近世代数课件--第二章群论§2元素的阶

合集下载

近世代数课件--第二章群论§2元素的阶

近世代数课件--第二章群论§2元素的阶
(ak )n1 akn1 ank1 (an )k1 e
设 (ak )mห้องสมุดไป่ตู้ e ,则
akm e n | km n1 | k1m n1 | m

ak
n1

n. (n, k)
2020/2/8
两个推论:
推论1 在群中,若 | a | st ,则 | a s | t
GL2(Q) 是有理数域Q上的全体二阶满秩
方阵关于矩阵乘法做成的群.
(2)a


1 0
0 1
,
b


0 1
1 1
Q
ab


0 1
1 1
,
ba


1 1
0 1

,
| a | 4,| b | 3,| ab |
2020/2/8
思考题: 设G是群,且|G|>1. 证明:若G中除e外其 余元素的阶都相同,则这个相同的阶不是无 限,就是素数.
定理1
有限群 G 中每个元素的阶均有限.
证明:设 G n
a G ,在 a,a2, ,an ,an1 G
中必有相等的. 设
as at ,1 t s n 1,
则 a st e ,从而阶有限.
2020/2/8
注: 无限群中元素的阶可能无限,也可能有限,
甚至可能都有限.
(am )n amn
,其中 m, n 为任意整数.
2020/2/8
定义1
设 a 为群 G 的一个元素,使 an e
的最小正整数 n 叫做元素 a 的阶,记作
a n ;若不存在这样的 n ,则称 a 的阶

《近世代数》PPT课件

《近世代数》PPT课件
– 剩余类的加法和乘法运算
a b a b ,(m m )o a b d a b(m m )o
10.01.2021
编辑ppt
18
2.2 多项式剩余类环和域
1.域上多项式的定义
– 多项式与码字的关系:桥梁;
• 多项式的系数表示

• x的幂次表示

– 域上的多项式
• 针对系数定义;
• 例如二进制系数多项式,称为二元域GF(2)上的 多项式。
编辑ppt
28
(1) 常数总是多项式的因子。
(2) 一个多项式 f(x) 是否为既约多项式 与所定义的域有关。
(3) 一个多项式既约的充要条件:多项 式Pl(x) 不能分解成两个次数低于Pl(x) 的多项式的乘积。
(4) 完全分解:n次多项式最多能分解成 n个一次多项式的乘积,被称为完全分 解。
(5) 一次多项式一定是既约的。
(3)加法和乘法之间满足如下分配率 (distributive) :
a(bc) abac
(bc)a baca
则称F是一个域。
10.01.2021
编辑ppt
6
(1)域的阶(针对群中元素的个数),记 为q。
(2)有限域或伽逻华(Galois)域,表示为:
GF(q)。
–域将
10.01.2021

编辑ppt
联系在一起?
7
例2-3
– F1:有理数全体、实数全体对加法和乘法都 分别构成域,分别称为有理数域和实数域。
– F2:0、1两个元素模2加构成域;由于该域 中只有两个元素,记为GF(2)。
10.01.2021
编辑ppt
8
• 定理:
– 设p为质数,则整数全体关于p模的剩余类: 0,1,2,…,p-1,在模p的运算下(p模相 加和相乘),构成p阶有限域GF(p)。

近世代数课件-2-2_群的定义

近世代数课件-2-2_群的定义
(2)运算 o适合结合律;(3)运算 o适合消去律.
2020/4/27
五. 有限群的特殊性
推论 一个非空有限集G 构成有限群的条件 : (1)存在G上的一个代数运算•; (2)运算 • 适合结合律; (3)运算 • 适合消去律.
2020/4/27五. 来自限群的特殊性2020/4/27
六、特殊群-Klein(克莱因)四元群
本节教学目的与要求: 记住群的定义,掌握群的基本性质和有限群的特殊性质,并
能熟练判定一个给定的代数系是否是群.
一. 群的定义及常见的群 二. 群的4个等价定义 三. 一些特殊群的例子 四. 群的消去率性质 五. 有限群的特殊性 六. 特殊的群—Klein(克莱因)四元群
2020/4/27
一. 群的定义及常见的群
近世代数
第二章 群
近世代数的主要研究对象是各种各样的代数系, 即具有一些代数运算的集合。
群是具有一种代数运算的代数系,它是近世代数 中一个比较古老,而且内容丰富的重要分支,在数学、 物理、化学、计算机等自然科学的许多领域都有广泛 应用。
从本节开始,学习群的有关性质。
2020/4/27
2.2 群的定义
注:
2020/4/27
一.群的定义及常见的群
2020/4/27
一.群的定义及常见的群
注:
2020/4/27
二. 群的四个等价定义
2020/4/27
三. 几个特殊群的例子
2020/4/27
四. 群的消去率性质
注:
2020/4/27
五. 有限群的特殊性
推论 一个非空有限集G构成有限群的条件: 1存在G上的一个代数运算o;
2020/4/27
六、特殊群-Klein(克莱因)四元群

