学习近世代数的心得

学习近世代数的心得
学习近世代数的心得

学习近世代数的心得

我一直以为在大学里面,我能学到的外语应该只有英语才对的。但是上大三大的这个学期竟然有个近世代数出现,而且还是全英版的数学。我感觉天都掉下来了,原本以为可以逃脱掉学习英语的命运了,竟然还要继续学习英语的路。刚刚考完六级,都不知道能过六级不,怎么还要继续学习全英版数学呢。

我刚开始打开这本近世代数的书时,我的眼睛都大了,这里面的单词有很多跟以前学习的英语很不一样的。可能这是数学的专业名词吧!第一节课的时候院长就跟我们说了,有一次他拿这本全英版的近世代数给外语院的老师翻译的时候,外语院的老师不知道怎么翻译,因为用常规的英文翻译,怎么翻译成中文还是有点不怎么通顺。我听后,我的心就沉了一半,那我该怎么学这个全英版的近世代数呢?在上课前,我认认真真的看了一遍这本书的第一章节,刚开始读的时候还是觉得很没感觉的,因为里面的单词只有一部分能看懂的,而不懂的单词只能查字典,一个个把中文抄下来,再一个个拼成一个句子。而这一次的预习花了很长时间,可能是因为很久没学英语了吧,我大一就考过了英语四级,接着就很少看英语有关的书籍了。我真的后悔极了,怎么不好好学习好英语。如果以前学好英语的话,现在学习全英版近世代数就不会那么痛苦了。

上第一节课时,院长很耐心的解答我心里面的疑问了。上课的时候院长详细的介绍了近世代数的历史和发展。每一个单词都认认真真的翻译给我们听,每一个句子都详细的讲解了一遍。还向我们介绍几本参考书,如果有什么你不懂的可以查查参考书,那样学习近世代数就不会那么困难了。上课认认真真的听老师的讲解,把老师所讲的每一个知识点都详细记录下来。可能是全英语的缘故吧,读起来有些困难。我就去图书馆借了几本有关于近世代数的资料书,又在网上找了一些资料和习题看一下。刚开始以为我真的学不好的近世代数,上课也不怎么能听懂的近世代数,我竟然可以读懂了很多,老师布置的作业题也会做了。我感觉学习近世代数没有想象中的那么困难,可能是因为我找到了学习近世代数的方法了吧。

近世代数主要是讲解集合、映射、代数运算、结合律…,有很多知识点是跟高中的数学相似的。我在学习近世代数时,都会常常联系到联系到以前学习的数学知识,那样学习起近世代数就感觉不会那么困难了,学习上慢慢有了起色。就像老师常说的那样,努力总会得到回报的。其实学习大学中能学习到全英班的近世代数,还是挺幸运的,听别的同学说,有很多大学数学系的都没有开全英近世代数的课程。学习近世代数就是学习近世代数中的精华,这是前人,那些伟大的数学家日日夜夜努力总结论证的精髓,我能学习到他们的成果,我真的感到无比荣幸,因为能在这课堂上安逸的听老师讲解,那该是多美的一件事。我学习近世代数,学习并不是一个麻木的学习,而是预习,听老师讲解,解疑惑,多看资料。从近世代数中学习到前人的思维方式,更多的是在不断学习中慢慢懂得了,学会自立解答,学会了更多的思考方式和做事的方式。就像做近世代数的习题是,解题的方法总是有多样的,可能在不同的思考角度,你就会得出不一样的结果。也可能是看错了一个字或许是看错了变量,你就会一错再错,满盘皆输,这就是学习近世代数的魅力所在。学习近世代数是一件很美好的事情,因为你可以从近世代数中吸取到很多不同思考的方式,更可以学习到数学的发展历史,懂得了数学发展的崎岖不平。因为我们毕业后就要身为数学老师了,我们更要从现在的学习中吸取更多数学的精华,那样我们以后可能更好的传授给学生更多数学知识和数

学思维。想想就知道学习数学是一件很可能很多人都会觉得学习数学尤其是近世代数是一件很烦躁和困难的事情,但是我觉得学习近世代数是一件很有挑战而富有活力的一件事。我相信我在学习近世代数会取得更多意想不到的成果的,因为我会更加努力的学习它。

近世代数_杨子胥_第二版课后习题答案

近世代数题解 第一章基本概念 §1. 1 1. 4. 5. 近世代数题解§1. 2 2. 3. 近世代数题解§1. 3 1. 解 1)与3)是代数运算,2)不是代数运算. 2. 解这实际上就是M中n个元素可重复的全排列数n n. 3. 解例如AοB=E与AοB=AB—A—B. 4. 5. 近世代数题解§1. 4 1. 2. 3.解 1)略 2)例如规定 4.

近世代数题解§1. 5 1. 解 1)是自同态映射,但非满射和单射;2)是双射,但不是自同构映射3)是自同态映射,但非满射和单射.4)是双射,但非自同构映射. 2.略 3. 4. 5. §1. 6 1. 2. 解 1)不是.因为不满足对称性;2)不是.因为不满足传递性; 3)是等价关系;4)是等价关系. 3. 解 3)每个元素是一个类,4)整个实数集作成一个类. 4. 则易知此关系不满足反身性,但是却满足对称性和传递性(若把Q换成实数域的任一子域均可;实际上这个例子只有数0和0符合关系,此外任何二有理数都不符合关系).5. 6.证 1)略2) 7. 8.

