网格和单元的基本概念
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
网格和单元的基本概念
前记:首先说明,和一般的有限元或者计算力学的教材不一样,本人也不打算去抄袭别人的著作,下面的连载是一个阶段的学习或者专业感悟集大成,可以说深入浅出,也可以说浅薄之极——如果你认为浅薄,很好,说明我理解透了,也祝贺你理解透了!好了,废话少说,书归正传。
无论是CSD(计算结构力学)、CTD(计算热力学)还是CFD(计算流体动力学)——我们统一称之为工程物理数值计算技术。支撑这个体系的4大要素就是:材料本构、网格、边界和荷载(荷载问题可以理解为数学物理方程的初值问题),当然,如果把求解技术也看作一个要素,则也可以称之为5大要素。网格是一门复杂的边缘学科,是几何拓补学和力学的杂交问题,也是支撑数值计算的前提保证。本番连载不做任何网格理论的探讨(网格理论是纯粹的数学理论),仅限于尽量简单化的应用技术揭秘。
网格出现的思想源于离散化求解思想,离散化把连续求解域离散为若干有限的子区域,分别求解各个子区域的物理变量,各个子区域相邻连续与协调,从而达到整个变量场的协调与连续。离散网格仅仅是物理量的一个“表征符号”,网格是有形的,但被离散对象既可以是有形的(各类固体),也可以是无形的(热传导、气体),最关键的核心在于网格背后隐藏的数学物理列式,因此,简单点说,看得见的网格离散是形式,而看不见的物理量离散才是本质核心。
对计算结构力学问题,网格剖分主要包含几个内容:杆系单元剖分(梁、杆、索、弹簧等)、二维板壳剖分(曲面或者平面单元)、三维实体剖分(非结构化全六面体网格、四面体网格、金字塔网格、结构化六面体网格、混合网格等),计算热力学和计算流体动力学的网格绝大部分是三维问题。对于CAE工程师而言,任何复杂问题域最终均直接表现为网格的堆砌,工程师的任务等同于上帝造人的过程,网格是一个机体,承载着灵魂(材料本构、网格、边界和荷载),求解技术则是一个思维过程。
网格基本要素是由最基本的节点(node)、单元线(edge)、单元面(face)、单元体(body)构成,实质上,线、面、体只不过是为了让网格看起来更加直观,在分析求解过程中,线、面、体本质上并没有起多大的作用,数值离散的落脚点在节点(node)上,所有的物理变量均转化为节点变量实现连续和传递。在所有的CAE环境下,网格的基本要素均可以直接构成,但对于复杂问题而言,这是一个在操作上很难实现的事情,因此,基于几何要素的网格划分技术成为现代网格剖分应用的支点,和网格基本要素完全相同,对应的几何要素分别称之为点(point)、线(curve)、面(surface)和实体(solid)。
数值离散求解器是不能识别几何元素的,要对其添加“饲料”,工程师必须对几何元素进行“精加工”,因此,从这个意义上来说,网格剖分的本质就是把几何要素转换为若干离散的元素组,这些元素组堆砌成形态上近似逼近原有几何域的简单网格集合体。因此,这里说明了一个网格“加工”质量的基本判别标准——和几何元素的拟合逼近程度,理论上,越逼近几何元素的网格质量越好,当然,几何逼近只是一个基本的判别标准,网格质量判别有一系列复杂的标准,后文详细阐述。
本篇将专门解释几个基本概念:点网格;一维线网格;二维三角形面网格、二维四边形面网格;三维四面体网格(tetrahedra)、三维金字塔单元(pyramid)、五面体单元(prism)、三维六面体单元(hexahedra);结构化网格(structural grid)、非结构化网格(nonstructural grid)、混合网格(blend grid)。需要专门说明的是,网格(grid &
