近世代数基础2

合集下载

《近世代数》PPT课件

《近世代数》PPT课件
– 剩余类的加法和乘法运算
a b a b ,(m m )o a b d a b(m m )o
10.01.2021
编辑ppt
18
2.2 多项式剩余类环和域
1.域上多项式的定义
– 多项式与码字的关系:桥梁;
• 多项式的系数表示

• x的幂次表示

– 域上的多项式
• 针对系数定义;
• 例如二进制系数多项式,称为二元域GF(2)上的 多项式。
编辑ppt
28
(1) 常数总是多项式的因子。
(2) 一个多项式 f(x) 是否为既约多项式 与所定义的域有关。
(3) 一个多项式既约的充要条件:多项 式Pl(x) 不能分解成两个次数低于Pl(x) 的多项式的乘积。
(4) 完全分解:n次多项式最多能分解成 n个一次多项式的乘积,被称为完全分 解。
(5) 一次多项式一定是既约的。
(3)加法和乘法之间满足如下分配率 (distributive) :
a(bc) abac
(bc)a baca
则称F是一个域。
10.01.2021
编辑ppt
6
(1)域的阶(针对群中元素的个数),记 为q。
(2)有限域或伽逻华(Galois)域,表示为:
GF(q)。
–域将
10.01.2021

编辑ppt
联系在一起?
7
例2-3
– F1:有理数全体、实数全体对加法和乘法都 分别构成域,分别称为有理数域和实数域。
– F2:0、1两个元素模2加构成域;由于该域 中只有两个元素,记为GF(2)。
10.01.2021
编辑ppt
8
• 定理:
– 设p为质数,则整数全体关于p模的剩余类: 0,1,2,…,p-1,在模p的运算下(p模相 加和相乘),构成p阶有限域GF(p)。

近世代数基础1

近世代数基础1

S
1 p

gS
2 p
g
1
(其中S
1 p
,
S p2为sylow
p子群)
8.对{e}≠G,若 G 没有非平凡正规子群,称为单群。
9.交换群 G 是单群⇔ G Z p ,p 为素数。 10.阶数最小的非交换单群是 60 阶的 5 元交代群 A5。
第 8 页 共 29 页
近世代数基础
2.6 群在集上的作用
2.4 同态
第 5 页 共 29 页
近世代数基础
1.设群(G,·)和(H,×),φ 是 G 到 H 的映射,若对 x, y G 有
(x y) (x) (y) 则称 φ 是群(G,·)到(H,×)的同态。当 φ 是单/满射时称 φ 为单/满同态。φ 的像(G 的同态像)为 Im {(x) | x G} H ;φ 的核为 Ker {x G | (x) e,e为H的恒等元} G 。当 φ 为满 同态时 Imφ=H;当 φ 为单同态时 Kerφ={e}。
是双射,且 (1) S T (S) (T ) (2) S G (S) G (3)若 S G 则 G / S G /(S)
2.5 有限群 设有限群 G 的阶为 n,子群 H、元素 a 阶为 m。
1.m|n 且 an=e。 2.设 H 在 G 中不同左陪集的个数为[G:H],称[G:H]为 H 在 G 中的指数,则 n=[G:H]m, 即|G|=|H|[G:H]。若 H G,则|G/H|=t,即|G|=|H||G/H|。
(x y) (y) (x) 则称 φ 是群(G,·)到(H,×)的反同构,称群(G,·)反同构于(H,×),记为 (G,) 1 (H ,) 。反同构关 系具有对称性。

近世代数基础课件

近世代数基础课件
37
第3讲 特殊的唯一分解环 1 主理想环 2 欧氏环 3 唯一分解环上的一元多项式环 4 因子分解与多项式的根
38
第六章 群论补充
39
第1讲 共轭元与共轭子群 1 第2讲 群的直积 第3讲 群在集合上的作用 第4讲 西罗定理
40
第1讲 共轭元与共轭子群
研究群内一些特殊类型的元素和子群
1 中心和中心化子 2 共轭元和共轭子群 3 共轭子群与正规化子
53
四 代数学发展的四个阶段
代数学经历了漫长的发展过程,抽象代 数(近世代数)是19世纪最后20年直到20世 纪前30年才发展起来的现代数学分支. 1 最初的文字叙述阶段 2 代数的简化文字阶段 3 符号代数阶段 4 结构代数阶段
54
1 最初的文字叙述阶段
古希腊之前直到丢番图(Diophantine,公元250年)时 代,代数学处于最初的文字叙述阶段,这一阶段除古希腊 数学之外还包括古巴比伦、古埃及与古代中国的数学. 此时算术或代数尚未形成任何简化的符号表达法,代数 运算则都采用通常的语言叙述方式表达,因而代数推理 也都采用直观的方法.在中国古代则有著名的筹算法,而 在古希腊则借助于几何图形的变换方法.最典型的代表 是毕达哥拉斯(Pythagoras,公元前585-497)几何数论方 法.例如通过图形的组合可以得到
}
} }
映射相关概念及举例
映射的运算 映射及其相关概念的推广
}
特殊映射
6
第3讲 基本概念之代数运算适应的规则 ——运算律 运算律
1 与一种代数运算发生关系的运算律 (1)结合律 (2)交换律 (3)消去律 2 与两种代数运算发生关系的运算律 (1)第一分配律 (2)第二分配律
7
第4讲 基本概念之与代数运算发生关系的映射 ——同态映射 同态映射 1 同态映射 2 同态满射 3 同构映射 4 自同构映射 5 举例

第1章近世代数基本概念汇总

第1章近世代数基本概念汇总
2018/10/13
引言 近世代数理论的两个来源
有理运算以及开方的方法求出它的所有根,什么条件之下不能 求根。 最终解决这一问题的是法国年青数学家Galois(1811-
1832),Galois引入了扩域以及群的概念,并采用了一种全新 的理论方法发现了高次代数方程可解的法则。在Galois之后群 与域的理论逐渐成为现代化数学研究的重要领域,这是近世代 数产生的一个最重要的来源。
An到D的一个n元映射。 一的d D,则称 是A1 A2
d叫做(a1 , a2 ,
an )在之下的象; (a1, a2 ,
an ) d (a1, a2 ,
an )叫做d 在下
an )
的一个逆象(原象). 用符号表示:
: (a1, a2 ,
2018/10/13
§2 映射
A1 , A2 ,, An 的并和交分别记为:
n i 1
Ai A1
n
A2
n
An ,
i 1
Ai A1
A2
An .
x x
2018/10/13
i 1 n i 1
Ai Ai , x Ai . Ai Ai , x Ai .
§1 集合
集合的差运算: A B {x | x A但x B} 即A-B是由一切属于A但不属于B 的元素所组成。
则 不是一个A B到D的映射.
例5 设A=D=R. 定义
: a a, 若是 a 1
1 b, 这里 b2 1 则不是一个A到D的映射.
§2 映射
映射定义要注意以下几点:
1) 集合 A 1, A 2,
2) A1 , A2 ,
, An , D 可以相同;