9. 10. 11. 12. 第二章群 §2. 1 群的定义和初步性质 一、主要内容 1.群和半群的定义和例子特别是一船线性群、n次单位根群和四元数群等例子. 2.群的初步性质 1)群中左单位元也是右单位元且惟一; 2)群中每个元素的左逆元也是右逆元且惟一: 3)半群G是群?方程a x=b与y a=b在G中有解(?a ,b∈G). 4)有限半群作成群?两个消去律成立. 二、释疑解难 有资料指出,群有50多种不同的定义方法.但最常用的有以下四种: 1)教材中的定义方法.简称为“左左定义法”; 2)把左单位元换成有单位元,把左逆元换成右逆元(其余不动〕.简称为“右右定义法”; 3)不分左右,把单位元和逆元都规定成双边的,此简称为“双边定义法”; 4)半群G再加上方程a x=b与y a=b在G中有解(?a ,b∈G).此简称为“方程定义法”. “左左定义法”与“右右定义法”无甚差异,不再多说.“双边定\义法”缺点是定义中条件不完全独立,而且在验算一个群的实例时必须验证单位元和逆元都是双边的,多了一层手续

近世代数初步_习题解答(抽象代数)

《近世代数初步》 习题答案与解答

引 论 章 一、知识摘要 1.A 是非空集合,集合积A A b a b a A A 到},:),{(∈=?的一个映射就称为A 的一个代数运算(二元运算或运算). 2. 设G 非空集合,在G 上有一个代数运算,称作乘法,即对G 中任意两个元素a,b,有唯一确定的元素c 与之对应,c 称为a 与b 的积,记为c=ab.若这个运算还满足:,,,G c b a ∈? (1),ba ab = (2)),()(bc a c ab = (3)存在单位元e 满足,a ae ea == (4)存在,'G a ∈使得.''e a a aa =='a 称为a 的一个逆元素. 则称G 为一个交换群. (i)若G 只满足上述第2、3和4条,则称G 为一个群. (ii) 若G 只满足上述第2和3条,则称G 为一个幺半群. (iii) 若G 只满足上述第2条,则称G 为一个半群. 3.设F 是至少包含两个元素的集合,在F 上有一个代数运算,称作加法,即对F 中任意两个元素a,b,有唯一确定的元素c 与之对应,c 称为a 与b 的和,记为c=a+b.在F 上有另一个代数运算,称作乘法,即对F 中任意两个元素a,b,有唯一确定的元素d 与之对应,d 称为a 与b 的积,记为d=ab.若这两个运算还满足: I. F 对加法构成交换群. II. F*=F\{0}对乘法构成交换群. III..)(,,,ac ab c b a F c b a +=+∈? 就称F 为一个域. 4.设R 是至少包含两个元素的集合,在R 上有加法和乘法运算且满足: I. R 对加法构成交换群(加法单位元称为零元,记为0;加法单位逆元称为负元). II. R *=R\{0}对乘法构成幺半群(乘法单位元常记为1). III. .)(,)(,,,ca ba a c b ac ab c b a R c b a +=++=+∈? 就称R 为一个环. 5.群G 中满足消去律:.,,,c b ca ba c b ac ab G c b a =?==?=∈?且 6.R 是环,),0(00,,0,==≠∈≠∈ba ab b R b a R a 或且若有则称a 是R 中的一个左(右)零因子. 7.广义结合律:半群S 中任意n 个元a 1,a 2,…,a n 的乘积a 1a 2…a n 在次序不变的情况下可以将它们任意结合. 8.群G 中的任意元素a 及任意正整数n,定义: 321个 n n a aa a ...=,43421个 n n a a a a e a 1 110...,----==. 则由广义结合律知,,,Z n m G a ∈?∈?有 .)(,)(,1m m mn n m n m n m a a a a a a a --+=== (在加法群中可写出相应的形式.)

近世代数第二章答案分解

近世代数第二章群论答案 §1.群的定义 1.全体整数的集合对于普通减法来说是不是一个群? 解:不是,因为普通减法不是适合结合律。 例如 () 321110 --=-= --=-=() 321312 ()() --≠-- 321321 2.举一个有两个元的群的例。 解:令G=,e a {},G的乘法由下表给出 首先,容易验证,这个代数运算满足结合律 (1) ()(),, = ∈ x y z x y z x y z G 因为,由于ea ae a ==,若是元素e在(1)中出现,那么(1)成立。(参考第一章,§4,习题3。)若是e不在(1)中出现,那么有 ()aa a ea a == a aa ae a ==() 而(1)仍成立。 其次,G有左单位元,就是e;e有左逆元,就是e,a有左逆元,就是a。所以G是一个群。 读者可以考虑一下,以上运算表是如何作出的。 3.证明,我们也可以用条件Ⅰ,Ⅱ以及下面的条件IV',V'来做群的

定义: IV ' G 里至少存在一个右逆元1a -,能让 =ae a 对于G 的任何元a 都成立; V ' 对于G 的每一个元a ,在G 里至少存在一个右逆元1a -,能让 1=aa e - 解:这个题的证法完全平行于本节中关于可以用条件I,II,IV,V 来做群定义的证明,但读者一定要自己写一下。 §2. 单位元、逆元、消去律 1. 若群G 的每一个元都适合方程2=x e ,那么G 是交换群。 解:令a 和b 是G 的任意两个元。由题设 ()()()2 ==ab ab ab e 另一方面 ()()22====ab ba ab a aea a e 于是有()()()()=ab ab ab ba 。利用消去律,得 =ab ba 所以G 是交换群。 2. 在一个有限群里,阶大于2的元的个数一定是偶数。 解:令G 是一个有限群。设G 有元a 而a 的阶>2n 。 考察1a -。我们有 ()1=n n a a e - ()()11==n n e a a e -- 设正整数

