蒙特卡洛法在电力系统可靠性评估中的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 蒙特卡洛法在电力系统可靠性评估中的应用
电力系统可靠性评估的内容与意义
可靠性指的是处于某种运行条件下的元件、设备或系统在规定时间内完成预定功能的概率。电力系统可靠性是指电网在各种运行条件下,向用户持续提供符合一定质量要求的电能的能力。电力系统可靠性包括充裕度(Adequacy)和安全性(seeurity)两个方面。充裕度是指在考虑电力元件计划与非计划停运以及负荷波动的静态条件下,电力系统维持连续供应电能的能力,因此又被称为静态可靠性。安全性指的是电力系统能够承受如突然短路或未预料的失去元件等事件引起的扰动并不间断供应电能的能力,安全性又被称为动态可靠性。目前国内外学者对充裕度评估的算法和应用关注较多,且在理论和实践中取得了大量的研究成果,但随着研究的深入也出现了很多函待解决的新课题。电力系统的安全性评估以系统暂态稳定性的概率分析为基础,在原理、建模、算法和应用等方面都处于起步和探索阶段。由于电力系统的规模很大,通常根据功能特点将其分为不同层次的子系统,如发电、输电、发输电组合、配电等子系统,对电力系统的可靠性评估通常也是对上述子系统单独进行。不同层次的子系统的可靠性评估的任务、模型、算法都有较大区别。电力系统在正常运行情况下,系统能够正常供电,不会出现切负荷的事件。如果系统受到某些偶发事件的扰动,如元件停运(包括机组、线路、变压器等电力元件的计划停运与故障停运)、负荷水平变化等,可能会引起系统功率失衡、线路潮流越限和节点电压越限等故障状态,进而导致切负荷。电力系统可靠性研究的主要内容是基于系统偶发故障的概率分布及其后果分析,对系统持续供电能力进行快速和准确的评价,并找出影响系统可靠性水平的薄弱环节以寻求改善可靠性水平的措施,为电力系统规划和运行提供决策支持。
电力系统可靠性评估的基本方法
电力系统可靠性评估方法可分为确定性方法和概率性方法两类。确定性方法主要是对几种确定的运行方式和故障状态进行分析,校验系统的可靠性水平。在电源规划中,典型的确定性的可靠性判据有百分备用指标和最大机组备用指标;电网规划中,确定性的可靠性判据主要是校验负荷的最小供电回路数。电力系统是一个具有随机特性的系统,负荷水平的波动、元件故障等都具有随机性,确定性方法难以考虑各种状态的概率分布特性,评估结果存在较大偏差,因此概率性方法在电力系统的可靠性评估领域得到更加广泛应用,并在理论和实践方面取得很大的进展。概率性可靠性评估方法主要有解析法和模拟法两大类,后者一般又被称作蒙特卡洛法。两者的共同点是都以系统随机状态发生的概率对随机状态的后果(切负荷功率)进行加权,即不仅考虑故障的严重性,同时考虑其概率性,且对随机状态的分析方法是一致的。两者的根本区别在于获取系统随机状态及其概率值的方法不同,解析法通过故障枚举来获得系统随机状态,通过解析计算获得系统随机状态发生的概率;蒙特卡洛法通过随机抽样的方法获得系统随机状态,采用统计的方法以随机状态的频率来估算概率。
解析法的数学模型精确,得到的可靠性指标计算精度高,但该方法的缺点也非常突出。首先,采用解析法要分析的系统状态数目随着系统元件数目的增长呈指数规律增长,因此难以应用于大规模电力系统可靠性评估的场合。采用忽略多重故障状态的“故障筛选技术”来解决这一问题,但显然会在一定程度上削弱解析法在计算精度方面的优势。其次,采用解析法难以获得频率和持续时间指标,而这些又是非常重要的可靠性信息。最后,解析法难以处理系统中随机因素的影响,如负荷的波动、水库水位的变化等,也不易模拟运行人员对系统的控制措施及其后果,因此影响到了计算结果的可信度。由于解析法存在上述难以克服的缺点,在大型电力系统可靠性评估的场合应用较少,而蒙特卡洛法则得到了广泛的应用。
