0,可见均匀多点夹紧会大大减小零件的夹紧变形,即增加卡爪与零件的接触面积是减小夹紧变形量的重要方法。

这也是软爪卡盘和开缝套筒常用于薄壁套筒件加工的原因。

三、加工工艺的要求1、粗加工、精加工分开对于薄壁类零件,应该将各加工阶段分开进行。

粗、精加工分开,可以避免粗加工引起的夹紧力的弹性变形和切削热变形,消除由粗加工所造成的内应力、切削力、切削热、夹紧力对加工精度的影响,保持零件的精度。

另外,粗、精加工分开,机床设备也可得到合理的使用,即粗加工机床可以充分发挥其效率,精加工机床可长期保持机床的精度和维持使用寿命。

数控车床薄壁件加工技巧和方法

数控车床薄壁件加工技巧和方法

数控车床薄壁件加工技巧和方法一、概述薄壁件是指壁厚小于2mm的机械零件,具有重量轻、节省材料、结构紧凑等特点。

数控车床是现代加工制造业中应用广泛的设备,对于薄壁件的加工具有独特优势。

本文将重点介绍数控车床在薄壁件加工中的技巧和方法,以提高加工效率和产品质量。

二、材料选择与装夹方式1.材料选择:薄壁件常用的材料有铝合金、钛合金、不锈钢等,这些材料具有较好的塑性和切削性能。

在选择材料时,应充分考虑其物理性能和加工工艺性。

2.装夹方式:针对薄壁件易变形的特点,应采用合适的装夹方式,如真空吸附、专用夹具等,以保证工件在加工过程中保持稳定。

三、刀具选择与切削参数优化1.刀具选择:针对薄壁件的加工特点,应选用锋利、耐磨的刀具,如硬质合金刀具、涂层刀具等。

同时,刀具的几何参数对切削力、切削热等方面都有影响,应根据工件材料和加工要求进行合理选择。

2.切削参数优化:切削参数的合理选择对于薄壁件的加工至关重要。

应综合考虑切削深度、进给速度、切削速度等参数,以减小切削力、切削热对工件的影响,防止工件变形。

四、加工技巧1.轻切快走:在加工过程中,应采用轻切快走的加工方式,以减小切削力对工件的影响。

同时,合理使用切削液,降低切削温度。

2.分层加工:对于厚度较大的薄壁件,可以采用分层加工的方式,减小各层之间的切削力,避免工件变形。

3.工艺优化:在编制加工程序时,应充分考虑工件的形状、材料特性等因素,合理安排粗加工、半精加工和精加工的顺序,以提高加工效率和产品质量。

4.热处理:在加工过程中,可对工件进行适当的热处理,以提高其硬度和耐磨性。

同时,合理安排热处理工艺参数,防止工件变形或开裂。

5.检测与修正:在加工过程中,应定期检测工件的尺寸和形位公差,如有偏差应及时修正。

同时,对加工过程中出现的问题进行分析和总结,不断优化加工方法和工艺参数。

五、结论通过以上分析可知,数控车床在薄壁件加工中具有独特优势。

在实际生产中,应根据具体情况选择合适的材料、装夹方式、刀具和切削参数。

车床加工薄壁工件方法

车床加工薄壁工件方法

车床加工薄壁工件方法车床加工薄壁工件是一项具有一定难度和挑战性的工程任务,需要在制作过程中充分考虑工件的材料、几何形状以及切削条件等因素,以确保工件的加工质量和精度。

