第2章 近世代数

合集下载

《近世代数》PPT课件

《近世代数》PPT课件
– 剩余类的加法和乘法运算
a b a b ,(m m )o a b d a b(m m )o
10.01.2021
编辑ppt
18
2.2 多项式剩余类环和域
1.域上多项式的定义
– 多项式与码字的关系:桥梁;
• 多项式的系数表示

• x的幂次表示

– 域上的多项式
• 针对系数定义;
• 例如二进制系数多项式,称为二元域GF(2)上的 多项式。
编辑ppt
28
(1) 常数总是多项式的因子。
(2) 一个多项式 f(x) 是否为既约多项式 与所定义的域有关。
(3) 一个多项式既约的充要条件:多项 式Pl(x) 不能分解成两个次数低于Pl(x) 的多项式的乘积。
(4) 完全分解:n次多项式最多能分解成 n个一次多项式的乘积,被称为完全分 解。
(5) 一次多项式一定是既约的。
(3)加法和乘法之间满足如下分配率 (distributive) :
a(bc) abac
(bc)a baca
则称F是一个域。
10.01.2021
编辑ppt
6
(1)域的阶(针对群中元素的个数),记 为q。
(2)有限域或伽逻华(Galois)域,表示为:
GF(q)。
–域将
10.01.2021

编辑ppt
联系在一起?
7
例2-3
– F1:有理数全体、实数全体对加法和乘法都 分别构成域,分别称为有理数域和实数域。
– F2:0、1两个元素模2加构成域;由于该域 中只有两个元素,记为GF(2)。
10.01.2021
编辑ppt
8
• 定理:
– 设p为质数,则整数全体关于p模的剩余类: 0,1,2,…,p-1,在模p的运算下(p模相 加和相乘),构成p阶有限域GF(p)。

第二章 近世代数简介

第二章 近世代数简介
若R是交换环,I是R的非空子集,如满足 1. a、b I, a-b I。 2. a I、r R, a r = r a I, 则I是R的理想子环,简称理想
若理想子环的所有元素可由一个元素a的各
次幂或各次幂的线性组合生成,则称该理想子环 主理想子环,简称主理想
10
域(Field)
一个集合,二种运算
一般m 素数q
可能是零因子环 整环
子环( subring )
理想子环(强收敛性)
主理想(所有元素是一个元
素幂的线性组合)
9
若集合S是集合R的子集(S R), 判断(S ,+, ·)是(R ,+, ·) 子环的充要条件是 1. a、b S, a-b S。 2. a、b S, a b S。 上述条件1强调了子环中加法逆元的存在和封闭 性,条件2强调了乘法封闭性。 理想子环的充要条件是:
作为其根。换言之,若deg
i
(x)
=
(x-
20)
(x-
21)
(x-
(i (x))=
22 )…(x-
li,必有
) 2( li1 )
这里,deg(i (x) )= li m,本原元的共轭根系对
(2-4)
这里,
GCD表示最大公约数(Greatest Common Divisor)
推理
循环群中n阶元素的n次幂恒等于1
23
各次幂 k
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
的 多项式
多项式系数 m重
1
(0001)
(0010)
2
(0100)
3
(1000)
+1
(0011)
本原多项式 Primary Polynomials

近世代数习题第二章

近世代数习题第二章

第二章 群论近世代数习题第二章 第一组 1-13题;第二组 14-26题;第三组 27-39题;第四组 40-52题,最后提交时间为11月25日1、设G 是整数集,则G 对运算4++=b a b a是否构成群?2、设G 是正整数集,则G 对运算b a b a =是否构成群?3、证明:正整数对于普通乘法构成幺半群.4、证明:正整数对于普通加法构成半群,不含有左右单位元.5、G 是整数集,则G 对运算1=b a是否构成群?6、设b a ,是群G 中任意两元素. 证明:在G 中存在唯一元素x ,使得b axba =.7、设u 是群G 中任意取定的元素,证明:G 对新运算aub b a = 也作成群.8、证:在正有理数乘群中,除1外,其余元素阶数都是无限.9、证:在非零有理数乘群中,1的阶是1,-1的是2,其余元素阶数都是无限.10、设群G 中元素a 阶数是n ,则m n e a m |⇔=.11、设群G 中元素a 阶数是n ,则 ),(||n m n a m =.,其中k 为任意整数. 设(m,n )=d,m=dk,n=dl,(k,l)=1. 则(a^m)^l=a^(ml)=a^(kdl)=(a^(n))^k=e. 设(a^m )^s=e,,即a^(ms)=e,所以n|ms,则l|ks,又因为(l,k)=1,所以l|s,即a^m 的阶数为l.12、证明:在一个有限群中,阶数大于2的元素个数一定是偶数.13、设G 为群,且n G 2||=,则G 中阶数等于2的一定是奇数.14、证明:如果群G 中每个元素都满足e x =2,则G 是交换群.对每个x ,从x^2=e 可得x=x^(-1),对于G 中任一元x ,y ,由于(xy )^2=e ,所以xy=(xy )^(-1)=y^(-1)*x(-1)=yx.或者 :(ab)(ba)=a(bb)a=aea=aa=e ,故(ab)的逆为ba ,又(ab)(ab)=e ,这是因为ab 看成G 中元素,元素的平方等于e. 由逆元的唯一性,知道ab=ba 15、证明:n 阶群中元素阶数都不大于n .16、证明:p 阶群中有1-p 个p 阶元素,p 为素数.17、设群G 中元素a 阶数是n ,则)(|t s n a a ts -⇔=.18、群G 的任意子群交仍是子群.19、设G 为群,G b a ∈,,证明:a a babbab k k =⇔=--11)(.20、证明:交换群中所有有限阶元素构成子群.21、证明:任何群都不能是两个真子群的并. 证明:任何群都不能是两个真子群的并. 可以用反证法,设G=HUK ,H 、K 均为真子群,存在a,b\in G, a\not\in H,b\not\in K ,从而a\in K, b\in H. ab\in G, 则ab\in H 或ab\in K. 若ab\in H 得出矛盾,ab\in K ,也可得出矛盾.22、设G 为群,H a a G a G H n m ∈∈≤,,,,证明:若1),(=n m ,则H a ∈.23、证明:整数加群是无限循环群.24、证明:n 次单位根群为n 阶循环群.25、证明:循环群的子群仍是循环群.26、设>=<a G 为6阶循环群,给出它的所有生成元及所有子群.27、求模18的剩余类加群(Z 18,+,[0])的所有子群及这些子群的生成元.28、设群G 是24阶群,G 中元素a 的阶是6,则元素a 2的阶为?28、解: 在群G 中,对于ㄧa ㄧ=n ,a^r ∈G ,有ㄧa^r ㄧ=n/(n ,r ),所以由 ㄧa ㄧ=6 可得:ㄧa^2ㄧ=6/(6,2)=3.29、设H 1和H 2分别是群(G , ,e )的子群,并且| H 1 |=m ,| H 2 | =n ,m 、n 有限,(m ,n )=1,试证:H 1∩H 2={e }.30、设群中元素a 的阶数为无限,证明:t s a a ts ±=>⇔>=<<.31、设群中元素a 的阶数为n ,证明:),(),(n t n s a a t s =>⇔>=<<.32、设G 是交换群,e 是G 的单位元,n 是正整数,},,|{e a G a a H n =∈=问:H 是否是G 的子群?为什么?32解:H 是G 的子群. 下证:① 由e ∈H ,故H 为非空子集;②对于任意a ,b ∈H ,a^n=e ,b^n=e ,故[b^(-1)]^n=e ,因为G 是交换群,所以有:(a^n)* ﹛[b^(-1)]^n ﹜=aa ···a*[b^(-1)] [b^(-1)]···[b^(-1)]= ﹛a[b^(-1)] ﹜^n=e ,从而a[b^(-1)] ∈H ,故 H 是G 的子群. 证毕.(注:刚才a 和[b^(-1)]展开均为n 个相乘)33、设群G 中两元素满足1|)||,(|,==b a ba ab ,证明:>>=<<ab b a ,. 34、证明:⎭⎬⎫⎩⎨⎧ ,!1,,21,1n 是有理数加群的一个生成系. 35、设b a ,是群G 的两个元,,ba ab =a 的阶是m ,b 的阶是n ,n m ,有限且)(),(,1),(b K a H n m ===,求K H 36、设S 3是3次对称群,a=(123)∈S 3.(1) 写出H =< a>的所有元素.(2) 计算H 的所有左陪集和所有右陪集.(3) 判断H 是否是S3的不变子群,并说明理由.37、在5次对称群S 5中,求(12)(145),(4521)-1以及(354)的阶数.37、解: (12)(145)的阶数为[2,3]=6 ; (4521)-1的阶数为4 ; (354)的阶数为3.38、设G 是一交换群,n 是一正整数,H 是G 中所有阶数是n 的因数的元素的集合. 试问:H 是否是G 的子群?为什么?39、设1||>M ,证明:M 的全体变换作成一个没有单位元的半群.40、设1||>M ,证明:M 的全体非双射变换关于变换的乘法不作成群.41、证明:不相连的循环相乘可以交换.42、将3S 所有元素用循环表示.43、将4S 所有元素用循环乘积表示.(1)(12), (13),(14),(23),(24),(34)(123),(124),(134),(132),(142),(143),(234),(243)(1234),(1243),(1324),(1342),(1423),(1432),(12)(34),(13)(24),(14)(23)44、3S 中不能同)123(交换的所有元素.45、写出5S 中阶数等于2的所有元素.46、置换δ与其逆1-δ具有相同的奇偶性.置换\delta=\delta_1\delta_2\cdots\delta_s,\delta_i 为对换,又因为(\delta_1\delta_2\cdots\delta_s )(\delta_s\delta_(s-1)\cdots\delta_1)=(1),从而得到\delta^{-1},进而得证结果.47、求下列置换的阶数)48)(3172(;)26)(5172(;⎪⎪⎭⎫ ⎝⎛641523123456. 48、设H ={(1),(123),(132)}是对称群S3的子群,写出H 的所有左陪集和所有右陪集,问H 是否是S3的不变子群?为什么?49、给出4S 的所有子群.50、证明:无限循环群的非e 子群指数均有限.H\not={e},H=(a^s)为G 的子群,其中s 为H 中所含元素的指数最小正整数. 证明G=a^0HUaHU\cdotsUa^{s-1}H,且a^iH 与a^jH 煤油交集,i\not=j.51、设G 是整数集,规定3-+=b a b a ,证明:G 关于此运算构成群,并求出单位元.52、证明:指数是2的子群必是正规子群.53、证明:素数阶群是循环单群.54、设>=<a N 是群G 的一个正规子群,若N H ≤,则H 也是G 的正规子群.55、证明:若群G 的n 阶子群有且仅有一个,则此子群必为G 的正规子群.56、四次对称群4S 关于Klein 四元群4K 的商群44/K S 与3S 同构.57、证明:群中子群的共轭关系是一个等价关系.58、证明:n S 的所有对换构成一个共轭类.59、写出3S 的所有Sylow p -子群.60、证明:15阶群都是循环群.61、证明:200阶群不是单群.62、证明:196阶群必有一个阶数大于1的Sylow 子群,此子群为正规子群.28、解: 在群G 中,对于ㄧa ㄧ=n ,a^r ∈G ,有ㄧa^r ㄧ=n/(n ,r ),所以由 ㄧa ㄧ=6 可得:ㄧa^2ㄧ=6/(6,2)=3.32解:H 是G 的子群. 下证:① 由e ∈H ,故H 为非空子集;②对于任意a ,b ∈H ,a^n=e ,b^n=e ,故[b^(-1)]^n=e ,因为G 是交换群,所以有:(a^n)* ﹛[b^(-1)]^n ﹜=aa ···a*[b^(-1)] [b^(-1)]···[b^(-1)]= ﹛a[b^(-1)] ﹜^n=e ,从而a[b^(-1)] ∈H ,故 H 是G 的子群. 证毕.(注:刚才a 和[b^(-1)]展开均为n 个相乘)37、解: (12)(145)的阶数为6 ; (4521)-1的阶数为4 ;(354)的阶数为3.。

