土壤农化分析实验

合集下载

土壤农化分析实验教学课件

土壤农化分析实验教学课件
采样地点:华中农大农场 植物营养试验田 采土深度:0-20cm 采样日期:2006.9.21 采 样 人:×××
实验1 土壤样品的采集
四、采集土样的工具
采样工具 小土铲 管形土钻 普通土钻
实验1 土壤样品的采集
五、注意事项 1、采样区内S形路线等距离随机取 2、采样点应避开特殊部位 3、每一采样点采集土样的厚度、深度、宽窄、 土样量应大体一致; 4、测定土壤微量元素的土样采集,特别注意 采样工具的选择,要用不锈钢土钻、土铲、 塑料布、塑料袋等,防治污染。
若作物理性质分析,土样通过2mm孔径的筛; 若作化学分析土样一般要通过1mm以下孔径的筛 1) 测定有效养分时,土样不能太细,否则可能破 坏矿物晶粒,使结果偏高(一般1mm,即20目) 2) 测定有机质和养分全量时要细,100目。
实验2 土壤样品的制备与保存
三、实验步骤
3、过筛 特别注意 过筛要使研磨的土样全部过筛,而不能将没过筛的样 品倒掉。 如剩下最后不多的砂砾不能磨碎,应将其称重,计算 测定结果时将该重量计算在总重量中,否则结果不真实。
• 因此:该方法中加显色剂之前不调节 溶液pH。
A
有机质
(黄色)
“钼蓝”
Olsen 法中 “钼蓝”与 有机质的吸 收特性曲线 (nm)
700 nm
880 nm
4、干扰的消除
最主要的干扰是浸出液中可溶性有机质颜色的干扰
消除方法
• 用活性炭脱色 • 不脱色,直接在880nm处比色。
实验4 石灰性土壤有效磷的测定
实验3
土壤有机质的测定
实验3
土壤有机质的测定
土壤有机质测定方法 • 经典方法(干烧法、湿烧法) • 碳自动分析仪 • 直接灼烧法 • 容量法(外加热法、稀释热法) • 比色法

土壤农化分析(教案)()

土壤农化分析(教案)()

土壤农化分析(教案)第一章:土壤的组成与结构1.1 土壤的组成1.2 土壤的质地1.3 土壤的剖面结构1.4 土壤的分类与分布第二章:土壤肥力与养分2.1 土壤肥力的概念与评价2.2 土壤养分的来源与转化2.3 土壤养分的测定与调控2.4 土壤改良与施肥技术第三章:土壤水分与土壤侵蚀3.1 土壤水分的来源与分布3.2 土壤水分的测定与调控3.3 土壤侵蚀的类型与过程3.4 土壤侵蚀的防治措施第四章:土壤污染与土壤环境质量4.1 土壤污染的类型与来源4.2 土壤污染的测定与评价4.3 土壤污染的防治措施4.4 土壤环境质量的监测与保护第五章:土壤农化分析方法与技术5.1 土壤样品的采集与处理5.2 土壤养分的测定方法5.3 土壤水分的测定方法5.4 土壤污染物的测定方法第六章:土壤生物学与土壤生态学6.1 土壤生物学的概述6.2 土壤生物的分类与作用6.3 土壤生态系统的结构与功能6.4 土壤生物多样性与保护第七章:土壤农化实验设备与操作7.1 土壤农化实验设备介绍7.2 土壤样品处理设备与操作7.3 土壤养分测定设备与操作7.4 土壤污染物测定设备与操作第八章:土壤农化数据处理与分析8.1 土壤农化数据的基本处理方法8.2 土壤养分数据的统计分析8.3 土壤污染数据的的风险评估8.4 土壤农化数据的信息化管理第九章:土壤农化研究方法与进展9.1 土壤农化研究的基本方法9.2 土壤肥力评价方法与进展9.3 土壤污染研究方法与进展9.4 土壤环境质量研究方法与进展第十章:土壤农化分析案例研究10.1 土壤养分状况调查与评价案例10.2 土壤污染调查与修复案例10.3 土壤肥力改良与提升案例10.4 土壤水资源利用与保护案例第十一章:土壤与植物营养的关系11.1 土壤养分的植物吸收与利用11.2 植物营养诊断与土壤测试11.3 土壤-植物系统中营养物质的循环11.4 植物营养的平衡与调控第十二章:土壤改良与农业可持续发展12.1 土壤侵蚀的控制与土壤保持12.2 土壤盐碱化的改良技术与方法12.3 有机农业与土壤有机质管理12.4 农业可持续发展与土壤资源保护第十三章:土壤环境监测与污染防控13.1 土壤环境监测的方法与技术13.2 土壤污染的生物标志物与生物监测13.3 土壤污染的风险评估与管理13.4 土壤环境保护的政策与实践第十四章:土壤农化技术的应用与管理14.1 土壤肥力提升技术及其应用14.2 土壤污染物去除与修复技术14.3 土壤水资源管理技术及其应用14.4 土壤生物多样性保护与应用第十五章:土壤农化分析的未来趋势15.1 土壤组学与土壤生物标志物的研究15.2 土壤与数字土壤地图15.3 土壤纳米技术在土壤农化分析中的应用15.4 土壤农化分析的挑战与创新方向重点和难点解析重点:1. 土壤的组成与结构,包括不同质地的土壤及其剖面结构。