近世代数教案

近世代数教案

近世代数教案近世代数教案西南⼤学数学与统计学院张⼴祥学时数:80(每周4学时)使⽤教材:抽象代数——理论、问题与⽅法,科学出版社2005教材使⽤说明:该教材共10章,本课程学习前6章,覆盖通⽤的传统教材(例如:张⽲瑞《近世代数基础》)的所有内容,但本教材更强调抽象代数理论的应⽤和⽅法特点。

本教材的后4章有⼀定难度和深度,可作为本科近世代数(⼆)续⽤。

如果不再开设近世代数(⼆),则可以供有兴趣的学⽣⾃学、⾃读,进⼀步了解现代代数学更加前沿的内容,拓宽知识⾯。

教学⽅法:由于该教材⾸次在全年级使⽤,采⽤教研室集体备课的⽅式,每2周⼀次参加教学的教师集体研讨备课。

每节配有3—5题常规练习作业。

每章提供适量的(3—4题)思考问题供学⽣独⽴思考,学⽣完成的思考题成绩可记⼊平时成绩。

整学期可安排1—2次相关讲座,介绍现代代数学的研究⽅法或研究成果。

本学期已经准备讲座内容:群与Goldbach猜想。

教学⼿段:⿊板板书与Powerpoint 课件相结合。

主要参考书:1.张⽲瑞,近世代数基础,1952第⼀版,1978年修订版,⾼等教育出版社2.刘绍学, 近世代数基础,(⾯向21世纪课程教材,“九五”国家级重点教材) ⾼等教育出版社,19993.⽯⽣明, 近世代数初步, ⾼等教育出版社20024.B.L.Van der Waerden,代数学,丁⽯孙,曾肯成,郝鈵新,曹锡华译,1964卷1,1976卷2,科学出版社5. M.Kline, 古今数学思想,卷1-4,张理京,张锦炎,江泽涵译,上海科技出版社2002第⼀章导引本章教学⽬标:1. 概要了解代数学发展的四个阶段:⽂字叙述阶段;简化⽂字阶段;符号代数阶段;结构代数阶段2. 了解近世代数产⽣的三⼤基础:⾼次⽅程求根问题与Galois群;费马问题的Kummer⽅法与理想论;Hamilton四元数;了解近世代数在现代数学中的地位3. 代数运算的⼀般定义4. 群、环、域的定义与初步实例教学时数:共3节,每节2学时,共6学时思考问题:1. 利⽤乘法公式解释我国古代筹算开⽅法的原理。

近世代数基础PPT课件

近世代数基础PPT课件

来说四元数的发现使人们对于数系的代数性质的认识提高了
一大步。四元数代数也成为抽象代数研究的一个新的起点,
它是近世代数的另一个重要理论来源。
返回
16
(3)Kummer理想数的发现
17世纪初法国数学家费马(P.Fermat 1601-1665) 研究整数方程时发现当n≥3时,方程 xn+yn=zn 没有正整数解,费马认为他能够证明这个 定理,但是其后的三百多年中人们研究发现这是一 个非常困难的问题,这一问题被后来的研究者称为 费马问题或费马大定理,此定理直到1995年才被英 国数学家A.Wiles证明。对费马问题的研究在三个半 世纪内从未间断过,欧拉、高斯等著名数学家都对 此作出过重要贡献。但最重大的一个进展是由 E.Kummer作出的。
18
Kummer方法的前提是形如a+bη的复整数也象 整数一样具有唯一的素因子分解,其中a与b是通 常整数。并不是对于每个整数n,复整数a+bη都具 有唯一分解性,Kummer把这种复整数的因子分解 称为理想数的分解。
14
加罗华
阿贝尔
返回
15
(2)Hamilton四元数的发现
长期以来人们对于虚数的意义存在不同的看法,后来发
现可以把复数看成二元数(a,b)=a+bi,其中i2= -1。二元数按
(a,b)±(c,d)=(a±c,b±d),(a,b)(c,d)=(ad+bc,ac-bd)的法则进行
代数运算,二元数具有直观的几何意义;与平面上的点一一
近 世 代 数
概 述
11
>>
1. 近世代数理论的三个来现 (3) Kummer理想数的发现
下一页
12
(1) 代数方程的解 两千多年之前古希腊时代数学家就能够利用开

近世代数的基础知识

近世代数的基础知识

近世代数的基础知识初等代数、高等代数和线性代数都称为经典代数(Classical algebra ),它的研究对象主要是代数方程和线性方程组)。

近世代数(modern algebra )又称为抽象代数(abstract algebra ),它的研究对象是代数系,所谓代数系,是由一个集合和定义在这个集合中的一种或若干种运算所构成的一个系统。

近世代数主要包括:群论、环论和域论等几个方面的理论,其中群论是基础。

下面,我们首先简要回顾一下集合、映射和整数等方面的基础知识,然后介绍本文需要用到的近世代数的相关知识。

3.1 集合、映射、二元运算和整数3.1.1 集合集合是指一些对象的总体,这些对象称为集合的元或元素。

“元素a 是集合A 的元”记作“A x ∈”,反之,“A a ∉”表示“x 不是集合A 的元”。

设有两个集合A 和B ,若对A 中的任意一个元素a (记作A a ∈∀)均有B a ∈,则称A 是B 的子集,记作B A ⊆。

若B A ⊆且A B ⊆,即A 和B 有完全相同的元素,则称它们相等,记作B A =。

若B A ⊆,但B A ≠,则称A 是B 的真子集,或称B 真包含A ,记作B A ⊂。

不含任何元素的集合叫空集,空集是任何一个集合的子集。

集合的表示方法通常有两种:一种是直接列出所有的元素,另一种是规定元素所具有的性质。

例如:{}c b a A ,,=;{})(x p x S =,其中)(x p 表示元素x 具有的性质。

本文中常用的集合及记号有:整数集合{} ,3,2,1,0±±±=Z ;非零整数集合{}{} ,3,2,10\±±±==*Z Z ; 正整数(自然数)集合{} ,3,2,1=+Z ;有理数集合Q ,实数集合R ,复数集合C 等。

一个集合A 的元素个数用A 表示。

当A 中有有限个元素时,称为有限集,否则称为无限集。

用∞=A 表示A 是无限集,∞<A 表示A 是有限集。

近世代数教学 ppt课件

近世代数教学  ppt课件

PPT课件
5
(1) 代数方程的解
两千多年之前古希腊时代数学家就能够利用开 ax2+bx+c=0 方法解二次方程 。16世纪初欧洲 文艺复兴时期之后,求解高次方程成为欧洲代 数学研究的一个中心问题。1545年意大利数学 家 G.Cardano(1501-1576)在他的著作《大术》 (Ars Magna)中给出了三、四次多项式的求根 公式,此后的将近三个世纪中人们力图发现五 次方程的一般求解方法,但是都失败了。
产生了巨大影响。同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构
主义哲学的产生和发展都发生了巨大P的PT影课响件。
8
(2)Hamilton四元数的发现
长期以来人们对于虚数的意义存在不同的看法,后来发现 可以把复数看成二元数(a,b)=a+bi,其中i2= -1。二元数按 (a,b)±(c,d)=(a±c,b±d),(a,b)(c,d)=(ad+bc,ac-bd)的法则进行代 数运算,二元数具有直观的几何意义;与平面上的点一一对应。 这是数学家高斯提出的复数几何理论。二元数理论产生的一个 直接问题是:是否存在三元数?经过长时间探索,力图寻求三 元数的努力失败了。但是爱尔兰数学家W.Hamilton(1805-1865) 于1843年成功地发现了四元数。四元数系与实数系、复数系一 样可以作加减乘除四则运算,但与以前的数系相比,四元数是 一个乘法不交换的数系。从这点来说四元数的发现使人们对于 数系的代数性质的认识提高了一大步。四元数代数也成为抽象 代数研究的一个新的起点,它是近世代数的另一个重要理论来 源。
彻的解答,解决了困扰数学家们长达数百年之久的问题。伽罗瓦群论还给出了判断
几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方