近世代数课件-2-2_群的定义

近世代数课件-2-2_群的定义
(2)运算 o适合结合律;(3)运算 o适合消去律.
2020/4/27
五. 有限群的特殊性
推论 一个非空有限集G 构成有限群的条件 : (1)存在G上的一个代数运算•; (2)运算 • 适合结合律; (3)运算 • 适合消去律.
2020/4/27五. 来自限群的特殊性2020/4/27
六、特殊群-Klein(克莱因)四元群
本节教学目的与要求: 记住群的定义,掌握群的基本性质和有限群的特殊性质,并
能熟练判定一个给定的代数系是否是群.
一. 群的定义及常见的群 二. 群的4个等价定义 三. 一些特殊群的例子 四. 群的消去率性质 五. 有限群的特殊性 六. 特殊的群—Klein(克莱因)四元群
2020/4/27
一. 群的定义及常见的群
近世代数
第二章 群
近世代数的主要研究对象是各种各样的代数系, 即具有一些代数运算的集合。
群是具有一种代数运算的代数系,它是近世代数 中一个比较古老,而且内容丰富的重要分支,在数学、 物理、化学、计算机等自然科学的许多领域都有广泛 应用。
从本节开始,学习群的有关性质。
2020/4/27
2.2 群的定义
注:
2020/4/27
一.群的定义及常见的群
2020/4/27
一.群的定义及常见的群
注:
2020/4/27
二. 群的四个等价定义
2020/4/27
三. 几个特殊群的例子
2020/4/27
四. 群的消去率性质
注:
2020/4/27
五. 有限群的特殊性
推论 一个非空有限集G构成有限群的条件: 1存在G上的一个代数运算o;
2020/4/27
六、特殊群-Klein(克莱因)四元群

近世代数课件-2-7子群的陪集

近世代数课件-2-7子群的陪集
2020/4/27
§2.7 子群的陪集
一.等价关系与陪集 二.左陪集的定义与性质 三.右陪集的定义与性质 四.左、右陪集之间的关系 五.指数的定义与拉格朗日定理 六.子群乘积的性质
2020/4/27
18:22
一、等价关系和陪集
2020/4/27
18:22
一、等价关系、左陪集的定义与性质
2020/4/27
18:22
二、左陪集的定义与性质
2020/4/27
18:22
二、左陪集的定义与性质
2020/4/27
18:22
二、左陪集的定义与性质
2020/4/27
18:22
三. 右陪集的定义和性质
2020/4/27
18:22
三. 右陪集的定义和性质
2020/4/27
本节教学目的与要求: 辨清陪集的形成以及它们与母群的关系与子群H的联系;
了解群的陪集分解中对左右边旁的要求和注意事项;掌握陪集 和陪集的代表元所形成的系列性质; 掌握Lagrange定理和推 论及其有关理论应用。
对陪集概念的了解和拉格朗日定理的应用是重点,学会并 掌握有关陪集理论的等式命题证明方法掌握其中的定理证明方 法是难点。
18:22
三. 右陪集的定义和性质
注:例1中有
2020/4/27
18:22
四.左、右陪集之间的关系
2020/4/27
18:22
五. 指数的定义及Lagrange定理
2020/4/27
18:22
五. 指数的定义及Lagrange定理
2020/4/27
18:22
五. 指数的定义及Lagrange定理
近世代数
第二章 群
近世代数的主要研究对象是各种各样的代数系, 即具有一些代数运算的集合。

近世代数1

近世代数1
§2.1 基本概念
再证唯一性: 设 [a1]=[a2], [b1]=[b2] ⇒ n | (a1−a2), n | (b1−b2), ⇒ n | (a1−a2)(b1−b2) ⇒ n | (a1b1+a2b2−a1b2−a2b1) ⇒ n | {a1b1− a2b2+(a2−a1)b2+ a2(b2−b1)}⇒ n | (a1b1− a2b2), 所以 [a1a2]=[b1b2]. 所以模 n 的乘法是 Zn*中的一个二元运算. 结合律显然满足. 单位元是 [1]. 对任何 [a]∈Zn*, 由 (a, n)=1 知存在 p, q ∈ Z 使 pa +qn=1, 因而有 pa ≡ l
§2.1 基本概念
定理 4 半群 (G, ·) 是群的充要条件是: 对任何 a,b ∈G, 方程 ax=b 和 ya=b 在 G 中均有解. 必要性: 证 必要性 因为 G 是群, a 有逆元 a-1, 故可得 ax=b 的解为 x=a-1b, ya=b 的解是 y=ba-1. 充分性: 充分性 由定理 3, 只要证明 G 中有左单位元和任 意一个元素 a 有左逆元. 有左单位元: 先证 G 有左单位元 任取 a∈G, 方程 ya=a 有解, 设 其解为 e, 任取 g∈G, 方程 ax=g 有解, 设其解为 b, 即 ab=g, 于是有 eg= eab=ab=g, 因而 e 是左单位元. 有左逆元: 再证 ∀a∈G 有左逆元 因方程 ya=e 有解, 则其解就 是 a 的左逆元.
§2.1 基本概念
一个群的乘法表称为群表 群表有以下性质: 群表, 群表 (1) 每行(列)包含每一个元素. (2) 若 G 是可换群, 则它的乘法表对称于主对角线. 很容易用乘法表来定义一个集合中的二元运算, 但要 定义一个乘法表是群表就不很容易了. 一个乘法表是 群表的充分必要条件请看本节习题第 7 题. 如果一个群 G 是个有限集, 则称 G 是有限群 否则 有限群, 有限群 无限群. 称为无限群 G 的元素个数 |G| 称为群的阶. 无限群 阶 常把可换群中的运算称为加法, 故可换群又叫加群 加群. 加群 加群中的单位元叫做零元 逆元叫做负元 例如 (Z, +) 零元, 负元, 零元 负元 中零元就是 0, x 的负元是 −x.

近世代数讲义之第2章 群x

近世代数讲义之第2章 群x
−1 −1
� a = a −1 + a − 2 , a −1 = 4 − a .
至此,根据群的定义知道, Z 关于运算 � 确构成一个群. 另外,根据群的性质,我们易知群有如下等价的定义. 定义 1.1' 若代数体系 {G; �} 满足以下条件,那么称 G 关于运算“ � ”是群: (1)运算“ � ”满足结合律: a � (b � c) = ( a � b) � c , ∀a, b, c ∈ G ; (2) G 有单位元素 e : e � a
( a � b ) � c = ( a + b − 2) � c = a + b − 2 + c − 2 = a + (b + c − 2 ) − 2 = a + (b � c ) − 2 = a � (b � c )
(3)找单位元 e .若 a = e � a = e + a − 2 ,则 e = 2 . (4)对 ∀a ∈ Z ,找逆元 a . 2 = e = a
−1 −1
- 23 -
第二章 群
证明 (1) ⇒ ( 2) ⇒ (3) 是显然的,现在证明 (3) ⇒ (1) . 因为 H 是 G 的非空子集,所以对于 a ∈ H ,由(3)有 e = aa ∈ H ,即 H 有单位元.又对于任 意 a ∈ H ,有 a
−1 −1
= ea −1 ∈ H ,即 H 中的任意元素有逆元,所以 H 是 G 的子群.
第二章 群
第二章 群
本章我们讨论具有一个运算的代数体系——群的结构和性质.
第 1 节 群的概念和性质
定义 1.1 若代数体系 {G; �} 满足以下条件,那么称 G 关于运算“ � ”是群: (1)对于 G 中任意元素 a, b, c ,有 a � (b � c) = (a � b) � c ; (2)在 G 中存在元素 e ,对任意 a ∈ G ,有 e � a = a ; (3)对 G 中任意元素 a ,存在 b ∈ G ,使得 b � a = e . 一般地,称群 G 是乘法群,并简记 a � b 为 ab .特别地,若群 G 的运算“ � ”还满足交换律( ,则称 G 是加群或交换群(Abel 群) ,并用 a + b 表示 a � b . ab = ba , ∀a, b ∈ G ) 定义 1.2 我们称群 G 所含元素的个数为群 G 的阶数,记为 G .如果 G < ∞ ,则称 G 是有限群, 否则称 G 是无限群. 例 1.1 有理数集合关于数的通常加法运算构成 Abel 群.整数集合关于数的加法运算是 Abel 群, 常称 {Z; +} 为整数加群. Z n 关于加法运算是 Abel 群,常称 {Z n; +} 为剩余类加群(参看第一章第 4 节中有关运算的规定). {Q ; +} 是无限群. {Z n; +} 是有限群,阶数为 n . +} 和 {Z; 注意, Q , Z 和 Z n 关于乘法运算都不是群,因为 Q , Z 中的数 0 及 Z n 中的元素 0 不满足群的 定义条件(3). 例 1.2 证明: {Z p

近世代数

近世代数
子环的充分必要条件是,S关于R的减法与乘法封闭, 即任给 , 有a.b~s,有a-b~S,ab~S
§2.2 子环
• 定理2 设R是一个环,S是R的非空子集, 则S为R的
证明
证明
例3
§2.2 子环
由S关于R的减法封闭, 从而(S,+)是(R,+)的子环. 进一 步由定理条件知, 满足定理1的两个条件, 所以 为 的子环. 于是, 充分性得证, 而必要性是显然的.
近世代数
第二章 群、环、域
基本概念
在普通代数里,我们计算的对象是数, 计算的方法是加、减、乘、除,数学渐渐 进步,我们发现,可以对于若干不是数的 事物,用类似普通计算的方法来加以计算。 这种例子我们在高等代数里已经看到很多, 例如对于向量、矩阵、线性变换等就可 以进行运算。近世代数(或抽象代数)的 主要内容就是研究所谓代数系统,即带有 运算的集合。
定理8
设R是有单位元的交换环, 则R的每个极大理想都是素理想. • 证明 设I为R的极大理想. 设ab~I,a~]I. 令N=(a)+I,则N为R的理想,且 I(a),但I=!(a)+I. 因为I为R的极大理想, 所以N=R. 从而1R~I, 故存在 t~R,c~I,使得1R=at+c,所以,b=b*1R=abt+bc~I.这就证明了I为R的素 理想.
例7
试求Z的所有理想为dZ,d~Z且d>=0
§2.3 理想
定义3
设R为环,I1,I2为R的理想. 集合 I1+I2={a1+a2|a1~I1,a2~I2},I1#I2={a|a~I1,a~I2}分别称为理想 I1,I2的和与交. 定理3 环R的两个理想I1与I2的和I1+I2与交I1#I2都是R的理想. 类似地, 可以定义环R的任意有限多个理想的和与任意多个理想的交的 概念, 并且可以证明: 定理4 环R的任意有限多个理想的和还是理想.环R的任意多个理想的交 还是理想.