近世代数知识点教学文稿

近世代数知识点

近世代数知识点 第一章基本概念 1.1集合 ●A的全体子集所组成的集合称为A的幂集,记作2A. 1.2映射 ●证明映射: ●单射:元不同,像不同;或者像相同,元相同。 ●满射:像集合中每个元素都有原像。 Remark:映射满足结合律! 1.3卡氏积与代数运算 ●{(a,b)∣a∈A,b∈B }此集合称为卡氏积,其中(a,b)为有序元素对,所以一般 A*B不等于B*A. ●集合到自身的代数运算称为此集合上的代数运算。 1.4等价关系与集合的分类 ★等价关系:1 自反性:?a∈A,a a; 2 对称性:?a,b∈R, a b=>b a∈R; 3 传递性:?a,b,c∈R,a b,b c =>a c∈R. Remark:对称+传递≠自反 ★一个等价关系决定一个分类,反之,一个分类决定一个等价关系 ★不同的等价类互不相交,一般等价类用[a]表示。 第二章群 2.1 半群 1.半群=代数运算+结合律,记作(S,) Remark: i.证明代数运算:任意选取集合中的两个元素,让两元素间做此运算,观察运算后的结果是否还在定义的集合中。 ii.若半群中的元素可交换,即a b=b a,则称为交换半群。 2.单位元 i.半群中左右单位元不一定都存在,即使存在也可能不唯一,甚至可能都 不存在;若都存在,则左单位元=右单位元=单位元。 ii.单位元具有唯一性,且在交换半群中:左单位元=右单位元=单位元。 iii.在有单位元的半群中,规定a0=e. 3.逆元

i.在有单位元e的半群中,存在b,使得ab=ba=e,则a为可逆元。 ii.逆元具有唯一性,记作a-1且在交换半群中,左逆元=右逆元=可逆元。 iii.若一个元素a既有左逆元a1,又有右逆元a2,则a1=a2,且为a的逆元。 4.子半群 i.设S是半群,≠T S,若T对S的运算做成半群,则T为S的一个 子半群 ii.T是S的子半群a,b T,有ab T 2.2 群 1.群=半群+单位元+逆元=代数运算+结合律+单位元+逆元 Remark:i. 若代数运算满足交换律,则称为交换群或Abel群. ii. 加群=代数运算为加法+交换群 iii.单位根群Um={m=1},数域P上全体n阶可逆(满秩)矩 阵集合GL(n,P),数域P上全体n阶的行列式为1的矩阵集合 SL(n,p). 2. 群=代数运算+结合律+左(右)单位元+左(右)逆元 =代数运算+结合律+单位元+逆元 =代数运算+结合律+?a,b G,ax=b,ya=b有解 3. 群的性质 i. 群满足左右消去律 ii.设G是群,则?a,b G,ax=b,ya=b在G中有唯一解 iii.e是G单位元? e2=e iv.若G是有限半群,满足左右消去律,则G是一个群 4. 群的阶 群G的阶,即群G中的元素个数,用表示。若为无限群,则=。 Remark:i.克莱因四元群是一个Abel群 ii.四阶群只有克莱因四元群和模4的剩余类群 2.3元素的阶

自考《数学教育》专业-近世代数习题指导

自考《数学教育》专业-近世代数习题指导

自考《近世代数》练习1及答案 一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分) 1、设A 、B 、D 都是非空集合,则B A ?到D 的每个映射都叫作二元运算。 ( ) 2、设A 与B 都是非空集合,那么{}B A x x B A ∈∈=?x 且( ) 3、如果循环群()a G =中生成元a 的阶是无限的,则G 与整数加群同构。 ( ) 4、只要f 是A 到A 的一一映射,那么必有唯一的逆映射1-f 。( ) 5、如果群G 的子群H 是循环群,那么G 也是循环群。 ( ) 6、群G 的子群H 是不变子群的充要条件为H Hg g H h G g ?∈?∈?-1;,。 ( ) 7、如果环R 的阶2≥,那么R 的单位元01≠。 ( ) 8、若环R 满足左消去律,那么R 必定没有右零因子。 ( ) 9、)(x F 中满足条件0)(=αp 的多项式叫做元α在域F 上的极小多项式。 ( ) 10、若域E 的特征是无限大,那么E 含有一个与()p Z 同构的子域,这里Z 是整数环,()p 是由素数p 生成的主理想。 ( ) 二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写在题干后面的括号内。答案选错或未作选择者,该题无分。每小题1分,共10分) 1、设n A A A ,,,21Λ和D 都是非空集合,而f 是n A A A ???Λ21到D 的一个映射,那么( ) ①集合D A A A n ,,,,21Λ中两两都不相同; ②n A A A ,,,21Λ的次序不能调换; ③n A A A ???Λ21中不同的元对应的象必不相同; ④一个元()n a a a ,,,21Λ的象可以不唯一。 2、指出下列那些运算是二元运算( ) ①在整数集Z 上,ab b a b a +=ο; ②在有理数集Q 上,ab b a =ο; ③在正实数集+R 上,b a b a ln =ο;④在集合{}0≥∈n Z n 上,b a b a -=ο。 3、设ο是整数集Z 上的二元运算,其中{}b a b a ,m ax =ο(即取a 与b 中的最大者),