在本文中,我将介绍一种常用的车床加工薄壁工件的方法,并详细说明其中的关键步骤和注意事项。

车床加工薄壁工件的方法主要包括以下几个步骤:材料准备、工件夹紧、切削参数选择、切削策略设计、切削工具选择、车削操作步骤以及加工质量检验。

下面我将逐一介绍这些步骤。

首先是材料准备。

薄壁工件通常使用具有较高的强度和刚度的材料,如铝合金、钛合金等。

在选择材料时,需要根据工件的具体要求和使用环境,选用适当的材料。

另外,要根据工件的几何形状和尺寸,确定所需的原材料形状和尺寸,并对原材料进行切割和修整。

接下来是工件夹紧。

薄壁工件在车床上的加工过程中,需要使用适当的夹具将其稳定地固定在车床上。

夹具应具有足够的刚度和稳定性,以确保工件在切削过程中不会发生变形或脱离夹紧。

可以使用机械夹具、气动夹具等多种夹紧方式,具体选择根据工件的形状和尺寸而定。

然后是切削参数选择。

切削参数包括切削速度、进给量、切削深度等。

对于薄壁工件的加工,切削速度一般选择较低的值,以避免过大的切削力和切削温度造成工件的变形或损坏。

进给量和切削深度应根据工件的材料和几何形状,选择适当的数值,以充分保证切削效率和加工质量。

接下来是切削策略设计。

根据工件的几何形状和加工要求,设计合理的切削策略是确保工件加工质量的关键。

对于薄壁工件,一般采用多次轻微切削的方法,以避免一次性过大的切削力造成工件的变形。

可以通过合理安排切削路径和切削方向,控制切削力的大小和方向,以达到最优的切削效果。

然后是切削工具选择。

薄壁工件的加工通常需要选择具有较高硬度和强度的刀具,以保证切削质量和寿命。

常用的刀具有硬质合金刀具、刚性刀具等。

在选择刀具时,要根据工件的材料和几何形状,选择合适的刀具类型和规格,并进行刀具的合理刃磨和涂层处理,以提高切削效率和刀具寿命。

加工中心薄壁件的加工方法

加工中心薄壁件的加工方法

加工中心薄壁件的加工方法
加工中心薄壁件的加工方法有以下几个步骤:
1. 材料准备:选择合适的薄壁材料,常用的材料有铝合金、钢、不锈钢等。

材料的选择应根据零件的特点和要求确定。

2. 设计加工方案:根据零件的形状、尺寸和特殊要求,制定加工方案。

包括切削参数、切削工具的选择、加工顺序等。

3. 刀具选择:根据薄壁件的特点,选择合适的刀具。

薄壁件具有薄度大、刚度低等特点,需要选择钻头、铣刀等刀具来进行加工。

4. 加工设备设置:调整加工中心的各项参数,包括转速、进给速度、切削深度等。

要确保加工过程中切削负荷均匀,避免对薄壁件产生过大的力量。

5. 加工过程:根据加工方案进行加工工序。

在加工中尽量减少切削力对薄壁件的影响,采用合适的切削方式,如轻负荷切削、悬臂刀具等。

6. 加工质量控制:在加工过程中密切关注加工质量,如尺寸精度、表面质量等。

及时进行检测和调整,保证薄壁件的加工质量。

7. 表面处理:根据需要对薄壁件进行表面处理,如磨削、抛光等,以提高其表面光洁度和美观度。

需要注意的是,在加工过程中要注意保护薄壁件的表面,避免划伤和变形。

同时,加工中心薄壁件时应加强刀具和设备的维护,及时更换磨损的刀具,确保加工质量。

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析

薄壁零件的机械加工工艺分析在机械制造加工过程中,薄壁零件是一类机械加工工艺的难点。

其具有结构精细、形状复杂、壁厚薄等特点,而在加工过程中容易出现变形、翘曲和表面质量不良等问题,加工难度较大。

针对这些问题,需要进行全面分析和合理处理。

1. 薄壁零件的特点薄壁零件是指对称薄壁结构且壁厚小于零件直径的零件。

其具有结构精细,形状复杂,尺寸精度高,要求壁厚均匀,一般采用双面加工。

同时,由于其壁厚薄,容易出现变形、翘曲的现象,对加工设备要求严格,加工难度大,因此在进行薄壁零件加工时需要特别注意。

对于薄壁零件的机械加工工艺,需要选用适当的切削工具和加工方法,合理处理变形和翘曲问题。

常用的加工工艺如下:(1) 选择合适的加工方法为防止薄壁零件在加工过程中变形,应尽可能采用高温加工、低速加工来避免过硬的工具或高速切削,避免形成热疲劳和振动等现象。