土壤农化分析实验指导

土壤农化分析实验指导

土壤农化分析常用指标测定方法土壤有机质测定一、原理170-180 C条件下,用一定浓度的K2Cr2O7- H2SO溶液(过量)氧化土壤有机质,剩余的K2Cr2O用FeSO滴定,由消耗的K2Cr2O量计算出有机碳量,再乘以常数1.724,即为土壤有机质含量。

二、试剂1、0.4mol/L (1/6 K2Cr2O7-浓H2SO4标准溶液:称取经130C烘干的K2Cr2O7(AR)39.2245g容于水中,加热溶解后加入1000m浓H2SO定容至2000ml。

2、0.2mol/L FeSO溶液:称取FeSO4( AR 56g容于水中,加浓硫酸5ml,稀释至1L。

标定:吸取10.00mL重铬酸钾标准溶液置于250mL锥形瓶中,加入40ml水和3mL 浓硫酸,再加3滴邻菲啰啉指示剂,用FeSO标准溶液滴定至溶液由橙黄色经蓝绿色至棕红色为终点。

3、邻菲啰啉指示剂:称取1.485g邻菲啰啉(C12H8N2 • H2O)和0.695g硫酸亚铁(FeSO 4 • 7H 2O),溶于100m水中,形成的红棕色络合物贮于棕色瓶中。

4、石英砂:粉末状三、实验步骤称取/ 0.25mn风干土0.5xxx-1.0xxxg于干燥试管中,加入少量水润湿样品,准确沿壁缓慢加入10.0ml K262O7- H2SO4溶液,摇分散土样,盖上小漏斗,放入铁丝笼中。

将铁丝笼放入已开启185-190 C油浴锅中(使温度在170-180 C)沸腾准确5分钟,取出稍冷,擦净试管外壁油污(同时做空白实验);冷却后把溶液全部转移到200-250ml三角瓶中(最后体积控制在60-70ml),加入指示剂3 滴,用已知浓度的FeSO溶液滴定。

四、结果计算(V0-V)X C X 3.0 X 1000X 1.1 X 1.724有机质%= ------------------- X 100W式中:V0:滴定空白所用的FeSO 4溶液体积(ml)V :滴定样品所用的FeSO 4溶液体积(ml)C : 0.2mol/L FeSO 4溶液准确浓度3.0 : 1/4碳原子的摩尔质量(g/mol)1000:将ml换算为L1.1 :氧化校正系数1.724 : 土壤有机碳换算成土壤有机质的平均换算系数。