近世代数期末考试试卷及答案

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设G 有6个元素的循环群,a 是生成元,则G 的子集( c )是子群。 A 、{}a B 、{}e a , C 、{}3,a e D 、{} 3 ,,a a e 2、下面的代数系统(G ,*)中,( D )不是群 A 、G 为整数集合,*为加法 B 、G 为偶数集合,*为加法 C 、G 为有理数集合,*为加法 D 、G 为有理数集合,*为乘法 3、在自然数集N 上,下列哪种运算是可结合的?( B ) A 、a*b=a-b B 、a*b=max{a,b} C 、 a*b=a+2b D 、a*b=|a-b| 4、设1σ、2σ、3σ是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( B ) A 、1 2σ B 、1σ2σ C 、2 2 σ D 、2σ1σ 5、任意一个具有2个或以上元的半群,它( A )。 A 、不可能是群 B 、不一定是群 C 、一定是群 D 、 是交换群 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、凯莱定理说:任一个子群都同一个----变换群------同构。 2、一个有单位元的无零因子-交换环----称为整环。 3、已知群G 中的元素a 的阶等于50,则4 a 的阶等于----25--。 4、a 的阶若是一个有限整数n ,那么G 与---模n 剩余类加群----同构。 5、A={1.2.3} B={2.5.6} 那么A ∩B=---{2}--。 6、若映射?既是单射又是满射,则称?为----双射-------------。

《近世代数》习题及答案

《近世代数》作业 一.概念解释 1.代数运算 2.群的第一定义 3.域的定义 4.满射 5.群的第二定义 6.理想 7.单射 8.置换 9.除环 10.一一映射 11.群的指数 12.环的单位元 二.判断题 1.Φ是集合n A A A ??? 21列集合D 的映射,则),2,1(n i A i =不能相同。 2.在环R 到环R 的同态满射下,则R 的一个子环S 的象S 不一定是R 的一个子环。 3.设N 为正整数集,并定义ab b a b a ++= ),(N b a ∈,那么N 对所给运算 能作成一个群。 4.假如一个集合A 的代数运算 适合交换率,那么在n a a a a 321里)(A a i ∈,元的次序可以交换。 5.在环R 到R 的同态满射下,R 得一个理想N 的逆象N 一定是R 的理想。 6.环R 的非空子集S 作成子环的充要条件是: 1)若,,S b a ∈则S b a ∈-; 2),,S b a ∈,则S ab ∈。 7.若Φ是A 与A 间的一一映射,则1-Φ是A 与A 间的一一映射。 8.若ε是整环I 的一个元,且ε有逆元,则称ε是整环I 的一个单位。 9.设σ与τ分别为集合A 到B 和B 到C 的映射,如果σ,τ都是单射,则τσ是A 到C 的映射。 10.若对于代数运算 ,,A 与A 同态,那么若A 的代数运算 适合结合律,则A 的代数运算也适合结合律。 11.整环中一个不等于零的元a ,有真因子的冲要条件是bc a =。 12.设F 是任意一个域,*F 是F 的全体非零元素作成的裙,那么* F 的任何有限子群 G 必为循环群。 13. 集合A 的一个分类决定A 的一个等价关系。 ( ) 14. 设1H ,2H 均为群G 的子群,则21H H ?也为G 的子群。 ( ) 15. 群G 的不变子群N 的不变子群M 未必是G 的不变子群。 ( ) 三.证明题 1. 设G 是整数环Z 上行列式等于1或-1的全体n 阶方阵作成集合,证明:对于方阵的普通乘法G 作成一个 群。 2.设G=(a )是循环群,证明:当∞=a 时,G=(a )与整数加群同构。

近世代数练习题题库

近世代数练习题题库 LELE was finally revised on the morning of December 16, 2020

§1 第一章 基础知识 1 判断题: 1.1 设A 与B 都是非空集合,那么{}B A x x B A ∈∈=?x 且。( ) 1.2 A ×B = B ×A ( ) 1.3 只要f 是A 到A 的一一映射,那么必有唯一的逆映射1 -f 。( ) 1.4 如果?是A 到A 的一一映射,则?[?(a)]=a 。( ) 1.5 集合A 到B 的可逆映射一定是A 到B 的双射。( ) 1.6 设A 、B 、D 都是非空集合,则B A ?到D 的每个映射都叫作二元运算。( ) 1.7 在整数集Z 上,定义“ ”:a b=ab(a,b ∈Z),则“ ”是Z 的一个二元运算。( ) 1.8 整数的整除关系是Z 的一个等价关系。( ) 2 填空题: 2.1 若A={0,1} , 则A ?A= __________________________________。 2.2 设A = {1,2},B = {a ,b},则A ×B =_________________。 2.3 设={1,2,3} B={a,b},则A ?B=_______。 2.4 设A={1,2}, 则A ?A=_____________________。 2.5 设集合{}1,0,1-=A ;{ }2,1=B ,则有=?A B 。 2.6 如果f 是A 与A 间的一一映射,a 是A 的一个元,则 ()[]=-a f f 1 。 2.7 设A ={a 1, a 2,…a 8},则A 上不同的二元运算共有 个。