《近世代数》课件

《近世代数》课件

近世代数的重要性
近世代数是数学领域中的基础学科之 一,是学习其它数学分支的重要基础 。
它对于理解数学的抽象本质和掌握数 学的基本思想方法具有重要意义,有 助于培养学生的逻辑思维和抽象思维 能力。
课程大纲简介
本课程将介绍近世代数的基本概念和性质,包括集合、群、环、域等代数系统的 定义、性质和关系。
1.1 答案
对。因为$a^2$的定义是两个整数相乘,结果仍为整数。
第1章习题及解答
1.2 答案:(略)
1.3 答案:群的基本性质包括封闭性、结合律和存在单位元。
第2章习题及解答
2.1 判断题:若$a$是整数,则$a^3$也是整数。 2.2 选择题:下列哪个是环?
第2章习题及解答
要点一
2.3 简答题
编码理论中的应用
线性码
线性码是一类重要的纠错码,其生成矩阵和校验矩阵都是线性方程组的解。这 些矩阵的构造和性质都与代数理论紧密相关。
高斯-若尔当消元法
在编码理论中,经常使用高斯-若尔当消元法来求解线性方程组,这种方法在代 数中也有广泛的应用。
物理学中的应用
量子力学中的态空间
在量子力学中,态空间是一个复的向量空间,其基底对应于可观测物理量。这与代数学中的向量空间 概念非常相似。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个多项式,那么E在F上形成一个 子域。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个不可约多项式,那么E在F上形 成一个有限子域。
有限域
有限域的性质
有限域中的元素个数一定是某个素数的幂。
理想与商环
理想的定义与性质
介绍理想的定义,包括左理想、右理想、双边理想等 ,并讨论理想的封闭性、运算性质等。

近世代数课件-2-3_元素的阶

近世代数课件-2-3_元素的阶
注:这个定理的的逆命题不成立,因为存在每个元素的阶都是 有限的无限群。例如: 关于数的乘法做成一个无限交换群,而其中每一个元素ຫໍສະໝຸດ 都存在一个2020/4/27
四、循环群的定义
2020/4/27
五、循环群的性质
2020/4/27
五、循环群的性质
2020/4/27
生成元为:
练习:求出模15的剩余类加群Z15的每个元素的阶与所有
素的阶的特殊性质.
一. 元素的阶的定义 二. 元素的阶的性质 三. 有限群的阶的性质 四. 循环群的定义 五. 循环群的性质
2020/4/27
一、元素的阶的定义
2020/4/27
一、元素的阶的定义
练习:在模8剩余类加群Z8中,各个元素的阶分别是多少?
2020/4/27
二、元素的阶的性质——有限阶元素的性质
生成元。
2020/4/27
五、循环群的性质 作业:P38,第4,9题。
2020/4/27
2020/4/27
二、元素的阶的性质——有限阶元素的性质
推论 在群中,若 | a | m ,则
(1) r Z,| ar | m (m, r) 1;
(2) 若m st, s,t N, 则| as | t.
2020/4/27
二、元素的阶的性质——无限阶元素的性质
2020/4/27
三、有限群的元素的阶的性质
近世代数
第二章 群
近世代数的主要研究对象是各种各样的代数系, 即具有一些代数运算的集合。
群是具有一种代数运算的代数系,它是近世代数 中一个比较古老,而且内容丰富的重要分支,在数学、 物理、化学、计算机等自然科学的许多领域都有广泛 应用。
2020/4/27

