对比深度学习和经典机器学习,分别介绍这两种技术的优缺点
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对比深度学习和经典机器学习,分别介绍这两种技术
的优缺点
深度学习已成为大多数AI问题的首选技术,使得经典机器学习相形见绌。但是,尽管深度学习有很好的性能,经典机器学习方法仍有一些优势,而且在一些特定情况下最好使用经典机器学习方法,例如线性回归或决策树,而不是使用一个大型深度网络。本文将对比深度学习和经典机器学习,分别介绍这两种技术的优缺点。
近年来,深度学习已成为大多数AI问题的首选技术,使得经典机器学习相形见绌。原因很明显,深度学习在语音、自然语言、视觉和游戏等许多任务上都表现出卓越的性能。然而,尽管深度学习具有如此好的性能,经典机器学习方法仍有一些优势,而且在一些特定情况下最好使用经典机器学习方法,例如线性回归或决策树,而不是使用一个大型深度网络。
本文将对比深度学习和经典机器学习,分别介绍这两种技术的优缺点以及它们在哪些问题/如何得到最佳使用。
深度学习优于经典机器学习