近世代数习题第二章

第二章 群论 近世代数习题第二章 第一组 1-13题;第二组 14-26题;第三组 27-39题;第四组 40-52 题,最后提交时间为11月25日 1、设G 是整数集,则G 对运算 4++=b a b a 是否构成群? 2、设G 是正整数集,则G 对运算 b a b a = 是否构成群? 3、证明:正整数对于普通乘法构成幺半群. 4、证明:正整数对于普通加法构成半群,不含有左右单位元. 5、G 是整数集,则G 对运算 1=b a 是否构成群? 6、设b a ,是群G 中任意两元素. 证明:在G 中存在唯一元素x ,使得b axba =. 7、设u 是群G 中任意取定的元素,证明:G 对新运算aub b a = 也作成群. 8、证:在正有理数乘群中,除1外,其余元素阶数都是无限. 9、证:在非零有理数乘群中,1的阶是1,-1的是2,其余元素阶数都是无限. 10、设群G 中元素a 阶数是n ,则 m n e a m |?=. 11、设群G 中元素a 阶数是n ,则 ) ,(||n m n a m =.,其中k 为任意整数. 设(m,n )=d,m=dk,n=dl,(k,l)=1. 则(a^m)^l=a^(ml)=a^(kdl)=(a^(n))^k=e. 设(a^m )^s=e,,即a^(ms)=e,所以n|ms,则l|ks,又因为(l,k)=1,所以l|s,即a^m 的阶数为l. 12、证明:在一个有限群中,阶数大于2的元素个数一定是偶数. 13、设G 为群,且n G 2||=,则G 中阶数等于2的一定是奇数. 14、证明:如果群G 中每个元素都满足e x =2 ,则G 是交换群. 对每个x ,从x^2=e 可得x=x^(-1),对于G 中任一元x ,y ,由于(xy )^2=e ,所以xy=(xy )^(-1)=y^(-1)*x(-1)=yx. 或者 :(ab)(ba)=a(bb)a=aea=aa=e ,故(ab)的逆为ba ,又(ab)(ab)=e ,这是因为ab 看成G 中元素,元素的平方等于e. 由逆元的唯一性,知道ab=ba 15、证明:n 阶群中元素阶数都不大于n . 16、证明:p 阶群中有1-p 个p 阶元素,p 为素数. 17、设群G 中元素a 阶数是n ,则 )(|t s n a a t s -?=. 18、群G 的任意子群交仍是子群.

最新近世代数复习提纲

近世代数复习提纲 群论部分 一、基本概念 1、群的定义(四个等价定义) 2、基本性质 (1)单位元的唯一性; (2)逆元的唯一性; (3)11111(),()ab b a a a -----==; (4)ab ac b c =?=; (5)1ax b x a b -=?=;1ya b y ba -=?=。 3、元素的阶 使m a e =成立的最小正整数m 叫做元素a 的阶,记作||a m =;若这样的正整数不存在,则称a 的阶是无限的,记作||a =∞。 (1)11|,||||()|||a g ag g G a a --=?∈=。 (2)若m a e =,则 ①||a m ≤; ②||a m =?由n a e =可得|m n 。 (3)当群G 是有限群时,a G ?∈,有||a <∞且||||a G 。 (4)||||r n a n a d =?= ,其中(,)d r n =。 证明 设|||r a k =。因为()()n r r n d d a a e ==,所以n k d 。 另一方面,因为()r k rk a a e ==,所以n rk ,从而 n r k d d ,又(,)1r n d d =,所以 n k d ,故n k d =。

注:1? ||||||ab a b ≠,但若ab ba =,且(||,||)1a b =,则有||||||ab a b =(P70.3)。 2? ||,||G a G a <∞??∈<∞;但,||||a G a G ?∈<∞?<∞/。 例1 令{|,1}n G a C n Z a =∈?∈?=,则G 关于普通乘法作成群。显然,1是G 的单位元,所以a G ?∈,有||a <∞,但||G =∞。 二、群的几种基本类型 1、有限群:元素个数(即阶)有限的群,叫做有限群。 2、无限群:元素个数(即阶)无限的群,叫做无限群。 3、变换群:集合A 上若干一一变换关于变换乘法作成的群,叫做集合A 上的变换群。 (1)变换群的单位元是A 的恒等变换。 (2)A 的所有一一变换的集合关于变换的乘法作成A 上最大的变换群。 (3)一般地,变换群不是交换群。 (4)任一个群都与一个变换群同构。 4、置换群:有限集合A 上的一一变换叫做置换,若干置换作成的变换群叫做置换群。即有限集合上的变换群叫做置换群。 例2 设(123),(13)(24)αβ==是5S 中元素,求αβ。 解 12345123451234512345(123)(13)(24)(142)23145321451432541325αβ????????==== ????? ????????? (1)n 元集合A 的所有置换作成的置换群,叫做n 次对称群,记作n S 。 (2)||!n S n =。 (3)每个n 元置换都可表示为若干个没有公共数字的循环置换的乘积。 (4)11221()()k k i i i i i i -=L L 。 (5)任一有限群都与一个置换群同构。 5、循环群:若群G 中存在元素a ,使得(){|}n G a a n Z ==∈,则称G 是循环群。 (1)循环群是交换群(P61.1)。 (2)素数阶群是循环群(P70.1)。

《近世代数》模拟试题2及答案

近世代数模拟试题 一、单项选择题(每题5分,共25分) 1、在整数加群(Z,+)中,下列那个就是单位元( )。 A 0 B 1 C -1 D 1/n,n就是整数 2、下列说法不正确的就是( )。 A G只包含一个元g,乘法就是gg=g。G对这个乘法来说作成一个群 B G就是全体整数的集合,G对普通加法来说作成一个群 C G就是全体有理数的集合,G对普通加法来说作成一个群 D G就是全体自然数的集合,G对普通加法来说作成一个群 3、下列叙述正确的就是( )。 A 群G就是指一个集合 B 环R就是指一个集合 C 群G就是指一个非空集合与一个代数运算,满足结合律,并且单位元,逆 元存在 D 环R就是指一个非空集合与一个代数运算,满足结合律,并且单位元,逆 元存在 4、如果集合M的一个关系就是等价关系,则不一定具备的就是( )。 A 反身性 B 对称性 C 传递性 D 封闭性 S的共轭类( )。 5、下列哪个不就是 3 A (1) B (123),(132),(23) C (123),(132) D (12),(13),(23) 二、计算题(每题10分,共30分) S的正规化子与中心化子。 1、求S={(12),(13)}在三次对称群 3

2、设G ={1,-1,i,-i},关于数的普通乘法作成一个群,求各个元素的阶。 3、设R 就是由一切形如??? ? ??0,0,y x (x,y 就是有理数)方阵作成的环,求出其右零因子。