近世代数基础习题课答案到 题

近世代数基础习题课答案到 题

第一章 第二章第一章1. 如果在群G 中任意元素,a b 都满足222()ab a b =, 则G 是交换群. 证明: 对任意,a b G ∈有abab aabb =. 由消去律有ab ba =. □2. 如果在群G 中任意元素a 都满足2a e =,则G 是交换群.证明: 对任意,a b G ∈有222()ab e a b ==. 由上题即得. □3. 设G 是一个非空有限集合, 它上面的一个乘法满足:(1) ()()a bc ab c =, 任意,,a b c G ∈.(2) 若ab ac =则b c =.(3) 若ac bc =则a b =.求证: G 关于这个乘法是一个群.证明: 任取a G ∈, 考虑2{,,,}a a G ⋯⊆. 由于||G <∞必然存在最小的i +∈ 使得i a a =. 如果对任意a G ∈, 上述i 都是1,即, 对任意x G ∈都有2x x =, 我们断言G 只有一个元,从而是幺群. 事实上, 对任意,a b G ∈, 此时有:()()()ab ab a ba b ab ==, 由消去律, 2bab b b ==; 2ab b b ==,再由消去律, 得到a b =, 从而证明了此时G 只有一个元,从而是幺群.所以我们设G 中至少有一个元素a 满足: 对于满足i a a =的最小正整数i 有1i >. 定义e G ∈为1i e a -=, 往证e为一个单位元. 事实上, 对任意b G ∈, 由||G <∞, 存在最小的k +∈ 使得k ba ba =. 由消去律和i 的定义知k i =:i ba ba =, 即be b =.最后, 对任意x G ∈, 前面已经证明了有最小的正整数k使得k x x =. 如果1k =, 则2x x xe ==, 由消去律有x e =从而22x e e ==, 此时x 有逆, 即它自身.如果1k >, 则11k k k x x xe xx x x --====, 此时x 也有逆:1k x -. □注: 也可以用下面的第4题来证明.4. 设G 是一个非空集合, G 上有满足结合律的乘法. 如果该乘法还满足: 对任意,a b G ∈, 方程ax b =和ya b =在G 上有解, 证明: G 关于该乘法是一个群.证明: 取定a G ∈. 记ax a =的在G 中的一个解为e . 往证e 是G的单位元. 对任意b G ∈, 取ya b =的一个解c G ∈: ca b =.于是: ()()be ca e c ae ca b ====. 得证.对任意g G ∈, 由gx e =即得g 的逆. □5. 找两个元素3,x y S ∈使得222()xy x y =/.解: 取(12)x =, (13)y =. □6. 对于整数2n >, 作出一个阶为2n 的非交换群.解: 二面体群n D . □7. 设G 是一个群. 如果,a b G ∈满足1r a ba b -=, 其中r 是正整数, 证明: ii i r a ba b -=, i 是非负整数.证明: 对i 作数学归纳. □8. 证明: 群G 是一个交换群当且仅当映射1x x - 是群同构.证明: 直接验证. □9. 设S 是群G 的一个非空集合. 在G 上定义关系 为: ~a b 当且仅当1ab S -∈. 证明: 这个关系是一个等价关系当且仅当S G ≤. 证明: 直接验证. □10. 设n 是正整数. 证明: n 是 的子群且与 同构.证明: 直接验证. □11. 证明: 4S 的子集{(1),(12)(34),(13)(24),(14)(23)}B =是一个子群, 而且B 与4U 不同构. (n U 是全体n 次单位根关于复数的乘法组成的群).证明: 用定义验证B 是4S 的子群. 由于4U 中有4阶元而B 中的元的阶只能是1或2, 所以它们不可能同构. □12.证明: 2n 阶群的n 阶子群必然是正规子群.证明: 用正规子群的定义验证. □13. 设群G 的阶为偶数. 证明: G 中必有2阶元.证明: 否则, G 中的任意非单位元和它的逆成对出现, 从而, G的阶为奇数, 矛盾. □14. 设0110A ⎛⎫= ⎪⎝⎭, 2i 2i 0e e 0n n B ππ-⎛⎫ ⎪= ⎪ ⎪⎝⎭. 证明: 集合 22:{,,,,,,,}n n G B B B AB AB AB =⋯⋯关于矩阵的乘法是一个群, 而且这个群与二面体群n D 同构.证明: n D 有如下的表现: 21,|1,n n D T S T S TS ST -=〈===〉. 作2:GL ()n D ϕ→ : S A , T B . 直接验证ϕ是群单同态,而且im G ϕ=. □15. 设群G 满足: 存在正整数i 使得对任意,a b G ∈都有()k k k ab a b =, 其中,1,2k i i i =++. 证明: G 是一个交换群.证明: 由()i i i ab a b =和111()i i i ab a b +++=得:111()()()()()i i i i i i ab a b ab ab ab a b +++===, 从而, 1i i i i ba b a b +=, 即:i i ba a b =.同理可得: 11i i ba a b ++=. 于是:11()()i i i i a ba ba a b a ab ++===, 即: ab ba =. □16. 在群2()SL 中, 证明元素0110a -⎛⎫= ⎪⎝⎭的阶为4, 元素1101b --⎛⎫= ⎪-⎝⎭的 阶为3, 而ab 的阶为∞.证明: 直接验证. □17. 如果群G 为一个交换群, 证明G 的全体有限阶元素组成一个子群.证明: 设{|()}H g G o g =∈<∞. 显然e H ∈, 从而H 不是空集. 对任意,a b H ∈, 设()o a m =, ()o b n =, 则1()o b n -=;11()()mn m n ab a b e --==, 即: 1ab H -∈. □18. 如果群G 只有有限多个子群, 证明G 是有限群.证明: 首先证明: 对任意a G ∈有()o a <∞. 事实上, 设k a 〈〉为G 的由k a 生成的子群, 其中, 1k ≥是整数. 则242m a a a a 〈〉⊇〈〉⊇〈〉⊇⊇〈〉⊇ . 由于G 只有有限多 个子群, 所以必然存在m 使得2(1)22(2)m m m a a a ++〈〉=〈〉=〈〉= ,即 22(1)m t m a a +=.由消去律即得()o a <∞.于是G 的任意元素都包含在某个有限子群里, 而G 只有有限多个子群, 所以||G <∞. □19. 写出群n D 的全部正规子群.解: 已知: 212121{,,,,1,,,,,,|1},n n n n n D T T T T S ST ST ST S T S T TS ST ---=⋯=⋯〈====〉设H 是n D 的子群. 如果1H =则H 当然是n D 的正规子群.I (1) 设k H T =〈〉. 由于1k k k k ST S ST S SST T H ---===∈和k k TT T T H =∈. 所以k T 〈〉是n D 的正规子群.(2) 设{1,}H S S =〈〉=. 由于SSS S =和12TST ST --=, 所以{1,}H S S =〈〉=是n D 的正规子群当且仅当2n =.(3) 设k H ST =〈〉. 注意到()()1k k ST ST =, 所以{1,}k k H ST ST =〈〉=. 