最新近世代数习题第二章

最新近世代数习题第二章

第二章 群论近世代数习题第二章 第一组 1-13题;第二组 14-26题;第三组 27-39题;第四组 40-52题,最后提交时间为11月25日1、设G 是整数集,则G 对运算4++=b a b a是否构成群?2、设G 是正整数集,则G 对运算b a b a =是否构成群?3、证明:正整数对于普通乘法构成幺半群.4、证明:正整数对于普通加法构成半群,不含有左右单位元.5、G 是整数集,则G 对运算1=b a是否构成群?6、设b a ,是群G 中任意两元素. 证明:在G 中存在唯一元素x ,使得b axba =.7、设u 是群G 中任意取定的元素,证明:G 对新运算aub b a = 也作成群.8、证:在正有理数乘群中,除1外,其余元素阶数都是无限.9、证:在非零有理数乘群中,1的阶是1,-1的是2,其余元素阶数都是无限.10、设群G 中元素a 阶数是n ,则m n e a m |⇔=.11、设群G 中元素a 阶数是n ,则 ),(||n m n a m =.,其中k 为任意整数. 设(m,n )=d,m=dk,n=dl,(k,l)=1. 则(a^m)^l=a^(ml)=a^(kdl)=(a^(n))^k=e. 设(a^m )^s=e,,即a^(ms)=e,所以n|ms,则l|ks,又因为(l,k)=1,所以l|s,即a^m 的阶数为l.12、证明:在一个有限群中,阶数大于2的元素个数一定是偶数.13、设G 为群,且n G 2||=,则G 中阶数等于2的一定是奇数.14、证明:如果群G 中每个元素都满足e x =2,则G 是交换群.对每个x ,从x^2=e 可得x=x^(-1),对于G 中任一元x ,y ,由于(xy )^2=e ,所以xy=(xy )^(-1)=y^(-1)*x(-1)=yx.或者 :(ab)(ba)=a(bb)a=aea=aa=e ,故(ab)的逆为ba ,又(ab)(ab)=e ,这是因为ab 看成G 中元素,元素的平方等于e. 由逆元的唯一性,知道ab=ba 15、证明:n 阶群中元素阶数都不大于n .16、证明:p 阶群中有1-p 个p 阶元素,p 为素数.17、设群G 中元素a 阶数是n ,则)(|t s n a a ts -⇔=.18、群G 的任意子群交仍是子群.19、设G 为群,G b a ∈,,证明:a a babbab k k =⇔=--11)(.20、证明:交换群中所有有限阶元素构成子群.21、证明:任何群都不能是两个真子群的并. 证明:任何群都不能是两个真子群的并. 可以用反证法,设G=HUK ,H 、K 均为真子群,存在a,b\in G, a\not\in H,b\not\in K ,从而a\in K, b\in H. ab\in G, 则ab\in H 或ab\in K. 若ab\in H 得出矛盾,ab\in K ,也可得出矛盾.22、设G 为群,H a a G a G H n m ∈∈≤,,,,证明:若1),(=n m ,则H a ∈.23、证明:整数加群是无限循环群.24、证明:n 次单位根群为n 阶循环群.25、证明:循环群的子群仍是循环群.26、设>=<a G 为6阶循环群,给出它的所有生成元及所有子群.27、求模18的剩余类加群(Z 18,+,[0])的所有子群及这些子群的生成元.28、设群G 是24阶群,G 中元素a 的阶是6,则元素a 2的阶为?28、解: 在群G 中,对于ㄧa ㄧ=n ,a^r ∈G ,有ㄧa^r ㄧ=n/(n ,r ),所以由 ㄧa ㄧ=6 可得:ㄧa^2ㄧ=6/(6,2)=3.29、设H 1和H 2分别是群(G , ,e )的子群,并且| H 1 |=m ,| H 2 | =n ,m 、n 有限,(m ,n )=1,试证:H 1∩H 2={e }.30、设群中元素a 的阶数为无限,证明:t s a a ts ±=>⇔>=<<.31、设群中元素a 的阶数为n ,证明:),(),(n t n s a a t s =>⇔>=<<.32、设G 是交换群,e 是G 的单位元,n 是正整数,},,|{e a G a a H n =∈=问:H 是否是G 的子群?为什么?32解:H 是G 的子群. 下证:① 由e ∈H ,故H 为非空子集;②对于任意a ,b ∈H ,a^n=e ,b^n=e ,故[b^(-1)]^n=e ,因为G 是交换群,所以有:(a^n)* ﹛[b^(-1)]^n ﹜=aa ···a*[b^(-1)] [b^(-1)]···[b^(-1)]= ﹛a[b^(-1)] ﹜^n=e ,从而a[b^(-1)] ∈H ,故 H 是G 的子群. 证毕.(注:刚才a 和[b^(-1)]展开均为n 个相乘)33、设群G 中两元素满足1|)||,(|,==b a ba ab ,证明:>>=<<ab b a ,. 34、证明:⎭⎬⎫⎩⎨⎧ ,!1,,21,1n 是有理数加群的一个生成系. 35、设b a ,是群G 的两个元,,ba ab =a 的阶是m ,b 的阶是n ,n m ,有限且)(),(,1),(b K a H n m ===,求K H 36、设S 3是3次对称群,a=(123)∈S 3.(1) 写出H =< a>的所有元素.(2) 计算H 的所有左陪集和所有右陪集.(3) 判断H 是否是S3的不变子群,并说明理由.37、在5次对称群S 5中,求(12)(145),(4521)-1以及(354)的阶数.37、解: (12)(145)的阶数为[2,3]=6 ; (4521)-1的阶数为4 ; (354)的阶数为3.38、设G 是一交换群,n 是一正整数,H 是G 中所有阶数是n 的因数的元素的集合. 试问:H 是否是G 的子群?为什么?39、设1||>M ,证明:M 的全体变换作成一个没有单位元的半群.40、设1||>M ,证明:M 的全体非双射变换关于变换的乘法不作成群.41、证明:不相连的循环相乘可以交换.42、将3S 所有元素用循环表示.43、将4S 所有元素用循环乘积表示.(1)(12), (13),(14),(23),(24),(34)(123),(124),(134),(132),(142),(143),(234),(243)(1234),(1243),(1324),(1342),(1423),(1432),(12)(34),(13)(24),(14)(23)44、3S 中不能同)123(交换的所有元素.45、写出5S 中阶数等于2的所有元素.46、置换δ与其逆1-δ具有相同的奇偶性.置换\delta=\delta_1\delta_2\cdots\delta_s,\delta_i 为对换,又因为(\delta_1\delta_2\cdots\delta_s )(\delta_s\delta_(s-1)\cdots\delta_1)=(1),从而得到\delta^{-1},进而得证结果.47、求下列置换的阶数)48)(3172(;)26)(5172(;⎪⎪⎭⎫ ⎝⎛641523123456. 48、设H ={(1),(123),(132)}是对称群S3的子群,写出H 的所有左陪集和所有右陪集,问H 是否是S3的不变子群?为什么?49、给出4S 的所有子群.50、证明:无限循环群的非e 子群指数均有限.H\not={e},H=(a^s)为G 的子群,其中s 为H 中所含元素的指数最小正整数. 证明G=a^0HUaHU\cdotsUa^{s-1}H,且a^iH 与a^jH 煤油交集,i\not=j.51、设G 是整数集,规定3-+=b a b a ,证明:G 关于此运算构成群,并求出单位元.52、证明:指数是2的子群必是正规子群.53、证明:素数阶群是循环单群.54、设>=<a N 是群G 的一个正规子群,若N H ≤,则H 也是G 的正规子群.55、证明:若群G 的n 阶子群有且仅有一个,则此子群必为G 的正规子群.56、四次对称群4S 关于Klein 四元群4K 的商群44/K S 与3S 同构.57、证明:群中子群的共轭关系是一个等价关系.58、证明:n S 的所有对换构成一个共轭类.59、写出3S 的所有Sylow p -子群.60、证明:15阶群都是循环群.61、证明:200阶群不是单群.62、证明:196阶群必有一个阶数大于1的Sylow 子群,此子群为正规子群.28、解: 在群G 中,对于ㄧa ㄧ=n ,a^r ∈G ,有ㄧa^r ㄧ=n/(n ,r ),所以由 ㄧa ㄧ=6 可得:ㄧa^2ㄧ=6/(6,2)=3.32解:H 是G 的子群. 下证:① 由e ∈H ,故H 为非空子集;②对于任意a ,b ∈H ,a^n=e ,b^n=e ,故[b^(-1)]^n=e ,因为G 是交换群,所以有:(a^n)* ﹛[b^(-1)]^n ﹜=aa ···a*[b^(-1)] [b^(-1)]···[b^(-1)]= ﹛a[b^(-1)] ﹜^n=e ,从而a[b^(-1)] ∈H ,故 H 是G 的子群. 证毕.(注:刚才a 和[b^(-1)]展开均为n 个相乘)37、解: (12)(145)的阶数为6 ; (4521)-1的阶数为4 ;(354)的阶数为3.。