三、证明题(每小题15分,共45分) 1、设R 就是由一切形如??? ? ??0,0,y x (x,y 就是有理数)方阵作成的环,证明??? ? ??0,00,0就是其零因子。 2、设Z 就是整数集,规定a ·b =a +b -3。证明:Z 对此代数运算作成一个群,并指出其单位元。

近世代数知识点

近世代数知识点 第一章基本概念 1.1 集合 A 的全体子集所组成的集合称为A 的幂集,记作2 A. 1.2 映射 证明映射: 单射:元不同,像不同;或者像相同,元相同。 满射:像集合中每个元素都有原像。 Remark :映射满足结合律! 1.3 卡氏积与代数运算 { (a,b ) la €A,b €B }此集合称为卡氏积,其中(a,b )为有序元素对,所以一般A*B不等于B*A. 集合到自身的代数运算称为此集合上的代数运算。 1.4 等价关系与集合的分类 ★等价关系:1 自反性:? a€A,a~a; 2 对称性:? a,b€R, a~b=>b ~a€R; 3 传递性:? a,b,c€R,a~b,b ~c =>a ~c€R. Remark :对称+传递工自反 ★一个等价关系决定一个分类,反之,一个分类决定一个等价关系 ★不同的等价类互不相交,一般等价类用[a] 表示。

第二章群 2.1 半群 1. 半群=代数运算 +结合律,记作( S,°) Remark: i. 证明代数运算:任意选取集合中的两个元素,让两元素间做此运算,观察运算后的结果是否还在定义的集合中。 ii. 若半群中的元素可交换,即 a°b=b °a, 则称为交换半群。 2. 单位元 i. 半群中左右单位元不一定都存在,即使存在也可能不唯一,甚至可能都不 存在;若都存在,则左单位元 =右单位元 =单位元。 ii. 单位元具有唯一性,且在交换半群中:左单位元= 右单位元 = 单位元。 iii. 在有单位元的半群中,规定 a0=e. 3. 逆元 i. 在有单位元 e 的半群中,存在 b, 使得 ab=ba=e, 则 a 为可逆元。 ii. 逆元具有唯一性,记作 a-1且在交换半群中,左逆元=右逆元= 可逆元。 iii. 若一个元素a既有左逆元al,又有右逆元a2,则a1=a2,且为a的逆元。 4. 子半群 i. 设S是半群,? T?S若T对S的运算做成半群,贝U T为S的一个 子半群

近世代数作业

练习题 第一次作业 1、设A={x| x R, |x|5},B={x|x R, -6x<0}.求AB,AB,AB,BA。 2、设A,B是U的子集,规定A+B=(AB)(BA)。证明: (1) A+B=B+A (2) A+=A (3) A+A=。 3、求下列集合的所有子集: (1) A={a, b, } (2) B={} (3) C={1} 4、设f:AB和g:BC是映射,证明: (1) 如果f和g是单射,则gf是单射 (2) 如果f和g是满射,则gf是满射 (3) 如果gf是单射,则f是单射 (4) 如果gf是满射,则g是满射. 5、对于下面给出的整数集Z到整数集Z的映射f, g ,h: f: x3x g: x3x+1 h: x3x+2 (1) 计算fg, gf, gh, hg, fgh (2) 分别求f, g, h的一个左逆映射 (3) 求f, g, h的一个共同的左逆映射 (4) 求f, g的一个共同的左逆映射,但不是h的左逆映射。 6、设R是实数集合,在RR上规定二元关系“~”为: (a, b)~ (c, d)a+d=b+c 证明“~”是R上的一个等价关系。 7、设A={a, b, c, d, e}, S={{a},{b},{c, d, e}},求A上的一个等价关系R,使A 在R下的分类恰为S。 8、设A={1,2,3,4},在幂集中规定二元关系“~”: S~TS与T所含元素个数相同 证明“~”是上的一个等价关系,并写出商集/~。 第二次作业 1、设G={(a, b)| a, b R, a0}, 规定G中元素运算: (a, b)(c, d)=(ac, bc+d)

近世代数习题解答张禾瑞二章

近世代数习题解答 第二章群论 1群论 1. 全体整数的集合对于普通减法来说是不是一个群? 证不是一个群,因为不适合结合律. 2. 举一个有两个元的群的例子. 证G={1,-1}对于普通乘法来说是一个群. 3. 证明,我们也可以用条件1,2以及下面的条件 4,5'来作群的定义: 4'. G至少存在一个右单位元e,能让ae = a 对于G的任何元a都成立 5 . 对于G的每一个元a,在G里至少存在一个右逆元 a ,能让aa e A_1 证(1) 一个右逆元一定是一个左逆元,意思是由aa e 得a a = e 因为由4 G有元a能使a'a =e 1 1 1 ' 所以(a a)e = (a a)(a a ) 即a a = e (2)一个右恒等元e 一定也是一个左恒等元,意即 由ae = a 得ea = a 即ea = a 这样就得到群的第二定义. (3)证ax二b可解 取x = a 这就得到群的第一定义. 反过来有群的定义得到4,5'是不困难的. 2单位元,逆元,消去律 1. 若群G的每一个元都适合方程x2二e,那么G就是交换群. 证由条件知G中的任一元等于它的逆元,因此对a,b^G有ab = (ab),= b°a,= ba . 2. 在一个有限群里阶大于2的元的个数是偶数. _1 n —1 n n —1 —1 证(1)先证a的阶是n则a 的阶也是n . a e= (a ) (a ) e e 若有m n 使(a ')m= e 即(a m)' = e因而a m=e‘ ? a m=e 这与a的阶是n矛盾「a的阶等于a °的阶 _4 _4 2 (2) a的阶大于2,则a=a 若a=a : a=e 这与a的阶大于2矛盾 (3) a b 贝U a「b' 斗