一般采用割线式铣削、缩径技术、调整切削参数和切削力、减小表面靠刀量等加工方法,以保证加工质量。

为提高薄壁零件的加工质量,需要选用合适的刀具和磨具,以保证加工精度和表面质量。

在薄壁零件的加工中,一般使用不锈钢刀片、高速钢刀片或金刚石刀片等,切削刃要锋利,刀片要光滑,避免刀身过硬或影响加工效率。

(3) 加强加工设备的稳定性为防止薄壁零件在加工过程中变形、翘曲、抖动等现象,需要加强加工设备的稳定性,调整加工速度、切削力和落刀深度等参数,以保证加工设备的稳定性和减小变形的发生。

(4) 控制加工过程的温度为提高薄壁零件的加工质量,需要控制加工过程的温度,以避免过高或过低的温度对零件的影响。

一般采用水冷或喷水冷却器来降低温度,以达到保证加工质量的目的。

综上所述,对于薄壁零件的机械加工工艺分析,需要选择适当的加工方法和切削工具,加强对加工设备的稳定性,控制加工过程的温度,以保证加工质量和提高效率。

同时,还需要加强对加工过程中的变形和翘曲等问题的预处理和特殊控制,以达到更好的加工效果。

典型薄壁零件数控铣削加工工艺

典型薄壁零件数控铣削加工工艺

典型薄壁零件数控铣削加工工艺
随着数控技术的不断发展和普及,传统的机械加工方式已逐渐被数控加工所取代。


有复杂形状的零件加工越来越受到重视,薄壁零件的加工也成为数控铣削加工中的一个重
要领域。

本文将介绍几种常见的典型薄壁零件数控铣削加工工艺。

一、空间曲面薄壁零件的加工
1. 先导铣削法:先导铣削法是指在进行数控铣削之前,通过手工或其他加工方式,
先将工件的主要外形进行加工,以便在数控铣削中能够准确定位和定位,确保加工精度。

这种方法通常适用于工件的结构单一,不涉及过多曲面的薄壁零件。

2. 内壁铣削法:对于空间曲面薄壁零件的加工,往往会涉及到一些内壁的加工。


壁铣削法是指利用特殊形状的刀具进行内壁加工,通常采用搅拌刀或球头刀进行加工。


种方法相比传统的刀具在内壁加工过程中更容易掌握,提高加工质量和效率。

3. 全固定装夹法:对于薄壁零件的加工来说,固定装夹是一个非常关键的环节,直
接关系到加工精度和质量。

全固定装夹法是指在加工过程中,将工件的切削力用于装夹上,使其实现稳定加工。

这种方法适用于一些形状复杂、精度要求高的薄壁零件。

典型薄壁零件的数控铣削加工工艺有很多种,根据不同的零件形状和要求,选择合适
的加工工艺能够提高加工效率和质量,满足工程的需求。

随着数控技术的不断发展和应用,相信在将来的发展中,还会出现更多的创新加工工艺,以适应各种需要。

薄壁零件加工过程浅析

薄壁零件加工过程浅析
1,薄壁零件一般是不能卡抓直接去夹持:这样我们就必须考虑用一种间接夹持的方法来加工这个零件即做一个工装,工装的做法围绕着减少x轴向力的原则下采用z向固定的方法,可以通过来夹持一中间物来把所要加工的零件借助于配合和压板使之z向固定。
2,薄壁两件一般的毛胚件的加工余量不是很大,这类零件很大程度上都是镁铝材料或是这类的合金铸件,铸造的不均匀和加工余量的不大也给加工这类零件带来了诸多的的困难,由于铸件的不匀称装夹时就不可能考虑三爪自定心卡盘,必须考虑四爪来找正来加工此类工件
2薄壁两件一般的毛胚件的加工余量不是很大这类零件很大程度上都是镁铝材料或是这类的合金铸件铸造的不均匀和加工余量的不大也给加工这类零件带来了诸多的的困难由于铸件的不匀称装夹时就不可能考虑三爪自定心卡盘必须考虑四爪
薄壁零件加工过程浅析
薄壁零件在加工过程中容易产生变形而达不到所要求得加工精度,要改变这种现状可以从以下几点考虑:
3,进给速度和切削量,转速、精加工余量的选取:进给速度和切削量,转速的选取都不应该选择太高,因为固定的力主要集中在z向,过高会产生震动和工件变形和光洁度不好,精加工余量的选取根据变形量大小和光洁度要求做出综合的考虑。