net)不等同于单元(element),单元是基于有限元思想的一个专用名词,而网格则是网格理论体系下的专用称呼,当网格用于有限元分析的时候,便可以转而称为线单元、面单元、实体单元,因此两者的本质差别在于,单元具有物理意义,一般具有特定的物理列式,而网格只是纯粹几何意义上的基本元素。
点网格主要针对CSD中的质量单元和CTD中的点状热源,通过对几何point直接mesh生成,应用较为简单,属性也较为简单,一般仅仅包含质量特性或者温度特性。值得一提的是,在考虑行波效应的振动分析中,质量单元常被妙用,作为基底无限大质量块,巧妙地将加速度激励转变为力激励,从而达到可以多点施加激励的作用。
一维线网格主要针对计算结构力学问题,主要针对基本的桁架(truss)、梁(frame or beam)、索(cable)、连杆(link)和弹簧(spring)等工程单元。需要特别说明的是,link实际上没有具体的工程构件对号入座(不等同于机械工程的连杆),只是一种单元节点物理量协调的边界单元,常用一维线网格描述。对于梁系单元,理论上通过杆件轴长方向的node描述其物理量变化,node越多,描述相对越精确,对于常用的梁、杆通常达到6~9个节点就具备足够的工程精度(可以捕捉到关键截面位置的力学响应)。一维单元可以根据内力变化随意加密局部网格点。从工程意义上来说,通过加密网格节点,完全可以替代高次一维单元。需要注意的是,杆系构件的一维网格并不是一味的追求增加剖分节点,对于桁架(truss)或者拉索(cable),当划分成多节点一维网格时,如果构件缺少初始刚度(一般是初始张拉刚度),则中间节点会由于缺少转动自由度约束,而形成类似铰链的机构运动,导致计算失败。而弹簧或者link则只需要两个网格节点便可以完全描述其物理特性,这是最简单的一维网格单元。
二维网格主要针对CSD中的板壳单元、平面应力单元、平面应变单元;CTD和CFD中的二维问题也是其应用领域。二维网格包含两类:其一是三角形网格;其二是四边形网格,当然,两种网格也可以混合使用。三角形网格为一般用于线性二维单元(线性单元只有一个积分点,当然也有3积分点、4积分点的高次三角形单元),因此,精度一般相对较差,同时,单元数量和节点数量均较高,造成计算负荷加大,但其几何逼近的适应性很好,因此对由复杂二维曲面构成的三维问题,有一定的适应性。四边形网格是矩形、梯形、斜梯形等四边形网格的总称,四边形网格单元容易增加单元积分点分布(4积分点、8积分点、9积分点、16积分点等),因此,对应单元的精度往往较高。但在其应用之初,限于网格生成技术的原因,对几何域的拟合逼近不如三角形好,网格生成算法也较为复杂,影响了其使用,现在的网格技术已经完美解决这一问题,因此,理论上,任意复杂的曲面几何域均可以采用完全四边形网格构成。但对于很多复杂工程问题,往往存在一些几何尺度变化较剧烈的区域(俗称极短边界、破碎面、破碎线),这些区域如果纯粹用四边形网格填充,会大幅度增加网格数量,且形状逼近也不好,因此可以采用混合三角形——四边形网格的剖分策略,这是一种兼顾网格形状、计算效率和精度的网格组合方式,主要以四边形单元为主,局部填充数量极少的三角形网格。
三维实体网格是最复杂的网格技术,主要针对计算域中的块状体或者空间三维状封闭区域,填充网格形状包括四面体、六面体、棱柱体、四棱锥体(俗称金字塔网格),目前的三维网格剖分技术已经相对完善,四面体网格可以高效填充任意复杂的空间三维域,很多网格生成软件并且已经可以做到自动剖分、自适应加密。最具挑战性的三维六面体网格剖分技术仍然处于完善发展状态,虽然理论上分块(block)结构化网格可以实现任意形状三维空间的结构化六面体网格填充,但复杂的分块技术对工程师的几何拓补规划能力是一个严重的挑战,往往进行区域分块会花掉工程师整个分析工作过程近80%的时间,同时,由于结构化要求,导致有时候网格质量难以控制,网格数量