近世代数初步(第二版)课后习题答案(石生明)02

近世代数初步(第二版)课后习题答案(石生明)02

第二章 域 和 环1畅基本概念:域、子域、扩域、域的特征、素域.环、子环、理想、商环、同态、同构、同态基本定理.整环、极大理想.2畅商环的应用例子:爱森斯坦判别法的证明(整数环上多项式性质的证明)可化归到整数环的剩余类域上.3畅新域或新环的构造:复数域(作为实数域R上使x2+1=0有根的最小扩域);二元域;集合S在域F上生成的扩域;商环、剩余类环F[x]/(f(x))(包括构造F上添加任意不可约多项式f(x)的一个根的扩域)、Z/(n)(包括构造p个元素的域);理想的和、积;环的直和;整环的分式域.4畅域扩张的初步知识:代数扩张、有限扩张、单代数扩张、单超越扩张.集合S在F上生成的扩域的三种刻画: F(S)=f1(α1,α2,…,αt)f2(α1,α2,…,αt)橙t∈N(自然数),橙α1,α2,…,αt∈S,橙fi(x1,x2,…,xt)∈F[x1,x2,…,xt],i=1,2.f2(α1,α2,…,αt)≠0=由F及S的元尽可能地多次作加减乘除所得的元素的集合=含F及S的最小的域.单扩张的构造:F(α)=f1(α)f2(α)橙f1(x),f2(x)∈F[x],f2(α)≠0.若α为F上代数元,f(x)是以α为根的F上不可约多项式(α的极小多项式),其次数为n,则F(α)是F上n维线性空间,而1,α,…,αn-1是它的一组基.扩张次数[E:F]及性质:对域扩张E车H车F有[E:F]=[E:H][H:F].5畅域的应用举例:(1)二元域用于纠错码.(2)域的扩张次数的性质用于否定三大几何作图难题(给出了用圆规直尺作图作出的量满足的条件).6畅中国剩余定理.1畅这一章讲域、环的基本概念.主要是讲各种造新域和新环的方法,环是为·84·域起铺垫的作用.本章的内容充分体现总导引第一点中的思想.2畅体会造二元域的数学背景及如何用于构造纠一个错的码.思考一下能纠错的关键之点在哪里,随便指定一个矩阵H是否能起到纠错的作用?3畅体会对圆规直尺作图问题进行分析中的几个步骤:(1)用解析几何知识分析出能用圆规直尺作图作出的量(长度)满足的方程;(2)用扩域的语言表达上述作出的量所在的范围;(3)用扩张次数的性质来表达作出的量满足的条件.4畅这一章中我们充分地应用了引论章§2末尾的定理.即用了一般域上线性方程组、矩阵运算、线性空间、多项式等理论的大量性质.促进读者巩固高等代数的知识.5畅与其它近世代数教材相比,本书中域的内容(包括下一章的有限域的内容)放到整环的因式分解唯一性理论之前,并且替代它而成为教材的核心部分.内容也改变很多,加入纠错码的例子和三大几何作图难题的讨论这些应用内容,而舍去了可分扩张及分裂域等内容.由于目标明确(参看总导引第一条)且有应用内容,增加了学习的生动性.(1)造一个码长13,容量为29的能纠一个错的码集合.(2)证明上面的码一般不能纠两个错.(举例:考察码子X=(0,0,0,0,0,0,0,0,0,0,0,0,0)T错了两位成为Y=(1,1,0,0,0,0,0,0,0,0,0,0,0)T.能否用书中所述的译码方法由Y恢复成X?§1 域的例子,复数域及二元域的构造,对纠一个错的码的应用以下习题中打倡者为必作题,其余为选作题. 倡1畅令C0=ab-baa,b∈R,则(1)C0对矩阵的加法和乘法成为域.(2)C0中R0=a00aa∈R是同构于R的子域.·94· (3)干脆将R0与R等同,将a 00 a写成a,则可写ab-ba=a00a+b00b01-10=a+b01-10.作映射 CφC0a+bia+b01-10,橙a,b∈R,则φ是域同构.以下2-6题出现的运算是F2中元素的运算. 倡2畅计算1111001010110100101111110110111101100111010001110. 倡3畅求1111001111010111-1. 倡4畅解方程组x1+x2+x3+x4+x5+x6=1 x3+x4+0+x6=0x1+x2+0+x4=1 x2+x3+x4=0. 倡5畅计算(x4+x3+x+1)2,(x3+x2+1)(x5+x2+x+1). 倡6畅(1)以x2+x+1除x6+x4+x3+1,求商及余式.(2)求x2+x+1与x6+x4+x3+1的最大公因式d(x).(3)求u(x),v(x),使u(x)(x2+x+1)+v(x)(x6+x4+x3+1)=d(x).·05· 倡7畅求作一个13位0,1序列的码集合,其容量为29,有纠一个错的能力.8畅F为素数特征p的域,a,b,a1,…,an∈F,则(1)(a+b)p=ap+bp,而且无论p为奇偶皆有(a-b)p=ap-bp.(2)(a+b)pk=apk+bpk.(3)(a1+a2+…+an)pk=apk1+apk2+…+apkn.(参见引论章习题6)(4)映射 FφF,aap是F的自同态.且φ是同构当且仅当方程xp-b=0对所有b∈F都有解.1畅略.2畅111110001.3畅1001010110101110.4畅x1=x5+x6+1x2=x6+1x3=x5+x6x4=x5+1.5畅x8+x6+x2+1,x8+x7+x+1.6畅(1)x6+x4+x3+1=(x4+x3+x2+x)(x2+x+1)+x+1.(2)(x6+x4+x3+1,x2+x+1)=1.(3)x(x6+x4+x3+1)+(x5+x4+x3+x2+1)(x2+x+1)=1.7畅令H=10101010101010110011001100000111100001100000001111114×13,以HX13×1=0的解空间为码集.因秩H=4,未知数的数目为13,故解空间维数为13-4=9.由于码集合是F2上9维空间,共有29个解向量,即29个码子,码·15·集合的容量为29.与课文中例4一样有纠一个错的能力.8畅(1)由二项定理(参见引论章习题6),(a+b)p=ap+bp+∑p-1i=1Cipaibp-i.当1≤i≤p-1时,Cip=p(p-1)…2·1(p-i)!i!.而(p-i)!及i!中的素因子皆小于p,故p|Cip.题设F的特征为p,故∑p-1i=1Cipaibp-i=0.这证明了(a+b)p=ap+bp.对(a-b)p=ap+(-b)p=ap+(-1)pbp.当p为奇素数时,(-1)p=-1;当p=2时,(-1)2=1=-1.故(a-b)p=ap-bp.(2)(a+b)pk=((a+b)p)pk-1=(ap+bp)pk-1.利用归纳法可得(a+b)pk=(ap)pk-1+(bp)pk-1=apk+bpk.(3)(a1+a2+…+an)pk=apk1+(a2+…+an)pk.利用归纳法可得(a1+…+an)pk=apk1+apk2+…+apkn.(4)φ(a+b)=(a+b)p=ap+bp=φ(a)+φ(b).φ(ab)=(ab)p=apbp=φ(a)φ(b).故φ为F的自同态.又φ(a-b)=(a-b)p=ap-bp=φ(a)-φ(b),就有φ(a)=φ(b)当且仅当a=b.即φ是单射.由以上论证,φ是同构当且仅当φ是满射当且仅当对橙b∈F,有a∈F使φ(a)=ap=b也即方程xp-b=0有解.§2 域的扩张,扩张次数,单扩张的构造以下习题中打倡者为必作题,其余为选作题.1畅F炒E是域扩张.(1)α1,α2,…,αs∈E,则F(α1,α2,…,αs)=f1(α1,…,αs)f2(α1,…,αs)f1,f2∈F[x1,…,xs],f2(α1,…,αs)≠0.·25·(2)S炒E,则F(S)=∪S0炒SS0有限集F(S0). 倡2畅计算[Q(2,3):Q],[Q(2+3):Q].证明Q(2,3)=Q(2+3). 倡3畅F炒E是域扩张,且[E:F]=p是素数,则任意α∈E\F,有E=F(α). 倡4畅E车F为域扩张,α1,α2,…,αt∈E,[F(αi):F]=ni,i=1,2,…,t,则[F(α1,…,αt):F]≤n1n2…nt. 倡5畅F炒E为有限次域扩张,则必为代数扩张. 倡6畅F炒E为有限次域扩张,则有α1,…,αt∈E,使得E=F(α1,…,αt).7畅F炒E为域扩张,S炒E且S中每个元皆是F上代数元,则F(S)是F上代数扩张.进而,E中全部代数元作成F的一个扩域. 倡8畅令E=Q(u).(1)设u3-u2+u+2=0.试把(u2+u+1)(u2-u)和(u-1)-1表成au2+bu+c的形式,a,b,c∈Q.(2)若u3-2=0,把u+1u-1表成au2+bu+c的形式,a,b,c∈Q.9畅令E=F(u),u是极小多项式为奇数次的代数元.证明E=F(u2).10畅求32+5在Q上的极小多项式.11畅E车F,E是环,F是域,s∈E是F上代数元,则s可逆当且仅当有F上多项式f(x),其常数项不为零使f(s)=0.并且s-1=g(s),g(x)是F上多项式.12畅E是F上的代数扩张,则E的含F的子环都是子域.13畅设[E:F]=n,则不存在子域G,使E车G车F及[G:F]与n互素. 倡14畅R(实数域)上任意代数扩张E若不为R,则同构于C.特别地,R上除二次扩域外没有其它有限次扩域.(这正是Hamilton等数学家找不到“三维复数”的原因).1畅(1)这几令S={α1,…,αs},按命题2下面一段的约定F(α1,α2,…,αs)就是F(S).命题1中的(2)式定义了F(S).易看出本题所设的集合与F(S)的定义集合是一致的.(2)比较(1)的结果和命题1中(2)式在一般集合S下F(S)的定义即得F(S)={F(α1,…,αk)|橙{α1,α2,…,αk}炒S}·35·=∪S0炒SS0有限集F(S0).2畅易看出Q(2,3)=Q(2)(3)={(a1+b12)+(a2+b22)3|ai,bi∈Q}.我们来证1,3在Q(2)上是线性无关的.设(a1+b12)+(a2+b22)3=0,若a2+b22≠0,则3=-a1-b12a2+b22∈Q(2).令3=a+b2,a,b∈Q.将两边平方,得到3=a2+2ab2+b2.因2不是有理数,则a,b之一为零.若a=0,则32=2b2=2q2p2,(p,q)=1.又因左边为整数,必须p2|2,只能p=1,由32=2q2,必须2|32,这也不可能.若b=0,则3=a2,3=a是有理数,这也不可能.这些矛盾推出a2+b22=0,a1+b12也就为零,说明1,3在Q(2)上线性无关.因而[Q(2)(3):Q(2)]=2.结果[Q(2)(3):Q]=[Q(2)(3):Q(2)][Q(2):Q]=2×2=4.再证[Q(2+3):Q]=4.这只要证Q(2)(3)=Q(2+3).首先显然有Q(2+3)彻Q(2,3).又从3-2=12+3得3=12(3-2+3+2)=1213+2+3+2∈Q(2+3).同样可得2∈Q(2+3).这就证明了Q(2,3)彻Q(2+3).于是Q(2,3)=Q(2+3).3畅[F(α):F]|[E:F],[E:F]=p.故[F(α):F]=1或p.但α∈E\F,[F(α):F]>1.故[F(α):F]=p.因此F(α)=E.4畅[F(α1,…,αt):F]=[F(α1,…,αt):F(α1,…,αt-1)][F(α1,…,αt-1):F(α1,…,αt-2)]…[F(α1):F].由于αi在F中的极小多项式次数为ni.F上的这个极小多项式也是F(α1,…,αi-1)中的多项式,这个次数ni比αi在F(α1,…,αi-1)上的极小多项式的次数低.故[F(α1,…,αi-1,αi):F(α1,…,αi-1)]≤ni.因而[F(α1,…,αt):F]≤ntnt-1…n1=n1n2…nt.5畅F彻E是k次扩张.任一元α∈E,1,α,…,αk是E中k+1个元,必在F上线性相关.即有F上不全为零的a0,a1,…,ak使a0+a1α+…+akαk=0.由此知α满足F上的次数≤k的一个多项式.故α是F上代数元,因而E是F上代数扩张.6畅取E的F基α1,…,αt,则E=钞ti=1liαi|li∈F彻F(α1,…,αt)彻E,·45·故E=F(α1,…,αt).7畅设S中每个元皆为F上代数元.对α∈F(S),必有α1,…,αk∈S使α=f1(α1,…,αk)f2(α1,…,αk)∈F(α1,…,αk).因αi为代数元,令[F(αi):F]=ni.由习题4,[F(α1,…,αk):F]≤n1n2…nk.故F(α1,…,αk)是F上有限扩张,再由习题5,它是F上代数扩张.这就证明了任意α∈F(S)是F上代数元,于是F(S)也是F上代数扩张.现令E中全体F上代数元的集合为S.则F(S)是代数扩张,F(S)中每个元皆为F上代数元.于是F(S)彻S,即有S=F(S).故S是F上扩域.8畅(1)(u2+u+1)(u2-u)=u4-u=(u+1)(u3-u2+u+2)-4u-2=-4u-2.由于(u-1)(u2+1)-(u3-u2+u+2)=3,故(u-1)(u2+1)=3.因此(u-1)-1=13(u2+1).