技师论文薄壁零件加工

技师论文薄壁零件加工

浅谈薄壁零件的加工方法单位山东技师学院姓名郭尚超考评职称车工技师浅谈薄壁零件的加工方法摘要:薄壁零件已日益广泛地应用在各工业部门,但在薄壁零件的加工中会遇到比较棘手的问题,原因是薄壁零件刚性差,强度弱,在加工中极容易变形,使零件的形位误差增大,不易保证零件的加工质量。

高精度、薄壁腔体类零件金属切除量大、工件壁薄、刚性低,加工中需要解决的主要问题是控制和减小变形,在此基础上,希望尽可能提高切削效率、缩短加工周期。

其加工工艺需要从工件装夹、工序安排、切削用量参数、刀具选用等多方面进行优化。

关键词薄壁零件精度加工方法一.影响薄壁零件加工精度的主要因素影响薄壁零件加工精度的因素有很多,但归纳起来主要有以下三个方面:1.工件的尺寸精度和形状精度。

易受力变形。

因壁薄,在夹紧力的作用下,容易产生变形,从而影响2. 易受热变形。

因工件较薄,切削热会引起工件热变形,使工件尺寸难以控制。

3. 易振动变形。

在切削力(特别是径向切削力)的作用下,容易产生振动和变形,影响工件的尺寸精度和形状,位置精度和表面粗糙度。

二.减少薄壁工件变形的方法主要是减少切削力和切削热,改善或改变夹紧力对零件的作用。

1. 在切削过程中,切削力时必然要产生的,但它的大小时可以改变的,影响切削力的大小的因素很多,主要是被加工件材料、刀具、切削用量和冷却润滑等几个方面。

2. 减少切削力的方法。

在薄壁零件的切削中,合理的刀具几何角度对车削时切削力的大小是至关重要的。

刀具前角大小,决定着切削变形与刀具前角的锋利程度。

前角大,切削变形和摩擦力减小,切削力减小,所以前角取5-20°,刀具的后角大,,摩擦力小,切削力相应减小,所以后角取4-12°。

主偏角在30-90°范围内,车薄壁零件的内外圆时,取较大的主偏角,副偏角取8-15°。

三.合理地选择切削用量降低切削力切削力的大小与切削用量密切相关,背吃刀量和进给量同时增大,切削力增大,变形也大,对车削薄壁零件极为不利。

浅谈薄壁零件的加工方法

浅谈薄壁零件的加工方法

受 力 变 形 为 YI=CtI/K 系 统 ,y2=Ct2/K系 统 。其 中 K系 统 为 工 艺 系统 在 y方
向的 刚 度 ,
△工 件 =yl—y2=C(tl—t2)/K 系统 ,
由于 △毛 坯 =tl—t2,所 以 △ 工 件 =CA 毛 坯/K系 统 ,令 e=C/K 系 统 ,则
向切 深 对 切 削 力 的影 响 最 大 ,其 次 是每 齿 进 给 量 、径 向切 深 ,切 削速 度 影 响
最小。不同的铣 削方式对切削力的大 小也有一定的影响。
三、工艺系统 的变形和振动
在机械加 工过程 中,由于切削力、夹紧 力、重力 、惯性 力、传 动力等的作
用 ,会引起工艺系统的变 形,同时 ,由于切削 力受力点位置变化 、毛坯 加工
工 艺 系 统 动 误 差 中 的 受 热 变 形 主 要 由 切 削 热 、摩 擦 热 等 引 起 ,为 了减
少 工 件 和 刀 具 的热 变 形 ,应 合 理 选 择 刀 具 的 几 何 参 数 ,合理 选 用 冷 却 液 充
分 冷 却 。
因安装 误差使 刀具在实际加 工时产生 0.01mm~0.02mm左 右摆动 ,刀