近世代数习题解析

近世代数复习思考题 一、基本概念与基本常识的记忆 (一)填空题 1.剩余类加群Z 12有_________个生成元. 2、设群G 的元a 的阶是n ,则a k 的阶是________. 3. 6阶循环群有_________个子群. 4、设群G 中元素a 的阶为m ,如果e a n =,那么m 与n 存在整除关系为———。 5. 模8的剩余类环Z 8的子环有_________个. 6.整数环Z 的理想有_________个. 7、n 次对称群Sn 的阶是——————。 8、9-置换??? ? ??728169345987654321分解为互不相交的循环之积是————。 9.剩余类环Z 6的子环S={[0],[2],[4]},则S 的单位元是____________. 10. 24Z 中的所有可逆元是:__________________________. 11、凯莱定理的内容是:任一个子群都同一个________同构。 12. 设()G a =为循环群,那么(1)若a 的阶为无限,则G 同构于___________,(2)若a 的阶为n ,则G 同构于____________。 13. 在整数环Z 中,23+=__________________; 14、n 次对称群S n 的阶是_____. 15. 设12,A A 为群G 的子群,则21A A 是群G 的子群的充分必要条件为___________。 16、除环的理想共有____________个。 17. 剩余类环Z 5的零因子个数等于__________. 18、在整数环Z 中,由{2,3}生成的理想是_________. 19. 剩余类环Z 7的可逆元有__________个. 20、设Z 11是整数模11的剩余类环,则Z 11的特征是_________. 21. 整环I={所有复数a+bi(a,b 是整数)},则I 的单位是__________. 22. 剩余类环Z n 是域?n 是_________. 23、设Z 7 ={0,1,2,3,4,5,6}是整数模7的剩余类环,在Z 7 [x]中, (5x-4)(3x+2)=________. 24. 设G 为群,a G ∈,若12a =,则8 a =_______________。 25、设群G={e ,a 1,a 2,…,a n-1},运算为乘法,e 为G 的单位元,则a 1n =___. 26. 设A={a,b,c},则A 到A 的一一映射共有__________个. 27、整数环Z 的商域是________.

近世代数期末考试试卷及答案

一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个就是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设G 有6个元素的循环群,a 就是生成元,则G 的子集( )就是子群。 A 、{}a B 、{}e a , C 、{}3,a e D 、 {}3,,a a e 2、下面的代数系统(G,*)中,( )不就是群 A 、G 为整数集合,*为加法 B 、G 为偶数集合,*为加法 C 、G 为有理数集合,*为加法 D 、G 为有理数集合,*为乘法 3、在自然数集N 上,下列哪种运算就是可结合的?( ) A 、a*b=a-b B 、a*b=max{a,b} C 、 a*b=a+2b D 、a*b=|a-b| 4、设1σ、 2σ、3σ就是三个置换,其中1σ=(12)(23)(13),2σ=(24)(14),3σ=(1324),则3σ=( ) A 、12σ B 、1σ2σ C 、22σ D 、2σ1σ 5、任意一个具有2个或以上元的半群,它( )。 A 、不可能就是群 B 、不一定就是群 C 、一定就是群 D 、 就是交换群 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、凯莱定理说:任一个子群都同一个----------同构。 2、一个有单位元的无零因子-----称为整环。 3、已知群G 中的元素a 的阶等于50,则4a 的阶等于------。 4、a 的阶若就是一个有限整数n,那么G 与-------同构。 5、A={1、2、3} B={2、5、6} 那么A ∩B=-----。 6、若映射?既就是单射又就是满射,则称?为-----------------。 7、α叫做域F 的一个代数元,如果存在F 的-----n a a a ,,,10Λ使得 010=+++n n a a a ααΛ。 8、a 就是代数系统)0,(A 的元素,对任何A x ∈均成立x a x =ο,则称a 为

近世代数习题解答张禾瑞二章

近世代数习题解答 第二章 群论 1 群论 1. 全体整数的集合对于普通减法来说是不是一个群? 证 不是一个群,因为不适合结合律. 2. 举一个有两个元的群的例子. 证 }1,1{-=G 对于普通乘法来说是一个群. 3. 证明, 我们也可以用条件1,2以及下面的条件 ''5,4来作群的定义: '4. G 至少存在一个右单位元e ,能让a ae = 对于G 的任何元a 都成立 '5. 对于G 的每一个元a ,在G 里至少存在一个右逆元,1-a 能让 e aa =-1 证 (1) 一个右逆元一定是一个左逆元,意思是由e aa =-1 得 e a a =-1 因为由'4G 有元'a 能使e a a =-'1 所以))(()('111a a a a e a a ---= 即 e a a =-1 (2) 一个右恒等元e 一定也是一个左恒等元,意即 由 a ae = 得 a ea = 即 a ea = 这样就得到群的第二定义. (3) 证 b ax =可解 取b a x 1-= 这就得到群的第一定义. 反过来有群的定义得到''5,4是不困难的. 2 单位元,逆元,消去律 1. 若群G 的每一个元都适合方程e x =2,那么G 就是交换群. 证 由条件知G 中的任一元等于它的逆元,因此对G b a ∈,有 ba a b ab ab ===---111)(. 2. 在一个有限群里阶大于2的元的个数是偶数. 证 (1) 先证a 的阶是n 则1-a 的阶也是n .e e a a e a n n n ===?=---111)()( 若有n m ? 使e a m =-)(1 即 e a m =-1)(因而 1-=e a m e a m =∴ 这与a 的阶是n 矛盾.a Θ的阶等于1-a 的阶 (2) a 的阶大于2, 则1-≠a a 若 e a a a =?=-21 这与a 的阶大