(2)由(u-1)(u2+u+1)=u3-1=(u3-2)+1=1,故u+1u-1=(u+1)·(u2+u+1)=u3+2u2+2u+1=(u3-2)+2u2+2u+3=2u2+2u+3.9畅设u2=a∈F(u2),则u2-a=0.故[F(u):F(u2)]≤2.因[F(u):F(u2)]|[F(u):F],及[F(u):F]=奇数,[F(u):F(u2)]≠2.所以[F(u):F(u2)]=1,即E=F(u)=F(u2).另一证法,设u在F中极小多项式是f(x).f(x)为2l+1次,满足f(u)=0,设为a2l+1u2l+1+a2lu2l+…+a1u+a0=0,ai∈F,则u(a2l+1u2l+a2l-1u2(l-1)+…+a1)+(a2lu2l+…+a0)=0.由f(x)的极小性,第一括弧不为零,所以u=a2lu2l+a2(l-1)u2(l-1)+…+a0a2l+1u2l+a2l-1u2(l-1)+…+a1∈F(u2).故F(u)=F(u2).10畅令u=32+5.则32=u-5,(u-5)3=2.于是u3-3·u2·5+3u(5)2-(5)3=u3+15u-(3u2+5)5=2.移项后得u3+15u-2=(3u2-5)5.两边平方,得到(u3+15u-2)2=(3u2-5)2·5.这是u满足的Q上6次方程,故[Q(u):Q]≤6.又(u-5)3=2,可得5∈Q(u).由[Q(5):Q]=2,及[Q(5):Q]|[Q(u):Q],知2|[Q(u):Q].而由32=5-u知32∈Q(u,5)=Q(u).又·55·[Q(32):Q]=3及[Q(32):Q]|[Q(u):Q],得3|[Q(u):Q].于是6|[Q(u):Q],因而[Q(u):Q]=6.由于(u3+15u-2)2-(3u2-5)2·5=0,故6次多项式(x3+15x-2)2-5(3x2-5)2是u在Q上的极小多项式.11畅设s为可逆的代数元,则有F上多项式f(x),使f(s)=aksk+ak-1sk-1+…+a1s+a0=0,其中k≥1,ak≠0.设a0,a1,…,ak-1,ak中不为零的最小脚标为i.则i≠k,否则aksk=0,由s可逆,得ak=0.矛盾.故i<k.用s-i乘它,则得aksk-i+…+ai=0.于是g(x)=akxk-i+…+ai满足g(s)=0且常数项ai≠0.反之,设s满足某多项式方程f(s)=aksk+…+a1s+a0=0,且a0≠0.令g(x)=-(akxk-1+…+a1),则g(s)·s=a0≠0.故s-1=1a0g(s).1a0g(x)是F上多项式.12畅设E车H是含F的子环.任取0≠s∈H.s在E中有逆,由习题11知,s-1=g(s),g(x)是F上多项式.H是子环,因此g(s)∈H.故H是E的子域.13畅设G是域,使EGF.则[G:F]|[E:F],故[G:F]不能与n=[E:F]互素.14畅设R炒E是代数扩张.任取α∈E,α是R上不可约多项式f(x)的根.R上只有1次或2次不可约多项式.若为1次,则α∈R.若E中有α碒R,则它是R上2次不可约多项式的根,设α满足α2+bα+c=0,b,c∈R.则α-b22=14(b2-4c).因α碒R,故b2-4c<0.因此b2-4c=4c-b2-1∈R(α),而有-1∈R(α).显然R(-1)=R(α),即C臣R(α).又任β∈E是R上代数元,由C是代数封闭域知R(-1)也是.于是β∈R(-1),即得E=R(-1).上面证明了代数扩域E车R,只能是E=R或E=R(-1).它们是1次和2次扩域,R上没有3次扩域.§3 古希腊三大几何作图难题的否定以下习题中打倡者为必作题,其余为选作题.·65· 倡1畅设已知量a,b及r皆大于0且a>b.试用圆规直尺作图作出a±b,ab,ar,r. 倡2畅下列哪些量可以用圆规直尺作图作出:(1)45+26 (2)21+7(3)1-527 倡3畅下列多项式中哪些多项式的实根可用圆规直尺作图作出:(1)x2-7x-13(2)x4-5(3)x3-10x2+1(4)x5-9x3+3(5)x4-2x-34畅证明:实数α可用圆规直尺作图作出当且仅当有实数的域的序列E0炒E1炒…炒En-1炒En,使α∈En,且[Ei:Ei-1]=2,1≤i≤n,其中E0是已知量的域.1畅运用中学几何作图知识来作出要求的量.2畅(1)可以.(2)可以.(3)不可以.证明 令x=527,它满足x5-27=0.再令y+2=x,则(y+2)5-27=y5+5y4·2+10y3·22+10y2·23+5y·24+25-27=y5+10y4+40y3+80y2+80y+5=0.用艾森斯坦判别法,它是y的Q上5次不可约多项式方程,527-2是它的根,于是[Q(527-2):Q]=[Q(527):Q]=5.若527能用圆规直尺作图得到,则它落在Q的某扩域E中,且[E:Q]=2l.但[Q(527):Q]嘲[E:Q],故527,因而1-527不能落在这样的域中,它们不能这样作出.3畅(1)可以.(2)可以,令x=±45=±5.5是可作的,故5也可作.(3)我们证明x3-10x2+1是Q上不可约多项式.实际上只有±1可能是它的有理根,但它们不是.因此x3-10x2+1在Q[x]中没有一次因式,故不可约.令它的实根为α,则[Q(α):Q]=3.α不属于Q的任何扩张域E,使E满足[E:Q]=2l.故α不能用圆规直尺作图作出.(4)用艾森斯坦判别法,x5-9x3+3在Q上不可约.对它的实根α,[Q(α):Q]=5.与习题1中(3)的证明类似,知α不可作.·75·(5)x4-2x-3=(x+1)(x3-x2+x-3).第二个因式的有理根只可能是±3,±1,但都不是根.因而是Q上三次不可约多项式、与本题(3)的证明一样可知,它的实根不可作,但第一因式的根为-1,是可作的.4畅课文中已证明由E0作为已知量出发,用圆规直尺作图能作出的量α一定属于某个具有题目所设性质的扩域En中.反之,设α属于具有上述性质的扩域En中.我们对n作归纳法.首先对橙i,[Ei:Ei-1]=2,即Ei是Ei-1上2维向量空间.取βi∈Ei/Ei-1.则1,βi对域Ei-1为线性无关,因而是Ei作为Ei-1上线性空间的基,故Ei=Ei-1(βi).又β2i∈Ei,它是1,βi的线性组合,因此有bi,ci∈Ei-1使β2i+biβi+ci=0,βi=-bi±b2i-4ci.n=0,E0中的任一个量显然可用圆规和直尺经有限步作出.2设En-1中任一量已可用圆规和直尺经有限步作出,即bn,cn可用有限步作出.于是b2n-4cn以至βn皆能作出.En中任一量α都是1,βn的线性组合α=a+bβn,a,b∈En-1.a,b,βn皆能用圆规直尺经有限步作出,则α也能.完成了归纳法.§4 环的例子,几个基本概念以下习题中打倡者为必作题,其余为选作题. 倡1畅举出Z/6Z=Z6中的零因子的例子. 倡2畅令Z[i]={a+bi|a,b∈Z},它是整环.2Z[i]={2a+2bi}是Z[i]的主理想.问Z[i]/2Z[i]中是否有零因子? 倡3畅写出下列商环的全部元素.(i)Z2=Z/2Z,检查它与F2是否同构.(ii)Z3=Z/3Z,检查是否是域.(iii)F2[x]/(x2+x+1),检查是否有零因子.(iv)Z3[x]/(x2+x+2),检查是否是域. 倡4畅R是环.若R的加群是循环群,则(i)R是交换环;(ii)R的子环只有R;(iii)当R的元素有无限多个时,它的任一理想也有无限多个元;(iv)当R的元素有限时,设I为它的理想,则|I|||R|;(v)R的加法子群都是R的理想.5畅找出Z6,Z8的全部理想.哪些是极大理想?对所有极大理想K,写出Z6/K及Z8/K的全部元素、加法表和乘法表.··856畅设K为交换环,M是它的理想,M作为K的加法子群满足[K:M]=素数,则商环K/M是域.7畅试将第一章§10习题6中关于群同态的结论推广到环同态的情形.8畅设f(x)=fr11(x)fr22(x)…frkk(x)是域F上的不可约多项式的乘积,且f1(x),…,fk(x)互不相伴,令R=F[x]/(f(x))是商环.(i)求出R的全体理想.(ii)这些理想中哪些是极大理想?(iii)设珡K是R的理想,K是珡K在F[x]中的原象.检验F[x]/K碖R/珡K.9畅证明Z[i]/(1+i)是域.1畅2+6Z≠0,3+6Z≠0,都是Z6中的零因子.2畅由(1+i)2=2i,((1+i)+2Z[i])2=2i+2Z[i]=0.故(1+i)+2Z[i]是Z[i]/2Z[i]中的零因子.3畅(i)Z2=Z/2Z={0+2Z,1+2Z}={0,1}.它的加法表和乘法表如下: +01001110,×01000101.建立映射Z2F20011.这是双射,且保持加法和乘法.故是同构.(ii)Z3=Z/3Z={0,1,2}.这是交换环,又(1)-1=1,(2)-1=2.故Z3是域.(iii)因0,1不是x2+x+1的根,故x2+x+1在F2[x]上不可约.因此F2[x]/(x2+x+1)是域,故无零因子.(iv)由于0,1,2都不是x2+x+2的根,故它在Z3[x]中不可约.因此Z3[x]/(x2+x+2)是域.4畅由于R是加法循环群,可设R=Za,a∈R.(i)R中任意两元可写为ma,na,而(ma)(na)=mna2=(na)(ma),故R是交换环.(ii)设1=ka,又设a2=la.则a=1·a=ka2=kla=lka=l·1.因R的子·95·环含1,就含有l1=a.故子环含Za=R.即子环必是R.(iii)R=Za有无限多个元,则它是无限循环加群.于是当m,n∈Z,m≠n时有ma≠na.设I是R的非零理想,它就是R的非零子加群,必为无限群.故I有无限个元.(iv)当R的元素有限时,它作为加群是有限循环群.而R的理想I是它的子加群,由Lagrange定理,知|I|||R|.(v)设I是R的加法子群,它也是循环群.设I=Z(ka).任ma∈R,(ma)I=Z(na)(ka)=Z(mkla)彻Z(ka)=I.故I是R的理想.5畅Z6的全部理想为Z6,2Z6,3Z6,0·Z6.其中2Z6,3Z6是Z6的极大理想.Z8的全部理想为Z8,2Z8,4Z8,0·Z8,其中2Z8是极大理想.Z6/2Z6={0,1},Z6/3Z6={0,1,2},Z8/2Z8={0,1}.它们的加法表和乘法表:Z6/2Z6: +01001110,×01000101.Z8/2Z8碖Z6/2Z6,它们有相同的加法表和乘法表.Z6/3Z6:+012001211202201×0120000101220216畅K/M是商环,作为加法商群[K:M]=素数.对K的任一理想N,若M彻N彻K、则从加法方面看N/M是K/M的子群.后者是素数阶群,故N/M是单位元群或K/M本身.因此N=M或N=K,即M是K的极大理想.于是K/M是域.7畅群同态的结论推广到环同态,结论如下:设环G到环珚G有满同态f.令N=Kerf.记f-1(珡K)为珚G的子集珡K对于f的原象.则(1)若珡K是珚G的子环,则N炒f-1(珡K),且f-1(珡K)是子环.(2)有映射{G的含N的子环}φ{珚G的子环}·06·Hf(H).它还是双射,且保持包含关系.(3)若珡K是珚G的理想,则f-1(珡K)是G的含N的理想,于是{G的含N的理想}{珚G的理想}Kf(K)是双射.(4)设珡H是珚G的理想,则有同构G/f-1(H)碖珚G/珡H.(5)G是环,N是理想.令珚G=G/N,π是自然同态GπG/N=珚G,则π建立了{G的含N的子环}到{珚G的子环}上的双射:π(H)=珡H=H/N,且保持包含关系.同时建立了{G的含N的理想}到{珚G的理想}上的双射,且有同构G/H碖珚G/珡H=G/N/H/N.证明 由于环是加群,子环、理想是子加群,环同态的核正是加群同态的核.如能证明(i)若H是G的子环(或理想),则f(H)是珚G的子环(或理想),(ii)珡H是珚G的子环(或理想),则f-1(珡H)是G的包含N的子环(或理想).再利用群同态的结论就给出上面(1)到(5)的结论都成立.对结论(i),易知子环(或理想)的满同态的象是子环(或理想),故成立.对(ii),设珡H是子环(或理想),它是珚G的子加群,故f-1(珡H)是G的子加群.又对l,k∈f-1(珡H)(或取l∈G),f(l),f(k)∈珡H(或f(l)∈珚G).由珡H是子环(或理想),f(l)f(k)=f(lk)∈珡H,故lk∈f-1(珡H).这证明了f-1(珡H)是G的子环(或理想).8畅(i)F[x]是主理想环,它的同态象R=F(x)/(f(x)).由7题,R的任一理想为J/(f(x)),其中J为F[x]的理想.J为主理想,设为J=g(x)F[x].于是R的任一理想I必有形式:I=g(x)F[x]/(f(x))是R的一个主理想.令(g(x),f(x))=m(x),g(x)=h(x)m(x).由(h(x),f(x))=1,有u(x),v(x)∈F[x],使u(x)h(x)+v(x)f(x)=1.即u(x)h(x)+(f(x))=1+(f(x)).