余 量 变 化 和材 料 硬 度 变 化 ,会 引 起 工 艺 系 统变 形 的变 化 。 工 艺 系 统 的 变 形
及其变形的变化 都会产生工件的尺寸误差和几何形状误差。由切削原理可 知 ,径 向 切 削 分 力 Fy和 切 削深 度 t成 正 比 ,即 Fy=Ct,由 此 引 起 的 工 艺 系 统
一 、 前 言 如下图 l,此 类薄壁 电极 零件在模 具制造过程 中很常见 ,如数码类 、手 机类 、机壳类等产品模具的加工尤为重要,薄壁 电极在模具行业也称骨位 。 电极材料通常使用铜和铜合金。此类薄壁 电极零件结构简洁、壁 高而薄 、加 工余量大 、而铜和铜合金的强度 和硬度较低 ,线性膨胀系数大 ,故加工工艺 性 差 。在 切 削 力 、切 削热 、切 削 振 颤 等 因 素影 响下 ,易 发 生 加 工 变 形 ,不 易控 制 加 工精 度 和 提 高 加 工 效 率 。此 工件 要求 的精 度 厚 度变 化 小于 0.02ram,如 果采用传统 的加工方法和工艺不能控制工件的变形和达 不到精度要求 。下 图 1所示一款 电器 上的常见薄壁 电极 ,工件最 窄处 W=O.6,而此 部位却高 H=15即宽 比高=O.6:15。 因此 ,研 究铜合金薄壁零件加工技术具有较大 的 现 实 意 义。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈薄壁零件的加工方法
作者:陈贵荣
来源:《科学与财富》2015年第19期
摘要:模具制造经常会遇到使用数控铣或加工中心加工薄壁零件(铜合金的电极),针对薄壁类刚性差、加工工艺性差、易发生加工变形和切削振动等情况,本文通过改进薄壁零件加工方法和切削工艺,合理地选择刀具,优化编程等策略,来保证薄壁零件加工后的变形和精度达到要求。

关键词:薄壁工件加工变形加工方法
一、前言
如下图1,此类薄壁电极零件在模具制造过程中很常见,如数码类、手机类、机壳类等产品模具的加工尤为重要,薄壁电极在模具行业也称骨位。

电极材料通常使用铜和铜合金。

此类薄壁电极零件结构简洁、壁高而薄、加工余量大、而铜和铜合金的强度和硬度较低,线性膨胀系数大,故加工工艺性差。

在切削力、切削热、切削振颤等因素影响下,易发生加工变形,不易控制加工精度和提高加工效率。

此工件要求的精度厚度变化小于0.02mm,如果采用传统的加工方法和工艺不能控制工件的变形和达不到精度要求。

下图1所示一款电器上的常见薄壁电极,工件最窄处W=0.6,而此部位却高H=15 即宽比高=0.6:15。

因此,研究铜合金薄壁零件加工技术具有较大的现实意义。

图1
二、工艺分析
机械加工中影响加工质量的几个因素是:
1、刀具的描摹
刀具切削刃和后刀面在工件表面的描摹及后刀面和弹性恢复的切削表面相互摩擦,二者都影响到工件表面的精度和变形。

2、表层的塑性变形
由于在切屑形成过程中撕裂很大,塑性变形影响到工件表面的粗糙度精度。

而影响塑性变形的因素有:
(1)切削速度对塑性变形和表面粗造度影响较大,在低速切削时塑性变形小,表面粗造度也较低;高速切削时,由于切削速度超过了塑性变形的速度,所以可以具有低的表面粗糙度。