近世代数习题与答案

近世代数习题与答案 Prepared on 22 November 2020

一、 选择题(本题共5小题,每小题3分,共15分) 一、 (从下列备选答案中选择正确答案) 1、下列子集对通常复数的乘法不构成群的是( )。 (A) {1,-1,i ,-i } (B) {1,-1} (C) {1,-1,i } 2、设H 是群G的子群,a ,b ∈G,则aH = bH 的充要条件是( )。 (A) a -1b -1∈H (B) a -1b ∈H (C) ab -1∈H 3、在模6的剩余类环Z 6 中,Z 6 的极大理想是( )。 (A) (2),(3) (B) (2) (C)(3) 4、若Q 是有理数域,则(Q(2):Q)是( )。 (A) 6 (B) 3 (C) 2 5、下列不成立的命题是( )。 (A) 欧氏环是主理想环 (B) 整环是唯一分解环 (C) 主理想环是唯一分解环 二、填空题(本题共5空,每空3分,共15分) (请将正确答案填入空格内) 1、R 为整环,a ,b ∈R ,b |a ,则(b ) (a )。 2、F 是域,则[](()) F x f x 是域当且仅当 。 3、域F 上的所有n 阶方阵的集合M n (F )中,规定等价关系~: A ~ B ?秩(A )=秩(B ),则这个等价关系决定的等价类有________个。 4、6次对称群S 6中,(1235)-1(36)=____________。 5、12的剩余类环Z 12的可逆元是 。 三、判断题(本题共5小题,每小题2分,共10分) (请在你认为正确的题后括号内打“√”,错误的打“×”) 1、设G 是群,?≠H ,若对任意a,b ∈H 可推出ab ∈H ,则H≤G .. ( ) 2、群G 中的元,a b ,()2,()7,a b ab ba ===,则()14ab =。 ( ) 3、商环6Z Z 是一个域。 ( )

《近世代数》模拟试题及答案

近世代数模拟试题 一. 单项选择题(每题5分,共25分) 1、在整数加群(Z,+)中,下列那个是单位元(). A. 0 B. 1 C. -1 D. 1/n,n是整数 2、下列说法不正确的是(). A . G只包含一个元g,乘法是gg=g。G对这个乘法来说作成一个群; B . G是全体整数的集合,G对普通加法来说作成一个群; C . G是全体有理数的集合,G对普通加法来说作成一个群; D. G是全体自然数的集合,G对普通加法来说作成一个群. 3. 如果集合M的一个关系是等价关系,则不一定具备的是( ). A . 反身性 B. 对称性 C. 传递性 D. 封闭性 4. 对整数加群Z来说,下列不正确的是(). A. Z没有生成元. B. 1是其生成元. C. -1是其生成元. D. Z是无限循环群. 5. 下列叙述正确的是()。 A. 群G是指一个集合. B. 环R是指一个集合. C. 群G是指一个非空集合和一个代数运算,满足结合律,并且单位元, 逆元存在. D. 环R是指一个非空集合和一个代数运算,满足结合律,并且单位元,

逆元存在. 二. 计算题(每题10分,共30分) 1. 设G 是由有理数域上全体2阶满秩方阵对方阵普通乘法作成的群,试求中G 中下列各个元素1213, ,0101c d cd ?? ??== ? ?-????, 的阶. 2. 试求出三次对称群 {}3(1),(12),(13),(23),(123),(132)S = 的所有子群.

3. 若e是环R的惟一左单位元,那么e是R的单位元吗?若是,请给予证明. 三. 证明题(第1小题10分,第2小题15分,第3小题20分,共45分). 1. 证明: 在群中只有单位元满足方程

近世代数的基础知识

近世代数的基础知识 初等代数、高等代数和线性代数都称为经典代数(Classical algebra ),它的研究对象主要是代数方程和线性方程组)。近世代数(modern algebra )又称为抽象代数(abstract algebra ),它的研究对象是代数系,所谓代数系,是由一个集合和定义在这个集合中的一种或若干种运算所构成的一个系统。近世代数主要包括:群论、环论和域论等几个方面的理论,其中群论是基础。下面,我们首先简要回顾一下集合、映射和整数等方面的基础知识,然后介绍本文需要用到的近世代数的相关知识。 3.1 集合、映射、二元运算和整数 3.1.1 集合 集合是指一些对象的总体,这些对象称为集合的元或元素。“元素a 是集合A 的元”记作“A x ∈”,反之,“A a ?”表示“x 不是集合A 的元”。 设有两个集合A 和B ,若对A 中的任意一个元素a (记作A a ∈?)均有B a ∈,则称A 是B 的子集,记作B A ?。若B A ?且A B ?,即A 和B 有完全相同的元素,则称它们相等,记作B A =。若B A ?,但B A ≠,则称A 是B 的真子集,或称B 真包含A ,记作B A ?。 不含任何元素的集合叫空集,空集是任何一个集合的子集。 集合的表示方法通常有两种:一种是直接列出所有的元素,另一种是规定元素所具有的性质。例如: $ {}c b a A ,,=; {})(x p x S =,其中)(x p 表示元素x 具有的性质。 本文中常用的集合及记号有: 整数集合{} ,3,2,1,0±±±=Z ; 非零整数集合{}{} ,3,2,10\±±±==* Z Z ; 正整数(自然数)集合{} ,3,2,1=+ Z ; 有理数集合Q ,实数集合R ,复数集合C 等。 —

相关文档
最新文档