大学数学《近世代数》课件

大学数学《近世代数》课件

3.推移律:
a bb a
a a,不管a是A的哪一个元。
a b, b c a c
定义:若把一个集合A分成若干个叫做类的子集,使得A的每一个元属于而 且只属于一个类,那么这些类的全体叫做集合A的一个分类。
定理1:集合A的一个分类决定A的元间的一个等价关系。
定理2:集合A 的元间的一个等价关系决定A的一个分类。
III.
,方程 和
在G中都有解。
例1 G={g},乘法规定gg=g, 则G是一个群。
例2 G={全体整数};G中运算为普通加法,则G是一个群。
例3 G={所有非整数},G对于普通乘法不作成一个群。
定义1 同态:S , 与 T , 为两个代数系
统, :S T 为同态映射,若对 a ,b S
有:a b=ab
S , 定义2 同态满射: 与 为两个代数系统 ,
该映射为同态满射, ,
:S T
T , 为同态映射,且为满射,则 同态
S , T ,
定理1 假定,对于代数运算 和 来说, S与T 同态则:
二元代数运算“
”适合结合律和交换律
则 ai S,i 1,2,n, n个元素
a , a ,, a 1 2
n 的乘积仅与这n个元素
有关而与它们的次序无关。
例 仅满足结合律而不满足交换律:
1)矩阵乘法 2)映射的复合运算 3)字符串的复合运算 同时满足结合律与交换律:
1)普通乘法 2)集合的并、交 3)逻辑与、逻辑或 两者均不满足:
[本章主要内容]
1)群、子群及相关性质; 2)置换群、循环群; 3)子群的陪集、正规子群; 4)群的同态;
2.1半群与群的概念
定义1 设“
”时非空集合S上的一个二元

近世代数简介ppt

近世代数简介ppt
若R是交换环,I是R的非空子集,如满足 1. a、b I, a-b I。 2. a I、r R, a r = r a I, 则I是R的理想子环,简称理想
若理想子环的所有元素可由一个元素a的各
次幂或各次幂的线性组合生成,则称该理想子环 主理想子环,简称主理想
域(Field)
一个集合,二种运算
不能被 x5+1 整除 不能被 x6+1 整除


不能被 x14+1 整除
能被 x15+1 整除 ∴ x4+x+1 是本原多项式
而 x4+ x3+ x2+ x+1
能被 x5+1 整除
能被 x15+1 整除
∴ x4+x3+x2+x+1是既约的,但不是本原的
多项式环Rq(x)g(x)
系数GF(q),模g(x)
对于有限域GF(q)上的m次既约多项式P(x),若能 被它整除的最简首一多项式(x n -1)的次数n qm
–1, 则称该多项式为本原多项式。 本原多项式一定既约;
反之,既约多项式未必本原。
多项式循环群 Cycle Group
由多项式的各次幂所构成的群称为多项式循环群
比如, x4+x+1
(q=2, m=4, 2m-1=15)
VIP专享文档下载特权自VIP生效起每月发放一次, 每次发放的特权有效期为1个月,发放数量由您购买 的VIP类型决定。
每月专享9次VIP专享文档下载特权, 自VIP生效起每月发放一次,持续有 效不清零。自动续费,前往我的账号 -我的设置随时取消。
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文