(2)进给量和背吃刀量的变化造成切削力的变化导致塑性变形层的深度和塑性变形的程度受到影响。

(3)刀具的几何形状影响到切削力从而影响到塑性变形的深度和塑性变形的程度。

(4)工艺参数和加工方式对侧铣薄壁件切削力的影响,实践结果表明轴向切深对切削力的影响最大,其次是每齿进给量、径向切深,切削速度影响最小。

不同的铣削方式对切削力的大小也有一定的影响。

三、工艺系统的变形和振动
在机械加工过程中,由于切削力、夹紧力、重力、惯性力、传动力等的作用,会引起工艺系统的变形,同时,由于切削力受力点位置变化、毛坯加工余量变化和材料硬度变化,会引起工艺系统变形的变化。

工艺系统的变形及其变形的变化都会产生工件的尺寸误差和几何形状误差。

由切削原理可知,径向切削分力Fy和切削深度t成正比,即Fy=Ct,由此引起的工艺系统受力变形为y1=Ct1/K系统,y2=Ct2/K系统,其中K系统为工艺系统在y方向的刚度,
Δ工件= y1- y2=C(t1- t2)/K系统,
由于Δ毛坯=t1- t2,所以Δ工件=CΔ毛坯/K系统,令ε=C/K系统,则有Δ工件=εΔ毛坯,该式表明了加工误差与毛坯误差之间的比例关系,说明了误差复映规律,其中ε为误差复映系数。

当加工过程分成几次走刀进行时,每次走刀的复映系数为ε1、ε2、ε3……,总的复映系数ε总=ε1ε2ε3……。

由于复映系数ε总小于1,经过几次走刀后,ε可以降到很小的数值。

通过合理选用切削用量和刀具几何参数,可尽量减小切削力及切削力的变化所引起的变形。

为尽力减少误差复映规律所造成的变形,应合理分配加工余量,分多工序多次走刀加工,把该形式的变形控制到最小。

工艺系统动误差中的受热变形主要由切削热、摩擦热等引起,为了减少工件和刀具的热变形,应合理选择刀具的几何参数,合理选用冷却液充分冷却。

因安装误差使刀具在实际加工时产生0.01mm~0.02mm左右摆动,刀具高速旋转时会产生离心力和振动,工艺系统的振动同样也会影响塑性变形和表面粗糙度。

四、工艺措施
1、选用合理的切削用量
(1)薄壁零件铣削时变形是多方面的。

装夹工件时的夹紧力,切削工件时的切削力,工件阻碍刀具切削时产生的弹性变形和塑性变形,使切削区温度升高而产生热变形。

(2)切削力的大小与切削用量密切相关。

从《金属切削原理》中可以知道,背吃刀量ap,进给量f,切削速度V是切削用量的三个要素。

1)背吃刀量和进给量同时增大,切削力也增大,变形也大,对铣削薄壁零件极为不利。

2)减少背吃刀量,增大进给量,切削力虽然有所下降,但工件表面残余面积增大,表面粗糙度值大,使强度不好的薄壁零件的内应力增加,同样也会导致零件的变形。

所以,粗加工时,背吃刀量和进给量可以取大些;精加工时,背吃刀量一般在0.1-
0.3mm,进给量一般在0.02-0.04mm/r,甚至更小,主轴转速12000-24000r/min,精铣时用尽量高的切削速度。

合理选用三要素就能减少切削力,从而减少变形。

2、合理地选择及改进刀具,减少刀具的描摹作用
(1)刀具材料的选择。

切削有色金属时,切削温度较低容易形成崩碎切屑,切削力集中在刀刃附近,因此刀具需要较好的抗弯强度和韧性,选用进口的钨钢刀立铣刀。

(2)刀具角度的选择。

当刀具材料选定后,刀具的几何参数就是主要因素。

工件材料的强度和塑性变形关系着刀具受力情况,切削铜及铜合金等强度低、塑性好的材料时,前角可选大些,刃口锋利切屑易于流出,变形和摩擦力就会减少;精加工时切削厚度相对少,切削力较小,可选用较大的后角。