于是m(x)F[x]/(f(x))=u(x)h(x)m(x)F[x]/(f(x))彻g(x)F[x]/(f(x))=I彻m(x)F[x]/(f(x)),故I=m(x)F[x]/(f(x)).这说明R的任一理想必为m(x)F[x]/(f(x)),其中m(x)|f(x).再设Ii=mi(x)F[x]/(f(x)),mi(x)|f(x),i=1,2都是R的理想.来证I1=I2当且仅当m1(x)与m2(x)相伴.首先设m1(x)=cm2(x),c≠0是F的元,则··16I1=m1(x)F[x]/(f(x))=cm2(x)F[x]/(f(x))=m2(x)·cF[x]/(f(x))=m2(x)F[x]/(f(x))=I2.反之,设I1彻I2.由m1(x)+(f(x))∈I1彻I2=m2(x)F[x]/(f(x)),有h2(x)∈F[x]使m1(x)+(f(x))=m2(x)h2(x)+(f(x)).进而有g2(x)使m1(x)+g2(x)f(x)=m2(x)h2(x).因m2(x)|f(x),可得m2(x)|m1(x).当I1=I2时,同样有m1(x)|m2(x).就证明了m1(x),m2(x)相伴.写gi1…ik(x)=(f1(x))i1(f2(x))i2…(fk(x))ik,其中i1,…,ik可独立地遍取1≤i1≤r1,1≤i2≤r2,…,1≤ik≤rk.则{gi1…ik(x)}是f(x)的全部不相伴的因式,而gi1…ik(x)F[x]/(f(x))是R的全部的理想.(ii)取Ji=fi(x)F[x]/(f(x)).由(i)第二部分的证明只有理想1·F[x]/(f(x))及fi(x)F[x]/(f(x))能包含Ji.故Ji是R的极大理想.R的任一理想若非Ji之一和R本身,则它是m(x)F[x]/(f(x)),其中m(x)是f1(x),…,fk(x)中至少两项的乘积.设m(x)=fi(x)fj(x)….则fi(x)|m(x),但任意一个fi(x)与m(x)不相伴.由(i)中第二部分的证明m(x)F[x]/(f(x))彻Ji,但它们不相等,故前者不是极大理想.因此R的全部极大理想为Ji,i=1,2,…,k.(iii)设珡K=m(x)F[x]/(f(x))是R的理想,其中m(x)|f(x).显然m(x)F[x]在R中的象是珡K.又任意g(x)∈F(x),若g(x)+(f(x))∈m(x)F[x]/(f(x)),用(i)中第二部分的证明可得m(x)|g(x).故g(x)∈m(x)F[x].这证明了珡K在F[x]中的原象K是m(x)F[x].作映射F[x]/m(x)F[x]πR/珡Kg(x)+m(x)F[x][g(x)+(f(x))]+珡K.首先要证明它确实规定了映射,即象元与g(x)+m(x)F[x]中的代表的选择无关,实际上g1+m(x)F[x]=g2+m(x)F[x]当且仅当g1-g2∈m(x)F[x]当且仅当(g1-g2)+(f(x))∈m(x)F[x]/(f(x))=珡K当且仅当[g1+(f(x))]与[g2+(f(x))]属于珡K的同一陪集当且仅当[g1+(f(x))]+珡K=[g2+(f(x))]+珡K.这就证明了映射是意义的,而且是单射.π显然是满射,因而是双射.又π((g1+m(x)F[x])+(g2+m(x)F[x]))=π((g1+g2)+m(x)F[x])=[(g1+g2)+(f(x))]+珡K=[(g1+(f(x)))+(g2+(f(x)))]+珡K=(g1+(f(x)))+珡K+(g2+(f(x)))+珡K=π(g1+m(x)F[x]) +π(g2+m(x)F[x]).·26·同样可证π((g1+m(x)F[x])(g2+m(x)F[x]))=π(g1+m(x)F[x])π(g2+m(x)F[x]).故π是环同构.9畅先计算Z[i]/(1+i)的全部元素.记剩余类a+bi+((1+i))为a+bi,其中a,b∈Z.我们有a+bi=a-b+b(1+i)=a-b.又(1+i)2=-2,故2=2+(1+i)2=0.于是Z[i]/(1+i)={0,1}={0+((1+i)),1+((1+i))}碖Z2.故它是域.§5 整数模n的剩余类环,素数p个元素的域以下习题中打倡者为必作题,其余为选作题.1畅求出Z8中可逆元的群及其乘法表. 倡2畅求出Z9中可逆元的群及其乘法表. 倡3畅写出Z3[x]/(x2+1)的全部元素.求出x+1与全部元素的乘积以及它的逆元素. 倡4畅427≡?(mod3) 7123≡?(mod5) 827≡?(mod6) 倡5畅p是素数,则域Zp中全部元素是方程xp-x=0的全部根.因而映射ZpZpaap是恒等自同构.1畅Z8的可逆元群是{1+8Z,3+8Z,5+8Z,7+8Z}.乘法表略.2畅Z9的可逆元群是{1+9Z,2+9Z,4+9Z,5+9Z,7+9Z,8+9Z}.乘法表略.3畅记剩余类f(x)+((x2+1))为f(x).则Z3[x]/(x2+1)={0,1,2,珔x,x+1,x+2,2x,2x+1,2x+2}.(x+1)Z3[x]/(x2+1)={0,x+1,2(x+1)}x+1的逆元素为x+24畅427≡127=1(mod3).7123≡2123≡2120·23(mod5)≡23(mod5)(因24≡1,2120=(24)30≡1)≡3(mod5).··36827≡((23)3)3≡(23)3≡23≡2(mod6).5畅Zp\{0}是p-1阶乘法循环群,故任0≠a∈Zp,满足ap-1=1.于是ap=a.又0p=0,所以Zp中全部元是xp-x=0的全部根.这就证明了ZpZpaap是恒等自同构.§6 F[x]模某个理想的剩余类环,添加一个多项式的根的扩域以下习题中打倡者为必作题,其余为选作题. 倡1畅Z3[x]中计算(x2+x+1)(x3+2x+1)及(x4+2x+1)(x3+x+1) 倡2畅证明x2+1,x3+2x+1是Z3[x]中不可约多项式.问Z3[x]/(x2+1),Z3[x]/(x3+2x+1)分别是几个元素的域.3畅写出Z3[x]/((x2+1)(x3+2x+1))中的全部理想和极大理想. 倡4畅证明Q[x]/(x2-2)与Q(2)={a+b2|a,b∈Q}都是域,且互相同构.1畅(x2+x+1)(x3+2x+1)=x5+x4+1.(x4+2x+1)(x3+x+1)=x7+x5+x3+2x2+1.2畅x2+1,x3+2x+1在Z3中无根,于是在Z3[x]中无一次因式,因此不可约.Z3[x]/(x2+1)是有9个元的域,Z3[x]/(x3+2x+1)是有27个元的域.3畅用§4习题8,它的全部理想为零理想及Z3[x]/((x2+1)(x3+2x+1)),(x2+1)Z3[x]/((x2+1)(x3+2x+1)),(x3+2x+1)Z3[x]/((x2+1)(x3+2x+1)).后面两个理想是极大理想.4畅Q[x]/(x2-2)与Q(2)都是域,略证.作映射Q[x]φQ(2)p(x)p(2)·46·这是同态映射,且是满射.Kerφ={p(x)|p(2)=0}.由于x2-2是2的极小多项式,故Kerφ=(x2-2)Q[x]=((x2-2)).由同态基本定理得Q[x]/((x2-2))碖Q(2).§7 整环的分式域,素域以下习题中打倡者为必作题,其余为选作题.1畅证明:有限整环是域. 倡2畅R是交换环,P≠R是R的理想,则RP是整环当且仅当P有性质:若a,b∈R满足ab∈P,则a∈P或b∈P.有这种性质的理想P称为素理想. 倡3畅R是交换环,则R的极大理想必为素理想. 倡4畅设n∈Z,n>1,Z中主理想(n)=nZ是素理想当且仅当n是素数. 倡5畅设R是一个域,则R的分式域就是自身. 倡6畅令Z(2)={a+b2|a,b∈Z},Q(2)={α+β2|α,β∈Q}.证明Q(2)是Z(2)的分式域.7畅令Z[i]={a+bi|a,b∈Z},Q[i]={α+βi|α,β∈Q}Z.证明Q[i]是Z[i]的分式域.8畅域F上多项式f(x)的次数≥1.F[x]中主理想(f(x))是素理想当且仅当f(x)是不可约多项式.1畅设R是有限整环,R={r1,…,rt}.令rt=0.橙0≠r∈R,当ri≠rj时有rri≠rrj.故rr1,…,rrt-1是R的全部非零元,必有某rj使rrj=1,即rj为r的逆元.R的每个非零元都有逆,故是域.2畅设R/P为整环.橙a,b∈R,若ab∈P,则(a+P)(b+P)=ab+P=0.于是a+P=0或b+P=0,即a∈P或b∈P.故P为素理想.反之,设P是素理想,橙a,b∈R,若ab∈P则a∈P或b∈P.现设R/P中(a+P)(b+P)=ab+P=0.即ab∈P,于是a∈P或b∈P,即a+P=0或b+P=0.故R/P是整环.3畅设I是R的极大理想,则R/I是域,当然是整环.由习题2,I是素理想.·56· 4畅设Z中(n)=nZ是一个理想.若n不是素数,则n=ab,a,b为大于1的正整数.由于a和b都不是n的倍数,故a∈(n),b∈(n).但ab=n∈(n),故(n)不是素理想,这就证明了(n)是素理想则n为素数.当n是素数时,对ab∈(n),则n|ab.若n嘲a,则(n,a)=1.于是n|b.即a∈(n)或b∈(n),(n)是素理想.5畅R是域,则也是整环.它的分式域F以R为子环,且F中的元是R的元的商.由于R是域,它的元的商仍在R中,故R=F.6畅我们已知Q(2)是域.对任意α+β2∈Q(2),可写α=ac,β=bc,a,b,c∈Z.则α+β2=a+b2c是Z(2)中两元素的商.又Z(2)中两元素的商为:a+b2c+d2=(c-d2)(a+b2)c2-2d2=ac-2bdc2-2d2+bc-adc2-2d22∈Q(2).现在Z(2)是Q(2)的子环,且Q(2)是由Z(2)中两元素的商组成,故Q(2)是Z(2)的分式域.7畅易证Q[i]是域.对任意α+βi∈Q[i],可写α=ac,β=bc,则α+βi=a+bic是Z[i]中两元素的商.又Z[i]中两元素的商为a+bic+di=ac+bdc2+d2+bc-adc2+d2i∈Q[i].即Q[i]由Z[i]的两元素的商组成.故Q[i]是Z[i]的分式域.8畅完全可仿照习题4的证明.设(f(x))是F[x]中理想,f(x)的次数≥1.若f(x)=g(x)h(x),g(x)及h(x)的次数皆大于等于1,这时g(x),h(x)皆不是f(x)的倍数,故g(x),h(x)∈(f(x)),但g(x)h(x)∈(f(x)).即(f(x))不是素理想.故若(f(x))是素理想,则f(x)不可约.反之,若f(x)不可约.对g(x)h(x)∈(f(x)),则有g(x)h(x)=f(x)k(x).若f(x)|g(x)则g(x)∈(f(x)).若f(x)嘲g(x),则(f(x),g(x))=1,于是f(x)|h(x).即有h(x)∈(f(x)),故(f(x))是素理想.§8 环的直和与中国剩余定理以下习题中打倡者为必作题,其余为选作题. 倡1畅解同余方程组.·66·(i)x≡1(mod2)x≡2(mod5)x≡3(mod7)x≡4(mod9) (ii)x≡5(mod7)x≡4(mod6) 倡2畅韩信点兵问题:有兵一队,若列5列纵队,则末行1人.成6列纵队,则末行5人.成7列纵队,则末行4人.成11列纵队,则末行10人.求兵数. 倡3畅R1,…,Rs是环.U1,…,Us分别是它们的可逆元的群.证明R1磑…磑Rs的可逆元群为U=U1×U2×…×Us(见第一章§4定义2).4畅设n=m1m2…ms,mi两两互素.令U(Zm)表Zm的可逆元群,则Z/nZ=Zn的可逆元群同构于U(Zm1)×…×U(Zms).进而有,φ(n)=φ(m1)φ(m2)…φ(ms),这里φ(n)是欧拉函数.当n=pes1…pess,pi为不同素数时,φ(n)=n1-1p1…1-1ps.(见第二章§5定义1及最后一段).1畅(i)解为157(mod630)(ii)解为40(mod42)2畅2111(mod2310)3畅(a1,a2,…as)是R1磑…磑Rs的可逆元当且仅当有(b1,…,bs)使(a1,…,as)(b1,…,bs)=(a1b1,…,asbs)=(1,…,1)当且仅当aibi=1,i=1,2,…,s当且仅当ai∈Ui,i=1,2,…,s当且仅当(a1,…,as)∈U1×…×Us.4畅这时Zn碖Zm1磑…磑Zms.Zm的可逆元群U(Zn)={k+nZ|(k,n)=1}.故|U(Zn)|=φ(n).(见第二章§5定义1).由习题3,U(Zn)碖U(Zm1)×…×U(Zms).|U(Zmi)|=φ(mi),i=1,2,…,s.故得φ(n)=φ(m1)…φ(ms).对素数幂pk,1,2,…,pk-1中与pk不互素的数为p的所有倍数lp,1≤l≤pk-1-1.故此中与pk互素的数共(pk-1)-(pk-1-1)=pk-pk-1=pk1-1p(个).即φ(pk)=pk1-1p.当n=pe11pe22…pess时,φ(n)=φ(pe11)φ(pe22)…φ(pess)=pe11…pess1-1p1…1-1ps.·76·。