由于1k k TST T ST -=和()k k S ST S ST -=,所以{1,}k k H ST ST =〈〉=是n D 的正规子群当且仅当|2n k .II (1) 设,k k H T T '=〈〉. 则(,')k k H T =〈〉. 归结为I (1)的情形, 从而是n D 的正规子群. 一般地,1212(,,,),,,t t k k k k k k H T T T T ⋯=〈⋯〉=〈〉也是n D 的正规子群.(2) 设,k H S T =〈〉. 由于1k k TT T T -=, 12TST ST --=, k k ST S T -=, 所以,k H S T =〈〉是n D 的正规子群当且仅当存在m ∈ 使得|(2)n mk +. (注: 当1k =时,k n H S T D =〈〉=). 一般地, 设1,,,t k k H S T T =〈⋯〉. 则12(,,,),t k k k H S T ⋯=〈〉, 归结为刚讨论的情形.(3) 设,k k H ST ST '=〈〉. 或者, 更一般地,1212(,,,),,,t t k k k k k k H ST ST ST ST ⋯=〈⋯〉=〈〉. 归结为I (3)的情形,即: 1212(,,,),,,t tk k k k k k H ST ST ST ST ⋯=〈⋯〉=〈〉是n D 的正规子群 当且仅当12|2(,,,)t n k k k ⋯.□20. 设,H K 是群G 的子群. 证明: HK 为G 的子群当且仅当HK KH =. 证明: HK 为G 的子群当且仅当111()HK HK K H KH ---===. □21. 设,H K 是群G 的有限子群. 证明: ||||||||H K HK H K =⋂. 证明: 首先, HK 是形如Hk 的不交并; 其中k K ∈. 又, 12Hk Hk =当且仅当112k k K H -∈⋂. 所以, 这样的右陪集共有||||K H K ⋂ 个. 于是: ||||||||K HK H K H =⋂. □ 22. 设,M N 是群G 的正规子群, 证明:(1) MN NM =.(2) MN 是G 的正规子群.(3) 如果{}M N e ⋂=, 那么/MN N 与M 同构.证明: (1) 由1MNM N -⊆得MN NM ⊆. 同理, NM MN ⊆.(2) 由(1)和第20题, MN 确实是子群. 对任意g G ∈有111()()()g MN g gMg gNg MN ---=⊆. 所以MN 是G 的正规子群.(3) 如果mn m n ''=则11(){}m m n n M N e --''=∈⋂=, 从而,m m n n ''==. 即: MN 中的元素可以唯一地写为,,mn m M n N ∈∈的形式. 于是可以定义映射: :MN M σ→为mn m . 由于,M N 都是正规子群, 对任 意,m M n N ∈∈有111()(){}mn nm mnm n M N e ---=∈⋂=, 所 以mn nm =: 即此时, M 中的元素与N 中的元素可交 换. 由此可以验证σ是群同态. 显然σ是满的, 而且 ker N σ=. □23. 设G 是一个群, S 是G 的一个非空子集. 令(){|,}C S x G xa ax a S =∈=∀∈; 1(){|}N S x G x Sx S -=∈=. 证明: (1) (),()C S N S 都是G 的子群.(2) ()C S 是()N S 的正规子群.证明: 直接用定义验证. 以(2)为例. 对任意(),(),c C S n N S s S ∈∈∈,111111()()()()ncn s ncn nc n sn c n ------=. 设1n sn s S -'=∈, 即: 1s ns n -'=. 所以,1111111()()()()ncn s ncn nc n sn c n ns n s -------'===. 此即表明: 1()ncn C S -∈. □24. 证明: 任意2阶群都与乘法群{1,1}-同构. 证明: 设{,}G e a =. 作:{1,1}G σ→-为1e , 1a - . □25. 试定出所有的互不同构的4阶群.解: 设群G 的阶为4. 如果G 有4阶元, 则4G . 如果G 没有4阶元, 则G 的非单位元的阶都为2. 设{,,,}G e a b c =. 考虑第11题中的4S 的子群(Klein 四元群):{(1),(12),(34),(12)(34)}K =. 作映射: :G K σ→为:(1),(12),(34),(12)(34)e b a c . 则σ为群同构. 综上, 在同构意义下, 4阶群只能是4 或Klein 四元群. □26. 设p 是素数. 证明任意两个p 阶群都同构.证明: 只需证明任意p 阶群G 都同构于p . 由Lagrange 定理, G的任意非单位元a 的阶都为p , 从而21{,,,,}p G e a a a -=⋯, 从 而有良定的映射:p G σ→ 为: 1a . 此即为一个群同构.□27. 在集合S =⨯ 上定义(,)(,):(,);(,)(,):(,)a b c d a c b d a b c d ac bd ad bc +=++=++. 证明: S 在这两个运算下是一个有单位元的环. 证明: 直接验证. 零元素为(0,0), 单位元为(1,0). □28. 在 上重新定义加法⊕和 为: :,:a b ab a b a b ⊕==+ . 问 关于这两个运算是否是一个环.解: 不是. 关于⊕不是一个abel 群. □29. 设L 是一个有单位元的交换环. 在L 中定义: :1a b a b ⊕=+-,:a b a b ab =+- . 证明: 在这两个新的运算下, L 仍然是一个环, 且与原来的环同构.证明: 直接验证满足环的定义中的条件. 作:(,,)(,,)L L σ+→⊕ 为:1a a - . 验证σ是环同构. □30. 给出满足如下条件的环L 和子环S 的例子:(1) L 有单位元, 而S 没有单位元.(2) L 没有单位元, 而S 有单位元.(3) ,L S 都有单位元, 但不相同.(4) L 不交换, 但S 可交换.解: (1) ;2L S == .(2) 0|,20a L a b b ⎧⎫⎛⎫=∈∈⎨⎬⎪⎝⎭⎩⎭ , 0|00a S a ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭ . (3) 0|,0a L a b b ⎧⎫⎛⎫=∈∈⎨⎬ ⎪⎝⎭⎩⎭, 0|00a S a ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭ . (4) |,,,a L a b b c d c d ⎧⎫⎛⎫=∈⎨⎬⎪⎝⎭⎩⎭ , 0|0a S a a ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭ . 31. 环R 中的一个元L e 为一个左单位元, 如果对任意r R ∈有L e r r =.类似地可定义右单位元. 证明:(1) 如果环R 既有左单位元, 又有右单位元, 则R 有单位元.(2) 如果环R 有左单位元, 没有零因子, 则R 有单位元.(3) 如果环R 有左单位元但没有右单位元, 则R 至少有两个左单位元.证明: (1) 设,L R e e 分别为R 的左, 右单位元. 则L L R R e e e e ==为R的单位元.(2) 设L e 为R 的一个左单位元. 对任意0x R =∈/, 由22()0L xe x x x x -=-=得: L xe x =, 即L e 为R 的一个右单 位元. 由(1)即得.