粗加工反之亦然。

精加工选用大螺旋角度55度的立铣刀。

(3)刀具的改进。

由于铣削力的作用,工件的侧壁会产生“让刀”变形,为防止刀具因“让刀”变形对侧壁的干涉。

因此可以选用或刃磨特殊形状铣刀。

刃磨前如图2,将刀具单边刃磨0.1的余量使有效切削刃变短为1-2mm,刃磨后图3,以降低刀具对工件的变形影响和干扰。

图2
图3
3、设计正确的加工工艺和加工方法
薄壁电极加工整体思路:先粗加工→半精加工顶曲面→精加工顶曲面精加工侧壁和平面→半精加工薄壁→精加工薄壁。

具体分析如下:
(1)粗加工。

粗加工是为提高生产效率,迅速去除多余材料,薄壁部位与其他部位一起粗加工。

关键薄壁部位宽处要留够多余量防止粗加工时因速度快、吃刀量大造成薄壁部位变形,粗加工方式应采用环绕走刀式不采用平行走刀式,一次走刀由四周向中间螺旋扩展至侧壁,实际加工表明该方法较为有效的降低了刀具接近薄壁部位时产生撞击力造成薄壁部位变形。

同时刀具要求有足够的强度。

(2)半精加工顶曲面。

充分有效利用零件未加工部分作为支撑的刀具路径优化方案可以有效的解决薄壁半精加工顶曲面时,受到刀具切削时产生的径向切削力造成的工件变形。

同时考虑到粗加工刀间距和切削深度较大,曲面残料过多,半精加工是为了去除过多的残料,使精加工余量均匀,刀具选择应考虑承受粗加工所留残料而不至断刀,且不会留下过多的残料而给精加工造成困难。

曲面半精加工,选择 6mm球刀。

(3)精加工顶曲面。

精加工需达到要求的尺寸精度和表面精度,同时兼顾效率,选择刀具时要考虑刀具强度及是否会留有残料或过切。

(4)精加工侧壁和平面。

先精加工侧壁有效利用零件未加工部分作为支撑的刀具路径优化方案可以有效的解决薄壁在宽度方向上所产生的侧向切削力造成工件变形甚至弯曲。

(5)半精加工和半精加工薄壁。

精加工侧壁时有效利用零件未加工部分作为支撑,加工分层铣削环绕外型走刀式,让应力均匀释放。

精加工需达到尺寸精度和表面精度的要求,同时兼顾效率。

通过多次加工实验得到每层切削深度可达到0.1-0.2mm,进给量一般在0.02-
0.04mm/r,甚至更小,主轴转速12000-24000r/min,曲面上有R3mm的圆角处,选择 6mm刃磨后的球刀。

4、设计增加零件的刚性和改进加工后的变形
补充说明:下面部分是用于找正电极与模具位置,不用于放电,中间部分是用于加强上面部分也不用于放电,上面部分才是真正电极最难加工的即容易变形部位。

通过在电极底部增加一块75*35*25大小的45#钢料如图4所示,采用虎钳夹住钢料处。

从而有效增加零件的刚性同时改进加工后残余应力引起的变形。

图4
1-电极主体 2-螺钉 3-加强快45#钢料
五、结论
实践证明针对铜及铜合金薄壁类零件通过改进加工方法和切削工艺,合理地选择刀具,优化了编程策略,完全可以加工薄壁零件同时还保证加工后的不变形和精度达到要求,也可用于铝及铝合金的薄壁类零件加工。

六、致谢
在论文写作过程中,得到了国防高技老师和我系系主任孙名楷的悉心指导,同时也得到了单位很多同事的大力支持,在此表示诚挚的感谢。

参考文献
(1)王志厚.薄壁零件加工中防止变形的措施[J].宝成技术,1991(2):20—37.
(2)《机械加工工艺设计手册》北京:航空工业出版社 1987。

相关文档
最新文档