近世代数知识点

近世代数知识点

近世代数知识点第一章基本概念1.1集合●A的全体子集所组成的集合称为A的幂集,记作2A.1.2映射●证明映射:●单射:元不同,像不同;或者像相同,元相同。

●满射:像集合中每个元素都有原像。

Remark:映射满足结合律!1.3卡氏积与代数运算●{(a,b)∣a∈A,b∈B }此集合称为卡氏积,其中(a,b)为有序元素对,所以一般A*B不等于B*A.●集合到自身的代数运算称为此集合上的代数运算。

1.4等价关系与集合的分类★等价关系:1 自反性:∀a∈A,a a;2 对称性:∀a,b∈R, a b=>b a∈R;3 传递性:∀a,b,c∈R,a b,b c =>a c∈R.Remark:对称+传递≠自反★一个等价关系决定一个分类,反之,一个分类决定一个等价关系★不同的等价类互不相交,一般等价类用[a]表示。

第二章群2.1 半群1.半群=代数运算+结合律,记作(S,)Remark: i.证明代数运算:任意选取集合中的两个元素,让两元素间做此运算,观察运算后的结果是否还在定义的集合中。

ii.若半群中的元素可交换,即a b=b a,则称为交换半群。

2.单位元i.半群中左右单位元不一定都存在,即使存在也可能不唯一,甚至可能都不存在;若都存在,则左单位元=右单位元=单位元。

ii.单位元具有唯一性,且在交换半群中:左单位元=右单位元=单位元。

iii.在有单位元的半群中,规定a0=e.3.逆元i.在有单位元e的半群中,存在b,使得ab=ba=e,则a为可逆元。

ii.逆元具有唯一性,记作a-1且在交换半群中,左逆元=右逆元=可逆元。

iii.若一个元素a既有左逆元a1,又有右逆元a2,则a1=a2,且为a的逆元。

4.子半群i.设S是半群,≠T S,若T对S的运算做成半群,则T为S的一个子半群ii.T是S的子半群∀a,b T,有ab T2.2 群1.群=半群+单位元+逆元=代数运算+结合律+单位元+逆元Remark:i. 若代数运算满足交换律,则称为交换群或Abel群.ii. 加群=代数运算为加法+交换群iii.单位根群Um={m=1},数域P上全体n阶可逆(满秩)矩阵集合GL(n,P),数域P上全体n阶的行列式为1的矩阵集合SL(n,p).2. 群=代数运算+结合律+左(右)单位元+左(右)逆元=代数运算+结合律+单位元+逆元=代数运算+结合律+∀a,b G,ax=b,ya=b有解3. 群的性质i. 群满足左右消去律ii.设G是群,则∀a,b G,ax=b,ya=b在G中有唯一解iii.e是G单位元 e2=eiv.若G是有限半群,满足左右消去律,则G是一个群4. 群的阶群G的阶,即群G中的元素个数,用表示。

近世代数习题解答2汇总

近世代数习题解答2汇总

近世代数习题解答第二章群论1群论1. 全体整数的集合对于普通减法来说是不是一个群?证不是一个群,因为不适合结合律•2. 举一个有两个元的群的例子.证G二{1,-1}对于普通乘法来说是一个群.3. 证明,我们也可以用条件1,2以及下面的条件4',5'来作群的定义:4 . G至少存在一个右单位元e,能让ae= a 对于G的任何元a都成立5 . 对于G的每一个元a,在G里至少存在一个右逆元a-1,能让aa,二e证(1)一个右逆元一定是一个左逆元,意思是由aa'=e 得a_1a=e因为由4G有元a能使a J a = e所以(a」a)e = @屯)@备)=[a」(aa^a =[a」e]a,= a^a,= e即a a = e(2)一个右恒等元e 一定也是一个左恒等元,意即由ae = a 得ea = aea 二(aa')a 二a(a'a)二ae 二a即ea 二a这样就得到群的第二定义•(3)证ax = b可解取x 二aa(a』b)二(aa』)b 二be 二b这就得到群的第一定义•反过来有群的定义得到4,,5,是不困难的.2单位元,逆元,消去律1. 若群G的每一个元都适合方程x2二e,那么G就是交换群.证 由条件知G 中的任一元等于它的逆元,因此对a,b :=G 有ab = (ab)' = b'a -1 = ba .2. 在一个有限群里阶大于 2的元的个数是偶数.证 ⑴ 先证a 的阶是n 则a J的阶也是n . a n = e= (a 」)n = (a n )—1 = e -1 = e 若有mn 使(a 」)m =e 即(a m ),二e 因而 a m =e ,. a m =e 这与a 的阶是n 矛盾-a 的阶等于a J 的阶1 1 2(2) a 的阶大于2,则a=a 若a 二a=a 二e 这与a 的阶大于2矛盾(3)a =b 贝y a J - b J_ 1总起来可知阶大于 2的元a 与 a 双双出现,因此有限群里阶大于 2的元的个数一定是偶数3. 假定G 是个数一个阶是偶数的有限群,在G 里阶等于2的元的个数一定是奇数•证 根据上题知,有限群G 里的元大于2的个数是偶数;因此阶-2的元的个数仍是偶数,但阶是1的元只有单位元,所以阶 <2的元的个数一定是奇数.4. 一个有限群的每一个元的阶都是有限的证 a G故 a ,a 2,…,a m ,…,a n 「• G由于G 是有限群,所以这些元中至少有两个元相等n - m 是整数,因而a 的阶不超过它不一定相同_1J3例如G 二{1,-- 2 G ={1}对普通乘法G ,G 都作成群,且 (x^1 (这里x 是G的任意元,1是G 的元)(m n)n -m故a =e4群的同态假定在两个群G 和G 的一个同态映射之下,a > a , a 和a 的阶是不是一定相同?由 J可知G s G1 i . 3 _ 1 _ i 3但1I 3 1 I 3的阶都是3.2 ' 2而1的阶是1.5变换群1. 假定.是集合的一个非一一变换,.会不会有一个左逆元•二使得•,•二;? 证我们的回答是回有的 A ={1,2,3,…}1 T 1 1 T 1 2~ 12 T3 3T 2 3 T4 4T 34T52.假定A 是所有实数作成的集合 •证明.所有A 的可以写成 x > ax b,a,b 是有理数,a = 0形式的变换作成一个变换群 •这个群是不是一个交换群 ? 证(1) . :x > ax b x — ex d汀“:e(ax b) d 二 eax eb dea,eb d 是有理数 ca = 0; 是关闭的(2)显然时候结合律(3) a =1 b =0 贝y ; : x — xax bi1 +/ b 、:x x ( ) a a= •;:所以构成变换群又 d X r X 12 :x — 2xV 2 : X — 2(x1)2 “: x > 2x 1 故12 1因而不是交换群3.假定S 是一个集合A 的所有变换作成的集合,我们暂时仍用旧符号 :a > a '= (a)来说明一个变换.•证明,我们可以用.仁2: ar 匚[.2(a)] =’2(a)来规定一个S 的 乘法,这个乘法也适合结合律,并且对于这个乘法来说;还是S 的单位元..显然是一个非 -- 变换但 -:-j T -J证: a —1(a)2: a—:2(a)那么12: a— 1[ 2(a)]二 1 2(a)7显然也是A的一个变换.现在证这个乘法适合结合律:(12)3: a > ( 1 2)[ 3(a)] K I[.2【3(a)]]1(2 3):a— d 2 3(a)]=餡[2【3(a)]]故(1 2)3 =讷(・2 3)再证;还是S的单位元;: a 》a = ;(a)T:a—■[ (a)] = (a);:a—[ ;(a)] = .(a)ST = TS4. 证明一个变换群的单位元一定是恒等变换。

第二章 近世代数简介

第二章 近世代数简介

对于元素A ( x ) = ∑ a i x 和
i i=0
n-1
B (x ) =
n -1
∑ b x ,多项式加“+”定义为:
i i i= 0
n-1
A ( x ) + B ( x ) = ∑ ( ai + bi )mod q xi
i =0
(2-2)
多项式modf(x)乘“.”定义为 :
n-1 n−1 j +k A ( x ) ⋅ B ( x ) = ∑∑ ( a j bk ) x (2-3) mod q k = 0 j =0 mod f ( x )
) 多项式剩余类环的环元素是模f(x)乘的产物,即 A ( x ) ⋅ B ( x除以f(x)的余 式。余式也就是“剩余”类环名称的来历。 [ ] deg n 如果f(x)的最高次幂是n,称此f(x)是n次多项式,写做 deg [ f ( x)] =。这 里 表示阶次degree。显然,多项式剩余类环Rq ( x ) f ( x)中所有环元 素的次数不高于n-1次,通式形式为:
∀a, b ∈ I , ∃a − b ∈ I ; ∀a ∈ I , r ∈ R, ∃a r = r a ∈ I ,
则I是R的理想子环,建成理想。 与一般子环相比,理想子环要求更多的条件:R必须是交换环且具 有凝聚力,即任意一个子环元素与任意一个非子环的环元素运算后所得 的元素一定位于子环内。 环R的任意多个理想子环的交集仍是R的理想子环。
②结合性(Associativity),即
∀ a , b ∈ G , ∃ a * (b * c ) = ( a * b ) * c o
③存在惟一的一个单元e(Identity),即
∀a ∈ G ,∃a * e = e * a = a o

近世代数第二章答案

近世代数第二章答案

近世代数第二章群论答案§1.群的定义1.全体整数的集合对于普通减法来说是不是一个群?解:不是,因为普通减法不是适合结合律。

例如()321110--=-=--=-=()321312()()--≠--3213212.举一个有两个元的群的例。

解:令G=,e a{},G的乘法由下表给出首先,容易验证,这个代数运算满足结合律(1) ()(),,= ∈x y z x y z x y z G因为,由于ea ae a==,若是元素e在(1)中出现,那么(1)成立。

(参考第一章,§4,习题3。

)若是e不在(1)中出现,那么有()==a aa ae aaa a ea a==()而(1)仍成立。

其次,G有左单位元,就是e;e有左逆元,就是e,a有左逆元,就是a。

所以G是一个群。

读者可以考虑一下,以上运算表是如何作出的。

3.证明,我们也可以用条件Ⅰ,Ⅱ以及下面的条件IV',V'来做群的定义:IV ' G 里至少存在一个右逆元1a -,能让=ae a 对于G 的任何元a 都成立;V ' 对于G 的每一个元a ,在G 里至少存在一个右逆元1a -,能让1=aa e -解:这个题的证法完全平行于本节中关于可以用条件I,II,IV,V 来做群定义的证明,但读者一定要自己写一下。

§2. 单位元、逆元、消去律1. 若群G 的每一个元都适合方程2=x e ,那么G 是交换群。

解:令a 和b 是G 的任意两个元。

由题设()()()2==ab ab ab e 另一方面()()22====ab ba ab a aea a e 于是有()()()()=ab ab ab ba 。

利用消去律,得 =ab ba 所以G 是交换群。

2. 在一个有限群里,阶大于2的元的个数一定是偶数。

解:令G 是一个有限群。

设G 有元a 而a 的阶>2n 。

考察1a -。

我们有()1=nn a a e - ()()11==nne a a e --设正整数<m n 而()1=ma e -,那么同上可得=m a e ,与n 是a 的阶的假设矛盾。