《近世代数》PPT课件

《近世代数》PPT课件

定理1.5.1 假设一个集合A的代数运算 同时适合结合
律与交换律,那么在 a1a2 an中,元素的次序 可以调换.
例 判定下列有理数集Q上的代数运算 是否适合结合律,
交换律?
(1) a b a b ab (适合结合律和交换律 )
(2) ab(ab)2 (适合交换律,但不适合结合律)
(3) aba (适合结合律,但不适合交换律 )
定义1.9.2 设 是集合 A的代数运算. 若 是 A到 A的 一个同构映射(同态映射),则称 是 A的一个自 同构 (自同态).
小结
同态是把代数运算考虑在内的映射,即是用来
比较两个代数结构的工具.
返回
在代数学中,两个同构的代数结构一般认为是相同的. 22
§1.10 等价关系与集合的分类
定义1.10.1 A设 是集合,D对,.错 一个 AA 到 D 的映射
注: 变换 是 A到A自身的一个映射.
小结
为了比较两个集合,我们引入了单射,满射,一
一映射和变换的概念.
返回
19
§1.8 同态
定义1.8.1 设 , 分别是集合的代数运算, : A A 是一个映
射,若 a,bA,有 (ab ) (a ) (b ),
则称 是 A到 A 的一个同态.
例1 A=Z (整数集), 是普通加法; A ={1,-1}, 是普通乘法.
定义1.2.2 设 1 , 2是A到B的两个映射,若对 aA,
有 1(a)2(a), 则称 1 与 2 是相等的,记作 1 2.
注: 映射相等 构成映射的三要素(值域、定义域、对
应法则)全相同.
例5 设 AB 为正整数集 .
定义 1 : ; a1 1 ( a ) , a ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(am )n amn
,其中 m, n 为任意整数.
2020/5/29
定义1
设 a 为群 G 的一个元素,使 an e
的最小正整数 n 叫做元素 a 的阶,记作
a n ;若不存在这样的 n ,则称 a 的阶
为无限. 显然,群中单位元的阶为1,其他元的阶
都大于1, a a1 .
2020/5/29
同理 m | s , (m,n) 1 mn | s ,于是 | ab | mn.
2020/5/29
例5 |ab|一定等于|a||b|吗?
GL2(Q) 是有理数域Q上的全体二阶满秩
方阵关于矩阵乘法做成的群.
(1)a
1 0
0 1
,
b
1 0
0
1
Q
ab
ba
1 0
0 1
,
| a || b || ab | 2
例1
G {1,1,i,i} 关于数的普通乘法做成
4次单位根群.
1 1, 1 2, i i 4
2020/5/29
例2 正有理数乘群 Q 单位元的阶是1, 其他元的阶均为无限.
例3 非零有理数乘群 Q 1的阶是1, -1的阶是2, 其余元的阶均为无限.
2020/5/29
定理1
有限群 G 中每个元素的阶均有限.
近世代数 第二章 群论 §2元素的阶
2020/5/29
元素的指数
在群 G 中,由于结合律成立, a1a2 an
有意义,据此, 可定义群的元素的指数: 设
n 为正整数, 则规定:
6 7n8
6 4 7n 4 8
a0 e, an aaL a , an a1a1L a1
显然有, aman amn
证明:设 G n
a G ,在 a,a2, ,an ,an1 G
中必有相等的. 设
as at ,1 t s n 1,
则 a st e ,从而阶有限.
2020/5/29
注: 无限群中元素的阶可能无限,也可能有限,
甚至可能都有限.
例4 U Ui ,其中 U i 是 i 次单位根群
i 1
(1)an e, (2)若 am e n | m.
2020/5/29
定理3
若群中 | a | n ,则 ak n
(n, k )
,其中 k 为任意的整数.
证明: (n, k) d
n dn1, k dk1, (n1, k1 ) 1
(ak )n1 akn1 ank1 (an )k1 e
(| a |,| b |) 1
2020/5/29
例5 |ab|一定等于|a||b|吗?
GL2(Q) 是有理数域Q上的全体二阶满秩
方阵关于矩阵乘法做成的群.
(2)a
1 0
0 1
,
b
0 1
1 1
Q
ab
0 1
1 1
,
ba
1 1
0 1
,
| a | 4,| b | 3,| ab |
2020/5/29
2020/5/29
定理4
在群中,若| a | m ,| b | n ,则当
ab ba 且 (m,n) 1 时,| ab | mn.
证明: | a | m ,| b | n , ab ba
(ab)mn (am )n (bn )m e 若 (ab)s e
(ab)sm (am )s bsm bsm e n | sm n | s
思考题: 设G是群,且|G|>1. 证明:若G中除e外其 余元素的阶都相同,则这个相同的阶不是无 限,就是素数.
2020/5/29
,则 U 关于普通乘法作成无限交换群,
其中每个元素的阶都有限.
2020/5/29
定理2
若群 G 中 | a | n ,则 am e n | m .
证明: 令 m nq r , 0 r n ,则 am anqr (an )q ar ar e
r 0
m nq n| m
证明 G 中 | a | n ,只需证
设 (ak )m e ,则
akm e n | km n1 | k1m n1 | m
ak
n1
n. (n, k)
2020/5/29
两个推论:
推论1 在群中,若 | a | st ,则 | a s | t
,其中s,t 均为正整数.
推论2 在群中,若 | a | n ,则
| ak | n (k,n) 1.
相关文档
最新文档