(3) 设L e 为R 的一个左单位元, 由于R 没有右单位元, 所以存在0z R =∈/使得L ze z =/. 令: :L L L f e z ze =+-. 则 L L f e =/且, 对任意r R ∈有0L L L f r e r zr ze r r r =+-=+=, 即: L f 为R 的另一个单位元. □32. 设F 为一个域. 证明: F 没有非平凡的双边理想.证明: 设0I F =⊆/为F 的一个理想. 取0x I =∈/, 有11x x F -=∈, 从而I F =. □33. 设R 是一个交换环, a R ∈.(1) 证明{|}Ra ra r R =∈是R 的一个理想.(2) 举例说明, 如果R 不是交换环, 那么Ra 不一定是一个(双边)理想.证明: (1) 直接验证.(2) 设|,,,a b R a b c d c d ⎧⎫⎛⎫=∈⎨⎬⎪⎝⎭⎩⎭ , 1010a ⎛⎫= ⎪⎝⎭. 则 0|,0r s Ra r s ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭. 显然, Ra 不是一个理想, 比如: 01010101a Ra ⎛⎫⎛⎫=∉ ⎪ ⎪⎝⎭⎝⎭. □34. 设I 为交换环R 的一个理想, 令: rad {|,}n I r I r I n +=∈∈∈ . 证明:rad I 为R 的理想, 称为I 的根.证明: 对任意,rad a b I ∈. 则存在正整数,m n 使得,m n a b I ∈. 由于 ()m n a b I +-∈, 从而rad a b I -∈.对任意rad a I ∈和r R ∈, 存在正整数m 使得m a I ∈. 从而()m m m ra r a I =∈, 即: rad ra I ∈. □35. 设F 为一个有单位元的交换环. 证明: 如果F 没有非平凡理想,则F 是一个域.证明: 对任意0a F =∈/, 由第33题(1)知, Fa 是F 的一个非零理想.由于F 没有非平凡理想, 所以Fa F =. 特别1Fa ∈, 即: 存在 b F ∈使得1ba =. □36. 设 是有理数域, ()n 是全体n 阶 上的矩阵组成的环. 证明:()n 没有非平凡的理想(没有非平凡理想的环称为单环). 证明: 设0I =/为()n 的一个理想. 取0A I =∈/. 则A 至少有一个 非零元素, 设为ij a . 由于I 是一个理想, 所以1ij ij ij ij E AE E I a ⎛⎫=∈ ⎪ ⎪⎝⎭, 其中ij E 表示(,)i j -元为1而其余元为0的基本矩阵. 由基本矩阵的乘法性质, ij jk ik E E E I =∈, 从而ki ik kk E E E I =∈, 1,2,,k n =⋯. 于是单位阵1nn kk k E E I ==∈∑, 从而()n I = . □37. 设R 是一个环, 0a R =∈/. 证明: 如果存在0b R ≠∈使得0aba =, 那么a 是一个左零因子或右零因子.证明: 由于0aba =, 所以, 如果0ba =/则a 是一个左零因子; 如果0ba =, 则a 是一个右零因子. □38. 环的一个元素a 成为幂零的, 如果存在正整数n 使得0n a =. 证明:对于有单位元环R 的任意幂零元a , 1a -是可逆的.证明: 21(1)(1)11n n a a a a a --+++⋯+=-=. □39. 证明: 在交换环中, 全部幂零元素组成一个理想.证明: 用定义直接验证: 在交换环中, 幂零元的差、积仍然幂零.□40. 设R 是有单位元的有限环. 如果,x y R ∈满足1xy =, 证明: 1yx =.证明: 作映射: ::f R R z yz → . 则f 是单射: 事实上, 如果 12yz yz =, 则12xyz xyz =, 即12z z =. 由于R 是有限集, 所以f是满射, 从而存在0z R ∈使得001()f z yz ==. 只需证明:0z x =. 事实上, 00001()()1z z xy z x yz x x ===== . □41. 设R 是一个有单位元的环. 证明: 如果存在,a b R ∈满足1ab =但1ba =/, 那么有无穷多x R ∈使得1ax =.证明: 注意到111()1n n n n a b ba a ab aba a ab ++++-=+-==, n ∈ . 所以只需证明1n n ba a +- (n ∈ )互不相同. 注意到1m m a b aa abb b =⋯⋯=, 对任意m ∈ 都成立.如果11n n k k ba a ba a ++-=-, (n k >). 则11111()0n n k k k k k ba a b ba b a b b b +++++-=-=-=, 即0n k n k ba a b ---=. 如果1n k -=则1ba ab ==, 矛盾.所以1n k ->. 从而10n k n k ba a ----=;11)(10n k n k n k ba a b b a ------=-=, 也得到矛盾. □42. 设R 是满足如下条件的环: R 至少有两个元素而且对任意0a R =∈/都存在唯一的元素b R ∈使得aba a =. 证明:(1) R 没有零因子.(2) bab b =.(3) R 有单位元.(4) R 是一个体.证明: (1) 设0a R =∈/使得0ax =. 由已知, 对于a 有唯一的b R ∈使得aba a =. 于是()a b x a aba +=. 由唯一性, b x b +=, 即: 0x =; 从而a 不是左零因子. 即: R 中的任意非零元都不 是左零因子; 从而R 也没有右零因子.(2) 由于()()a bab a ab aba aba ==, 再由唯一性即得bab b =.(3) 任取0a R =∈/, 取那个唯一的b R ∈使得aba a =. 往证ab就是一个单位元. 对任意0x R =∈/, 取那个唯一的y R ∈ 使得xyx x =. 由(2)有:()0b ab xy x babx bxyx bx bx -=-=-=.由(1), 0ab xy -=. 从而abx xyx x ==, 此即证明了ab 是左 单位元. 保持记号. 类似地有:()0a ba xy x abax axyx ax ax -=-=-=, 从而ba xy =, 于是xab xyx x ==, 此即证明了ab 是右单位元.(4) 由(3)可知, R 的每个非零元都有逆. □43. 设[0,1]C 是[0,1]上的连续函数组成的环. 证明:(1) 对于[0,1]C 的任意非平凡理想I , 都存在一个[0,1]θ∈使得对任意()f x I ∈都有()0f θ=.(2) ()[0,1]f x C ∈是一个零因子当且仅当零点集{[0,1]|()0}x f x ∈= 包含一个开区间.证明: (1) 若不然, 对任意[0,1]θ∈都存在()[0,1]g x C θ∈使得()0g θ=/. 由连续性, 存在一个包含θ的开区间[0,1]J θ⊆使得()g x θ在 J θ上恒为正或恒为负(0J 实际上是左闭右开的; 1J 实际上是左开右闭的). 另一方面, 由开覆盖定理, 存在有限多个i J θ, 使得[0,1]i i J θ=⋃. 定义2():(())ii g x g x θ=∑. 则 ()g x I ∈, 而且()0g x >. 于是11()()g x I g x =∈ , 与I 是非平凡理 想矛盾.(2) “⇒”: 设()f x 是[0,1]C 中的一个零因子: 存在0()[0,1]g x C =∈/使得()()0,[0,1]g x f x x ≡∈. 