土壤农化分析实验教学反思与探讨

土壤农化分析实验教学反思与探讨

土壤农化分析实验教学反思与探讨一、引言在农林学科中,土壤农化分析实验是一门重要的实验课程,旨在通过实验操作和数据分析,培养学生的实践能力和科学精神。

本文将对土壤农化分析实验的教学过程进行反思与探讨,以期提高教学效果和学生的学习体验。

二、实验内容土壤农化分析实验的内容包括土壤样品的采集、土壤理化性质的测试和土壤养分元素的分析。

实验中常用的测试项目包括土壤pH值、有机质含量、全氮含量、速效钾含量等。

三、实验过程与反思1. 实验准备在开始实验前,应当对实验所需的仪器设备进行检查和准备,确保实验顺利进行。

同时,也要确保实验用具的清洁与消毒,以避免实验误差的产生。

2. 实验操作实验过程中,应指导学生正确地进行土壤样品的采集和处理,注意样品的代表性和采样误差的控制。

此外,在进行实验操作时,应提示学生正确使用实验仪器,并关注操作方法的安全性。

3. 数据分析实验结束后,学生需要对实验数据进行统计和分析,以得出相应的结论。

在进行数据分析时,教师可以通过引导学生探讨数据之间的关系,培养学生的科学思维和分析能力。

四、教学方法与策略1. 鼓励实践与探索在实验教学中,应当注重培养学生的实践和创新能力。

可以组织学生进行自主设计实验或解决实际问题的实践小组活动,激发学生的科研兴趣和发现新知的能力。

2. 强调安全意识在实验操作中,学生的安全意识至关重要。

教师应当在实验前详细讲解实验操作的注意事项和安全规范,提高学生的安全意识和风险防范能力。

同时,学生也应该被要求佩戴必要的防护设备。

3. 结合理论与实际在教学中,应充分结合理论知识和实际应用,促进学生对所学知识的深层理解。

可以通过真实案例或实际应用场景,引导学生将理论知识应用于实际问题的解决过程中。

五、实验教学效果评估为了评估实验教学的效果,可以采用多种方式,如实验报告的评分、学生的自评及互评等。

同时,还可以邀请学生参加实验教学反馈会议,听取他们对教学的建议和意见。

六、总结与展望通过对土壤农化分析实验教学的反思与探讨,可以不断改进和完善教学方法,提高学生的学习体验和实践能力。

土壤农化分析实验指导

土壤农化分析实验指导

土壤农化分析常用指标测定方法土壤有机质测定一、原理170-180℃条件下,用一定浓度的K2Cr2O7- H2SO4溶液(过量)氧化土壤有机质,剩余的K2Cr2O7用FeSO4滴定,由消耗的K2Cr2O7量计算出有机碳量,再乘以常数1.724,即为土壤有机质含量。

二、试剂1、0.4mol/L(1/6 K2Cr2O7-浓H2SO4)标准溶液:称取经130℃烘干的K2Cr2O7(AR)39.2245g溶于水中,加热溶解后加入1000ml浓H2SO4定容至2000ml。

2、0.2mol/L FeSO4溶液:称取FeSO4(AR)56g溶于水中,加浓硫酸5ml,稀释至1L。

标定:吸取10.00mL重铬酸钾标准溶液置于250mL锥形瓶中,加入40mL水和3mL 浓硫酸,再加3滴邻菲啰啉指示剂,用FeSO4标准溶液滴定至溶液由橙黄色经蓝绿色至棕红色为终点。

3、邻菲啰啉指示剂:称取1.485g邻菲啰啉(C12H8N2·H2O)和0.695g硫酸亚铁(FeSO4·7H2O),溶于100mL水中,形成的红棕色络合物贮于棕色瓶中。

4、石英砂:粉末状三、实验步骤称取∠0.25mm风干土0.5xxx-1.0xxxg于干燥试管中,加入少量水润湿样品,准确沿壁缓慢加入10.0ml K2Cr2O7- H2SO4溶液,摇分散土样,盖上小漏斗,放入铁丝笼中。