近世代数第二章课件

近世代数第二章课件

第二章群论 20第二章群论本章讨论具有一个代数运算的代数结构——半群与群,但重点是群的基本知识及典型的两个群-变换群和循环群.群是概括性比较强的一个概念,是近世代数中比较丰富的一个分支,它产生于19世纪初人们对高次方程根号解问题的研究,发展到现在,群论已经应用到数学许多其它分支及一些别的科学领域.如在近世几何中,利用群的观点,把几何加以科学分类;在晶体学中,利用群论的方法,解决了空间晶体的分类问题;在现代通讯理论中,利用群来进行编码,有所谓的群码.我们先从半群开始来研究群.§1 群的定义及基本性质2.1 半群的定义设S是具有一个代数运算的集合,为了方便,将此代数运算叫S的乘法,并且仍用通常的乘法记号“·”来表示,把S的两个元素ba,关于“·”运算结果ba∙简记为ab.当然,这样被叫做乘法不一定就是指数的乘法,还可表示像矩阵、函数、向量的乘法,但一般来说它们都不是数的乘法.定义1如果代数结构(S,·)的乘法适合结合律,即ba∈c∀)有,S,,ab=,则称S关于它的乘法是一个半群,简称Sac(bc()是一个半群.2关于数的乘法是一个半群.关于数的加法也是一例1 偶数集Z个半群.n⨯矩阵作成的集合M n(F),关于矩阵乘法例2数域F上的所有n是一个半群.例3 A 是一个非空集合,A 的幂集}|{A x x A P ⊆=)(关于∩、∪分别是半群.例4 +Z (正整数)关于数减法不能作成一个半群,因为数的减法不是+Z 的一个代数运算;Z 虽然关于数的减法是Z 的代数运算,但结合律不成立,故),(-Z 不是一个半群.注 由于一个半群),(⋅S 的乘法适合结合律,故可以在半群),(⋅S 中可以引进一个元素a 的正整数次幂的概念,规定:, 个n n a aa a =那么,易见半群里有以下指数运算规律:ba ab b a ab a a a a a n n n nm m n n m n m =⋅===⋅+当,)(,)(,,这里+∈Z n m ,。

近世代数_置换群_讲义学习 PPT课件

近世代数_置换群_讲义学习 PPT课件
到 i1 而其余文字(如果还有其他文字)不发生变化 的置换,叫做k —循环置换(或称k —循环),记为
( ) i1,i2 ,i3 ik
例 3 在 S5中.
12 2 3 31 44 55 1 2 3 叫作 3—循环置换.
12 2 3 3 4 4 5 51 1 2 3 4 5
发生变化的文字的变化次序为序,表达成轮换的形 式.虽然表达形式简捷,但所含置换的原有文字的 数目可能反映不出来.这要求事先予以说明.例如. “8 元置换 1 4 2 3 5”
②.一般地,每个循环的表达方法不唯一,例 如.
1 4 2 3 5 2 3 5 1 4 5 1 4 2 3
如果 与 不含相同的文字,那么称 与 是不相连的.
定理 2 每一个n 元置换都可以写成若干个不相连的循 环置换的乘积.(循环置换分解定理) 【证明】.设 是 Sn 中任一个n 元置换,下面对 中改变 文字的个数用数学归纳法。
如果 使1,2,3, ,n中每个文字都不发生改变, 则 是恒等置换.即 1,定理 2 成立.
0 11 22 33 , 1 11 32 2 3 , 2 12 21 33 3 12 2 3 31 , 4 1 3 21 3 2 , 5 13 2 2 31 所以 S3 3! 6 .其中 0 是恒等变换.即 0 是 S3 的单位元.
例1. 计算下列置换的乘积:
(1) , (2) 2 , (3) 2 . 解: 13 21 2 312 2 3 31 11 22 33
2 12 2 3 31 12 2 3 31 13 21 2 3
jk jk(1)
jk1
j (2) k 1
jn jn(2)
证明 因为 1 是 a j1 , a j2 , , a jn 这个元的一一变换,而在 1 之下,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23
2.3
多项式域和循环群
1.既约多项式(Irreducible polynomials)
– 定义: 设 Pl (x)是次数大于0的多项式。如果除常数C和
C Pl (x)之外,不能被域GF(q)上的其它多项式
整除,则称 Pl (x)是域GF(q)上的既约多项式。
24
(1) 常数总是多项式的因子。 (2) 一个多项式 f (x) 是否为既约多项式与所 定义的域有关。 (3) 一个多项式既约的充要条件:多项式Pl (x) 不能分解成两个次数低于Pl (x)的多项式的乘 积。 (4) 完全分解:n次多项式最多能分解成n个一 次多项式的乘积,被称为完全分解。 (5) 一次多项式一定是既约的。
8
• 定理: – 设p为质数,则整数全体对p取模的剩余类: 0,1,2,…,p-1,在模p的运算下(p模相 加和相乘),构成p阶有限域GF(p)。
例2-4 验证以p=3为模的剩余类全体:0,1,2构 成一个有限域GF(3)。
+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1
× 0 1 2
0 0 0 0
13
–环将

联系在一起?
– What is the relationship with Group, Field and Ring? – What is the difference between Field and Ring?
14
2.2
多项式剩余类环
; ;
1.域上多项式的定义
– 多项式与码字的关系:桥梁;
25
2. 本原多项式(Primary Polynomials) 定义:对于有限域GF(q)上的m次既约多项式
P(x),若能被它整除的最简首一多项式(xn - 1)
的次数为:
n qm 1
则称这个多项式P(x)为本原多项式。 – 本原多项式一定是既约的; – 但既约多项式不一定是本原的。
26
3. 多项式循环群(Cycle Group)
– G2:实数全体。
• 对加法构成群; • 除0元素之外的全体实数,对乘法构成群。 • 单位元e=1。
– G1和G2有都是阿贝尔群,且都是无限群。 –群将 和 联系在一起?
5
4. 域 (Field)
– 对于非空元素集合F,若在F中定义了加法 (addition)和乘法(multiplication)两种运算, 且满足下面的公理: (1)F关于加法构成阿贝尔群,其加法恒等 元记为0; (2)F中非0元素全体对乘法构成阿贝尔群, 其乘法恒等元(单位元)记为1。 (3)加法和乘法之间满足如下分配率 (distributive) :
19
– 若多项式 f (x) 的最高次幂n=m,有限域为GF(q)。
– 多项式剩余环类Rq(x)f(x)中 环元素的最高次数 为 ; – 多项式的一般形式为:
am1 x
m 1Βιβλιοθήκη am 2 xm2 ... a1 x a0
ai GF (q), i 0,1, 2,..., m 1
1 3 2 4
(1)元素的阶(能产生域元素的个数): (2)2、3都是本原元;
(3)1、4不是本原元(生成元)。
12
6. 环(Ring)
– 定义:在非空集合R中,若定义了两种代数运 算加和乘,且满足: (1)集合R在加法运算下构成阿贝尔群; (2)乘法有封闭性,对于任何a,bR,有ab R; (3)乘法结合率成立,且加法和乘法之间分配 率成立,即对任何a,bR,有 a(b+c)=ab+ac (b+c)a=ba+ca 则称R是一个环。
GF(22)={0,1,x,x+1}, – 基域:GF(2)={0,1}
29
– 基域GF(q)是数域,有q个域元素; – 扩展域GF(qm)则是多项式域,有qm个域元 素; – m 个 基域的元素对应扩展域的一个元素:
扩展域GF(22)的元素 m (2)个域GF(2)的元素
0 00
1 01
x 10
1 0 1 2
2 0 2 1
9
5. 循环群
– 如果一个元素的各次幂0, 1, 2 ,…的 全体构成了一个群,称为循环群(cycle group),元素称为生成元或者本原元 (primitive element) 。
• 记作:G={0, 1, 2 ,…},其中0 = e 是单 位元。
q m 2
能构成扩展域GF(qm)的全部非0的域元素。
31
总 结
GF(q)上多项式若为:
(1)一般多项式 f (x) ,构成qm阶 (2) 既约多项式 Pl (x),构成qm阶 (3)本原多项式 P(x),构成qm-1阶 。 。 。
– 对多项式的限制越多,扩展域具备的性质也就越多。 – 如何找到构成循环群的生成元?
–定义:群内的所有元素由多项式的各次幂构
成,称为多项式循环群。
• 多项式是一个群元素,被称为循环群的生成元。
–例2-7,{1, 1, 2, 3, 4, 5,…,}
构成无限循环群;
– 若7 =1,以{1, 1, 2, 3, 4, 5, 6} 为周期,则称{0 =1, 1, 2, 3, 4, 5, 6}为 7阶 有限循环群。
A( x) B( x) ( x x 1)( x 1) x x x x x 1
2 2 4 3 2 2
x 4 x3 x 1
21
(2)用f (x)除上面的多项式,有
x 1 x x 1 x x
3 4 4 3
x 1
2 2
x
a (b c) ab ac (b c)a ba ca
则称F是一个域。
6
(1)域的阶(针对群中元素的个数),记 为q。
(2)有限域或伽逻华(Galois)域,表示为: GF(q)。
–域将

联系在一起?
7
例2-3
– F1:有理数全体、实数全体对加法和乘法都 分别构成域,分别称为有理数域和实数域。 – F2:0、1两个元素模2加构成域;由于该域 中只有两个元素,记为GF(2)。
32
2.4
循环群的生成元
定理2.3 GF(q)上的m次本原多项式P(x)的根,一 定是扩展域GF(qm)上的本原元。
– 证明: ……
33
– 构成循环群的步骤:
• 找到GF(q)上的一个m次本原多项式;
• 取其根,并计算的各次幂
、 ......
0 1
qm -2
• 得到扩展域的所有非0元素,即循环群。
– A(x)、B(x)是两个环元素,
A( x ) ai x i 和B ( x ) bi x i
i 0 i 0 n 1 n 1
–用q模加
A( x ) B ( x) ( ai bi ) mod q x i
i 0 n 1
– 用f(x)模乘
n 1 n 1 i j A( x) B( x) (ai b j ) mod q x j 0 i 0 mod f ( x )
x+1 11
30
循环群存在定理
定理2.2
– 若P(x)是GF(q)上m次本原多项式,则GF(qm)
域上幂次小于m的非0多项式的全体( 共有 qm-1个),在模q加、模P(x)乘运算下构成一 个多项式循环群。 • 在扩展域GF(qm)里,至少存在一个本原元
,其各次幂
、 、 ......
0 1 2
– 这个环中共有 个元素?
20
例2-6
– 剩余类环为Rq(x)f(x),q=2,f (x)=x3+x+1。 – 若A(x)=x2+x+1,B(x)=x2+1是两个多项式。 – 求(1)求对A(x)B(x) 取模的剩余多项式? (2) A(x)B(x)构成的剩余类环最多有多少个 元素? – 解: (1)多项式乘法运算
– 可以证明,有限域GF(q)的q-1个非0元素,在 模q乘运算下,可以构成一个循环群(幂群), 即G上的所有非0元素可以由一个元素的各次 幂0, 1, 2 …, q-1生成。
10
–例2-5 – q=5 的伽逻华域GF(5)={0,1,2,3,4},
• 非零元素为1,2,3,4 • 模5乘运算。 • 恒等元?加法恒等元?乘法恒等元?
n
n1
... f1 x f 0
fi GF(q) (i 0, 1, 2,..., n)
16
(1) 多项式两要素:系数和幂次 (2) 多项式幂次 (3) 首一多项式 (4) 最简首一多项式 (5) 多项式的有限性分析
17
2. 多项式剩余类环存在定理
– 有限 域GF(q)上 多项式
• 多项式的系数表示 • x的幂次表示
– 域上的多项式
• 针对系数定义; • 例如二进制系数多项式,称为二元域GF(2)上的 多项式。 • q进制系数的多项式,称为q元域GF(q)上的多项 式。
– 群、环、域对多项式也成立。
15
域上多项式: – GF(q)上多项式的定义:
f ( x) f n x f n1 x
34
2.5
域元素的性质
– 本原元,用表示,各次幂可以生成扩 展域GF(qm)中全部qm-1个非0域元素; – 非本原元,用表示,只能生成部分域元素。
第2章 近世代数简介
– 线性分组码中最重要的一个子类---循环码 (RS、BCH码),它的结构完全建立在有限域 的基础之上,被称为代数几何码。
– 有限域以近世代数为基础。 – 近世代数的运算对象:整数、多项式、矩阵 等。
1
2.1
1. 质数(素数)
几个概念
– 一个大于1的正整数,只能被1和它本身整除。
相关文档
最新文档