由于()0g x =/, 所以 存在[0,1]上的开区间J 使得()g x 在J 上恒为正或恒为负; 从而, ()f x 在J 上恒为0.“⇐”: 设存在[0,1]上的开区间J 使得()f x 在J 上恒为0. 作连 续函数()g x 使得: ()g x 在J 上恒不为0, 而在J 上恒为0, 从 而()()0f x g x ≡: 即()f x 是[0,1]C 中的一个零因子. □44. 设p = 为素域. (1) 求环()n 的元素个数.(2) 求群()n GL 的元素个数.(1) 解: 由于2dim ()n n = , 所以()n 的元素个数为2n p .(2) 解: 取定向量空间n 的一个基, 则()n GL 中的元与n 上 的可逆线性变换一一对应, 而可逆线性变换把基映为基. 所以, 只需求n 的基的个数. 注意到n 的元素个数为n p . 任取n 的一 个非零向量1α, 这样的取法有1n p -种. 取2n α∈ 使得12,αα线性 无关. 这样的2α能且只能从1n α-〈〉 中选取. 所以2α的选取方法有n p p -种. 类似地, 取3n α∈ 使得312,,ααα线性无关. 这样的3α 能且只能从12,n αα-〈〉 中选取. 所以3α的选取方法有2n p p -种(因为12,αα〈〉的维数是2). 继续这个过程, 我们得到n 的基的个 数为21()()()n n n n p p p p p p ---⋯-, 此即为所求. □45. 设K 是一个体, 0,a b K =∈/且1ab =/. 证明如下的华罗庚恒等式:1111(())a a b a aba -----+-=.证明: 由提示, 先证明引理: 对任意0,1x K =∈/,1111(1)(1(1))1(1)(((1)))x x x x x x -----+-=-+--11(1)(1)11x x x x x x -=-+--=-+=,所以, 111(1)(1)1x x ----=--成立. 注意到: 原恒等式等价于1111(1)(())a ba a b a -----=+-, 等价于11111(1)()ba a a b a ------=+-. 由引理,111111*********(1)((1)1)(1)((1))ba a a b a a a b a a a a b ----------------=-+=+-=+-111()a b a ---=+- 即为所要的等式. □第二章1. 设G 为有限群, N G , (||,|/|)1N G N =. 证明: 如果元素a G ∈的阶整除||N , 那么a N ∈.证明: 考虑自然满态: :/G G N π→. 记()a a π=. 由于()/o a a e G N =∈, 所以()|()o a o a . 如果()1o a =/, 则((),|/|)1o a G N =/, 矛盾. □2. 设c 为群G 的阶为rs 的元素, 其中(,)1r s =. 证明: c 可以表示成c ab =, 其中()o a r =, ()o b s =, 且,a b 都是c 的幂.证明: 由(,)1r s =知, 存在整数,u v 使得1ur vs +=. 于是1ur vs c c c c ==.令vs a c =和ur b c =. 则()()((),)(,)o c rs rs o a r o c vs rs vs s ====. 同理, ()o b s =. □3. 证明: 如果群G 中的元素a 的阶与正整数k 互素, 那么方程k x a =在 a 〈〉内恰有一解.证明: 设()o a n =. 于是存在整数,r s 使得1rn ks +=. (法一) 作映射::k f a a x x 〈〉→〈〉 . 只需证明f 是双射. 由于||a n 〈〉=<∞, 所以只需证明f 是单射. 若k k x y =, ,x y a ∈〈〉, 则1()1k xy -=. 从而1111()()rn ks s xy xy xy e e ----====, 即x y =.(法二) 首先1()s k rn a a a -==, 即方程k x a =在a 〈〉中有解. 若t a a ∈〈〉也是k x a =的一个解, 那么()t s k a e -=, 从而 1()()t s ks t s rn t s a e a a ----===, 即t s a a =. □4. 设G 是一个群. 证明: 对任意,a b G ∈有()()o ab o ba =. 证明: 注意到, 对任意正整数m , 1()()m m ab a ba b -=, 所以1()()m m ab a ba b e -==当且仅当1111()()m ba a b ba ----==当且仅当 ()m ba e =. □5. 设2n >. 证明: 有限群G 中阶为n 的元素个数是偶数. 证明: 注意到, 对任意g G ∈有1()()o g o g -=, 而且, ()2o g >当且仅当1g g -=/. □6. 证明: 当2n >时有(){}n Z S e =. 即: n S 是交换群当且仅当2n ≤. 证明: 注意到, 对任意n S σ∈和轮换12()r i i i ⋯有11212()(()()())r r i i i i i i σσσσσ-⋯=⋯. 设()n e z Z S =∈/, 则对任意 n S σ∈应该有1z z σσ-=. 不妨设z 分解为互不相交的轮换的乘积(必要的话, 可通过重新编号): (12)(...)...(...)z =⋯. 取 (23)σ=. 则()(1)3z σσ=但(1)2z =, 矛盾. □7. 证明: 有理数加群 的任意有限生成的子群是一个循环群. 证明: 设1212,,,n n n H m m m =〈⋯〉, 其中(,)1i i n m =, 1i ≤≤ . 令 12[,,,]t m m m =⋯ . 则1H t=〈〉. □ 8. 设G 是有限生成的交换群. 证明: 如果G 的这些生成元都是有限 阶的, 那么G 是一个有限群.证明: 设1,,n G a a =〈⋯〉且()i i o a m =. 则G 的任意元素具有形式:1212nt t t n a a a ⋯, 其中1i i t m ≤≤, 从而G 只有有限个元素. □ 9. 对任意群G 和正整数k , 令{|}k k G a a G =∈. 证明: 群G 是循环 群的成分必要条件是G 的任意非单位子群都是形如k G 的集合. 证明: 必要性. 设G g =〈〉. 则G 的任意非单位子群H 具有形式k H g =〈〉, 其中k 是某个正整数. 于是H 中的任意元素具有形 式()()k m m k g g =, 即k H G ⊆. 反之, k G 的任意元素具有形式 ()()m k k m g g =, 于是k H G =.充分性. 考虑12k k G G ≥-⋃.(i) 如果12k k G G ≥-⋃不是空集, 取12k k g G G ≥∈-⋃. 则G g =〈〉是无限循环群. 事实上, g e =/, 从而G 的子群g 〈〉形如k G . 如果2k ≥, 则k k g x G =∈, 与g 的选取矛盾. 所以1g G G 〈〉==. 另外, 如果此时G g =〈〉是有限群, 则2k k G G ≥=⋃, 也得到矛盾.(ii) 现在假设12k k G G ≥-⋃是空集. 则对任意e x G =∈/, 存在正整 数k 使得子群k x G 〈〉=. 若1k =则G x =〈〉是循环群. 特别,存在整数s 使得k s x x =, 此即表明, G 的任意元素都是有限阶的. (To be continued).。