蒙特卡洛方法(又被称作统计试验方法)或随机抽样技术,其提出可以追溯到19世纪末期,20世纪40年代中期之后随着科学技术的发展和电子计算机的发明,该方法得到了快速的发展和应用。几十年来,随着计算技术的迅速发展,蒙特卡洛方法的应用范围日趋广阔。目前它已经被广泛应用到包括电力系统可靠性分析在内的各类科学研究与工程设计领域中,成为计算数学的一个重要分支。采用蒙特卡洛方法评估电力系统可靠性,存在着明显的优势。第一,在一定的精度要求下,蒙特卡洛方法的抽样次数与系统的规模无关,因此特别适用于大型电力系统的评估计算。第二,采用蒙特卡洛方法评估可靠性,不但能够获得概率性指标,而且能够得到频率和持续时间指标,得到的可靠性信息更加丰富、实用。第三,基于蒙特卡洛方法的程序数学模型相对简单,且容易模拟负荷变化等随机因素和系统的校正控制措施,因此计算结果更加符合工程实际。电力系统规模日趋扩大、元件众多、控制策略复杂,因此蒙特卡洛法在其可靠性评估中获得了日益广泛的应用。
蒙塔卡洛法的基本内容
基本参数介绍
电力系统元件众多,在可靠性评估中可根据计算需要对发电机组、输电线路、变压器、电抗器、电容器、保护元件、自动重合闸装置、母线等可修复元件进行状态模拟。假定某可修复元件的故障率和修复率分别为λ、μ,平均无故障工作时间和平均维修时间分别为MTTF 、MTTR ,则存在以下重要关系式
)1.3(/1λ
=MTTF )2.3(/1μ=MTTR
可修复强迫失效可以通过“运行-停运-运行”的循环过程来模拟,如图一所示:
图 可修复元件运行和停运循环过程
平均不可用率,其数学形式可由下列三个定义 之一来表达:
)3.3(8760MTTR f MTTR MTTF MTTR U ⨯=+=+=μλλ
λ为失效率(失效次数/年)
;μ为修复率(修复次数/年);MTTR 为平均修复时间(小时);MTTF 为失效前平均时间(小时);f 为平均失效频率(失效次数/年)。d = MTTF/8760及r = MTTR/8760,则d 和r 是以年为单位计的MTTF 和MTTR 。
λ、μ是蒙特卡洛算法中模拟元件持续时间与状态转移特性的基本参数。其反映的元件状态转移特性如图3一2所示,其数值可通过对元件长期运行的寿命过程和随机状态信息统计得到。 图 可修复元件状态空间图
非序贯蒙特卡洛模拟法
非序贯蒙特卡洛模拟法常常被称为状态抽样法,它被广泛用在电力系统风险评估中。这个方法的依据是:一个系统状态是所有元件状态的组合,且每一元件状态可由对元件出现在该状态的概率进行抽样来确定。
每一元件可用一个在[0,1]区间的均匀分布来模拟。假设每一元件有失效和工作两个状态,且元件失效是相互独立的。令s i 代表元件i 的状态,Q i 代表其失效概率,则对元件i 产生一个在[0,1]
区间均匀分布的随机数R i , 使
)4.3(0)(1)(0⎩⎨⎧≤≤>=i i i
i i Q R if Q R if s 失效状态工作状态
具有N 个元件的系统状态由矢量s 表示:
S=(s 1,…,s i ,…s N )
一个系统状态在抽样中被选定后,即进行系统分析以判断其是否是失效状态,如果是,则对该状态的风险指标函数进行估计。
当抽样的数量足够大时,系统状态s 的抽样频率可作为其概率的无偏估计,即
)6.3()s ()(M m s P =
式中:M 是抽样数;m (s )是在抽样中系统状态s 出现的次数。
当每一个系统状态的概率通过抽样估计以后,就可计算系统失效概率、系统失效频率、系统失效平均持续时间、以及系统其它风险指标。
非序贯蒙特卡洛法和状态枚举法之间明显的区别在于:如何选择系统状态和如何计算单个系统状态的概率。
在实际应用中,应注意以下几个方面:
(1)必要的一步是产生每一个元件的随机数序列,这些随机数必须满足三个基本条件:均匀性、独立性和足够长的重复周期。
(2)蒙特卡洛法是一个波动收敛过程,因此估计出的风险指标总是有一个相应的置信范围。不能保证增加少量的样本就一定会减少误差,但置信范围确实会随样本数的增加而变窄。
(3)适当的收敛判据是确保蒙特卡洛模拟法精度的关键之一。方差系数常被用作为终止抽样的判据。在电力系统风险评估中,不同的风险指标有不同的收敛速度。已经发现,期望缺供电量(EENS)指标的方差系数收敛速率最低,因此应作为多个指标研究时的收敛判据。另一种方法是用预定的最大抽样数作为终止抽样的判据。当模拟过程结束时,校验方差系数是否足够小,如果否,则需