数学与应用数学专业《近世代数》教学大纲

数学与应用数学专业《近世代数》教学大纲

数学与应用数学专业《近世代数》教学大纲(课程编号:06162085)一、课程说明课程总学时72节,周学时4,学分4,开课学期:71、课程性质:《近世代数》课是数学与应用数学专业必修基础课,是现代数学的基本内容,是培养合格中学数学教师与高级专门人才所必备的基础理论知识,是了解现代数学精神、思想和方法最基本的知识。

2、课程教学目的与要求:通过本课程的教学,使学生初步掌握基本的系统的代数知识和抽象、严格的代数方法,进一步熟悉和掌握代数处理问题的方法;进一步提高抽象思维能力和严格的逻辑推理能力;进一步理解具体与抽象、特殊与一般、有限与无限等辨证关系。

能应用所学理论指导中学数学教学以及其它工作,培养学生独立提出问题、分析问题和解决问题的能力,培养学生的数学基本素质,同时为今后继续学习奠定基础。

3、教学内容与学时安排:第一章基本概念 10课时第二章群论 22课时第三章环与域 20课时第四章整环里的因子分解 12课时第五章扩域 8课时4、使用教材与参考书:使用教材:张禾瑞,《近世代数》,人民教育出版社,1978年。

参考书目:(1) 吴品三,《近世代数》,人民教育出版社,1979年。

(2) 刘绍学编著,《近世代数基础》,高等教育出版社1999年10月出版,“面向21世纪课程教材”,“普通高等教育‘九五’国家级重点教材”。

(3) 邓方安主编,《近世代数》,2001年西安地图出版社出版。

(4) 丁石孙、聂灵绍编,《代数学引论》,2002年北京大学出版社出版。

(5) 中国大百科全书·数学, 1988年中国大百科全书科学出版社出版。

(6) Shafarevich I R Basic Notions of Algebra, Encyclopaedia ofMathematical Sciences.Berlin: Spring-Verlag, 1990.(7) Artin M.Algebra.Englewood Cliffs: Prentice-Hall, 1999.(8) Nikulin V V, Shafarevich I R. Geometries and Groups. Beijing:Spring-Verlag, WorldPublishing Corporation, 1989.(9) T. W. Hungerford著,冯克勤译,代数学,1998年湖南出版社出版。

近世代数

近世代数

近世代数又称为抽象代数,最突出的特点是抽象,也是学习中的主要难点。

相对分析而言,近世代数对论证和推导的技巧性要求不高。

因此,在整个学习过程中,主要是要适应抽象思考和表述,为此都要特别注意抽象的代数结构的具体例子,以及随时归纳总结学过具体数学对象(例如高等代数中学过的数域、线性空间、对偶空间等)的代数结构。

下列几点可以在学习和复习时留意。

1 透彻理解运算的概念和性质。

运算的性质是代数的核心,所谓代数结构就是定义了运算的某种集合。

运算的定义很简单但有些抽象,就是集合与自身的直积到该集合的映射。

运算性质中,最重要的应该是结合律,如果结合律不成立,多次运算的结果取决于运算的顺序,这种数学结构很少有实际意义。

因此,结合律往往是近世代数中所研究运算必备的性质。

交换律是种特殊的性质,并非普遍成立,知道矩阵乘法和变换复合的对此应该不陌生;但在学矩阵乘法之前,所有数字的运算都满足交换律,因此有先入为主的误解。

分配律描述2种运算直接关系。

运算的属性还包括特殊元素的存在性,特殊元素指与参与运算后但不改变结果的元素(零元或单位元),以及与特定元素运算后结果为前述元素的元素(负元或逆元);注意到交换律不成立时,前述元素有左、右之分。

2 把握住同构和同态。

近世代数只关注代数结构,因此代数结构相同的数学对象,即与运算关联的性质相同,在近世代数中就不必加以区分。

代数结构相同的确切描述就是同构,2个集合间保持运算的双射。

更弱些,只保持运算的映射称为同态。

所谓保持运算,是指先运算再求映射下的像与先求映射的像再运算结果相同。

有些情形,同态满射本身也是个有用的概念。

因为开始时掌握的代数结构比较少,难以理解同构的重要性。

但学了群论就会知道,任何有限群与某个置换群同构,原则上只需要研究具体的置换群就可以得到所有抽象的有限群的性质。

3 对具体数学结构如群、环和域,注重它们的子结构。

子结构的核心要求是运算的封闭性和特殊元的存在性。

与子结构相关的还有等价分类和扩张等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.5 整环的整除理论
1.对环 R,由一个元素生成的理想 (a) {ar , r R} 称为主理想。若整环 R 的理想均是主
第 18 页 共 29 页
近世代数基础
理想, 则称 R 为主理想整环。 则整数环 Z 和数域 F 上一元多项式环 F[x]的理想均为主理想, Z 和 F[x]均为主理想整环。 2.对整环 R, a, b R ,若 c R使b ac ,则称 a 整除 b,记为 a|b,称 a 为 b 的因子, b 为 a 的倍元。 称单位元 1 的因子为 R 的单位。 若 R为单位使a b , 称 a,b 为相伴元。 对 0≠a 必有因子单位和相伴元, 称为 a 的平凡因子。 没有非平凡因子的非零非单位元称为 R 的既约元。则有 a | b b (a) (b) (a)
使a bq r , 其中r 0或 (r ) (b) 则称 R 有 Euclid 除式。此时称整环 R 为 Euclid 环。 因此 Euclid 环⫋主理想整环⫋唯一分解环。 5.对环 R 的任意无限递升主理想链 (c1)⫋(c2)⫋...⫋(cn)⫋...
第 20 页 共 29 页
3.4 交换环
1.对有 1 整环 R,群(R,+)中所有非零元有相同的阶, (1)阶为∞,R 有子环 Z 为整数环
第 17 页 共 29 页
近世代数基础
(2)阶为素数 p,R 有子环 Zp 为有限域 2.整环 R 的群(R,+)中非零元的阶称为 R 的特征, 即 1 在群(R,+)中的阶。 特征为∞的域有 子域 Q 为有理数域,特征为素数 p 的域有子域 Zp 为有限域。称 Q,Zp 为素域。 3.有 1 整环 R 的子环 A 是整环。 4.对有 1 交换环 A,若 A 无非平凡理想,即除{0}和 A 外无理想,则 A 为域。 5.对交换环 A 的真理想 I,若 xy I x I或y I 或等价地 x I , y I xy I ,则称 I 为素理想。 对交换环 A 的真理想 I,若不存在理想 J 使 I⫋J⫋A,则称 I 为极大理想。 6.对有 1 交换环 A 的理想 I,I 为素理想⇔A/I 为整环。若 A 无 1,则 A/I 为无零因子交 换环。 对有 1 交换环 A 的理想 I,I 为极大理想⇔A/I 为域。 对有 1 交换环 A,极大理想必为素理想。
为R单位 ( ) R
a, b为相伴元 (a) (b)
a为b的真因子 (b)⫋(a)⫋R 为既约元 ( )是极大主理想 对整环 R, d R 且 d|a,d|b,称 d 为 a,b 的公因子,若对任意 a,b 的公因子 c 有 c|d,则 称 d 为 a,b 的极大公因子,记为 d=(a,b)。若(a,b)=1,则称 a,b 互素。 对整环 R, p R ,若 a, b R, p | ab p | a或p | b ,则称 p 为素元,必是既约元,且
第 11 页 共 29 页
近世代数基础
A B {a b | a A, b B} AB { ai bi | n N , ai A, bi B}
i 1 n
则有 A+B=B+A。 3.设 A 为 R 的非空子集,若满足 (1)(A,+)是(R,+)的(正规)子群 (2)A 对乘法封闭 则称 A 为 R 的子环。 零环{0}是子环,也是唯一的零元和单位元重合的环。 设 Ai<R,则 A Ai 是 R 的子环。
第 13 页 共 29 页
近世代数基础
( S ) sR Rs RsR
sS sS sS
当 R 有 1 且交换时,
( S ) sR
sS
10.第一同态定理 设 φ 是 R 到 R’的满同态,令 I Ker ,则有 R / I R 11.第二同态定理 对 φ 是 R 到 R 的满同态, I Ker ,令
第 15 页 共 29 页
近世代数基础
称 A 为域 F 上代数。当(A,+)是域 F 上有限维向量空间,称 A 为域 F 上有限维代数。当(A,+) 是除环,称 A 为域 F 上可除代数。 4.四元数代数 H,基为 1,i,j,k,乘法表 1 i j k 1 1 i j k i i -1 k -j j j -k -1 i k k j -i -1 则 H 为实数域 R 上的四维代数,复数域 C 为 R 上二维代数,R 为 R 上一维代数。且 R 上有 限维可除代数有且仅有 R,C,H。 5.对域 F 上的 n 维向量空间 A, 可以取 n 阶群 G 中的元素作为 A 的基, 则(A,+,·)为环(若 基不构成群,但(A,+)仍为交换群),是 F 上 n 维代数,称为 G 在 F 上的群代数。
近世代数基础
第三章 环与域
3.1 环与域
1.设+,·是集合 R 的两个二元运算,若满足 (1)(R,+)是交换加群,恒等元称为零元 0 (2)(R,·)是半群 (3)乘法对加法的分配律,即 a, b, c R有a (b c) a b a c, (b c) a b a c a 则称(R,+,·)为环。若 (4)乘法的交换律,即 a, b R有a b b a (5)(R,·)是幺半群,单位元为 1 (6)非零元有逆元,即 0 a R有a a 1 1 称满足(4)的环为交换环, 满足(5)的环为有单位元 1 的环, 满足(5)(6)的环为除环, 满足(4)(5)(6) 的环为域 F。 2.在环 R 中 Oa aO O; (a)b ab a(b); (a)(b) ab; 若 R 中有单位元 1,则 1 唯一。并定义
第 12 页 共 29 页
近世代数基础
(2)φ 保持乘法,即 φ(xy)=φ(x)φ(y) 则称 φ 是环 R 到 R’的同态。 φ 的像为 Im { ( x) | x R} ; φ 的核为 Ker {x R | ( x) 0} 。 反同态: ( x y ) ( y ) ( x) 6.设 I 为 R 的非空子集,若满足 (1)(I,+)是(R,+)的(正规)子群 (2) r R, i I , 有ir, ri I 则称 I 为 R 的理想。 若 I 为 R 的理想,则 In=In-1·I 为 R 的理想。 若 Ii 为 R 的理想,则 I I i 是 R 的理想。
(a0 , a1 ,...) (b0 , b1 ,...) (a0 b0 , a1 b1 ,...)
(a0 , a1 ,...) (b0 , b1 ,...) (a0b0 , a0b1 a1b0 ,...,
i j n
a b ,...)
i j
则(P,+,·)是环,零元为(0,0,...),单位元为(1,0,0,...)。 并记 x (0,1,0,0,...), a (a,0,0,...) 则有 a0 a1 x ... an x n (a0 , a1 ,..., an ,0,0,...) 称 P 为 R 上一元多项式(形式)环,记作 R[x],x 称为 R 上不定元。
近世代数基础
在有限步停下来,即 N Z 使对i Z , (cN ) (c N i ) ,则称 R 对主理想满足极大条件。 对 环 R 的 理 想 I,J , I J {x y | x I , y J } 仍 是 理 想 。 主 理 想 (a),(b) 之 和 (a) (b) {ax by | x, y R} 是理想,但一般不是主理想,但在主理想整环中是主理想。 6.对主理想整环 R 有 (1)R 对主理想满足极大条件 (2)(a,b)可表成 a,b 的线性和,即 s, t R使as bt (a, b) (3)分解的存在性:R 中任意非零非单位元可表为既约元的乘积 (4)既约元都是素元,则 R 中元素有分解的唯一性 (5)R 是唯一分解环 7.对复二次数环 Z [ d ] {a b d | a, b Z } ,其中 d 使无平方因数的正整数,记范 数 N (a b d ) (a b d )(a b d ) a 2 b 2 d ,则有 N(xy)=N(x)N(y)。对 Z [ d ] 有 (1)对 n Z , 使N ( x) n 的 x 仅有限个 (2) x为R单位 N ( x) 1 单位仅有限个 (3)x 的相伴元仅有限个
i
7.称环(R/I,+,·)为环 R 关于理想 I 的商环。其中 R / I {r I , r R} (a I ) (b I ) (a b) I , (a I ) (b I ) ab I : R R / I , r r I 是 R 到商环 R/I 的满同态, 8.对环 R 的理想 I, 称 φ 为自然同态。 9.记(S)为由 S 生成的理想,则当 R 有 1 时,
3.3 多项式环
对有 1 的环 R,记
P {(a0 , a1 , a2 ,...), ai R且仅有限个ai 0}
第 16 页 共 29 页
近世代数基础
且对 (b0 , b1 , b2 ,...) P
(a0 , a1 , a2 ,...) (b0 , b1 , b2 ,...) i, ai bi
p为素元 ( p)为素理想 。
第 19 页 共 29 页
近世代数基础
3.对整环 R,若 (1)分解的存在性:R 中任意非零非单位元 a 可表为 a=p1p2...pn,其中 pi 均为既约元 (2)分解的唯一性:若 a=p1p2...pn=q1q2...qm,其中 pi,qj 均为既约元,则必有 n=m 且适当排列 后对 i, ( pi ) (qi ) 则称 R 为唯一分解环。 4.对整环 R,若 (1)有映射 : R \ {0} 自然数集N Z {0} 此处取范数 N ( ) 。 (2)a,0 b R, q, r R
相关文档
最新文档