将铁丝笼放入已开启185-190℃油浴锅中(使温度在170-180℃)沸腾准确5分钟,取出稍冷,擦净试管外壁油污(同时做空白实验);冷却后把溶液全部转移到200-250ml三角瓶中(最后体积控制在60-70ml),加入指示剂3滴,用已知浓度的FeSO4溶液滴定。

四、结果计算(V0-V)×C×3.0×1000×1.1×1.724有机质%= ×100W式中:V0:滴定空白所用的FeSO4溶液体积(ml)V :滴定样品所用的FeSO4溶液体积(ml)C :0.2mol/L FeSO4溶液准确浓度3.0:1/4碳原子的摩尔质量(g/mol)1000:将ml换算为L1.1:氧化校正系数1.724:土壤有机碳换算成土壤有机质的平均换算系数。

《土壤农化分析实验》(doc 70页)

《土壤农化分析实验》(doc 70页)

《土壤农化分析实验》(doc 70页)土壤农化分析实验隋方功李俊良主编莱阳农学院农学系二OO四、二主编:隋方功李俊良编写人员: 崔德杰刘树堂孟祥霞王维华张晓晟2004年2月于莱阳农学院目录第一篇土壤分析 (8)1—1土壤样品的采集与处理 (8)1— 1.1土壤样品的采集 (8)1— 1.2土壤样品的处理 (9)1—2土壤水分的测定................................................ (10)1— 2.1土壤吸湿水的测定.................................... . (10)1— 2.2土壤田间持水量的测定.................................... . (10)1—3土壤有机质的测定................................................... (11)1—4土壤中氮的测定......................................................... (13)1— 4.1 土壤全氮量的测定............................................... ................ (13)1— 4.2 土壤水解性氮的测定 (14)1— 5 土壤中磷的测定.....................………………………………………………....... .151— 5.1 土壤全磷的测定............................................................... (15)1— 5.2 土壤速效磷的测定................................................................ . (17)1— 6 土壤钾素的测定 (18)1— 6.1 土壤速效钾的测定................................................................ . (18)1— 6.2 土壤全钾量的测定................................................................ . (18)1—7 土壤阳离子交换量的测定................................................................. .. (19)1—8 土壤可溶性盐分的测定................................................................ (21)1—8.1 待测液的制备 (21)1—8.2 水溶性盐分总量的测定.......………………………………….................... ..211—8.3 碳酸根和重碳酸根的测定 (2)11—8.4 氯离子的测定 (22)1—8.5 硫酸根离子的测定................................................................ . (22)1—8.6 钙和镁离子的测定............................................................... .. (23)1—8.7 钠和钾离子的测定 (24)1—9 土壤微量元素的测定 (25)1—9.1 土壤有效硼的测定................................................................ . (25)1—9.2 土壤有效钼的测定................................................................ . (25)1—9.3 土壤中铜、锌、锰、铁的测定 (27)1—10 土壤酸碱度的测定 (27)1—10.1 混合指示剂比色法................................................................ .. (27)1—10.2 电位测定法 (28)1—11 土壤容重和孔度的测定(环刀法) (28)1—11.1 土壤容重的测定(环刀法) (28)1—11.2 土壤孔度的测定 (29)第二篇肥料分析 (31)2— 1 肥料样品的采集与制备................................................................ (31)2—1.1 化学肥料样品的采集与制备 (31)2—1.2 有机肥料样品的采集与制备 (31)2— 2 肥料含水量的测定 (31)2—2.1 常见化肥中含水量的测定 (31)2—2.2 有机肥料中含水量的测定 (29)2— 3 氮素化肥分析 (32)2— 3.1 氮素化肥总氮量的测定 (3)22—3.2 氮素化肥中铵态氮的测定 (33)2—3.3 氮素化肥中硝态氮的测定 (33)2— 3.4 尿素中氮的测定................................................................ . (34)2— 4 磷素化肥分析 (34)2— 4.1 磷素化肥全磷量的测定.............................................................. (34)2—4.2 过磷酸钙中游离酸的测定 (35)2—4.3 过磷酸钙中有效磷的测定 (36)2—4.4 碱性热制磷肥有效磷的测定 (36)2— 4.5 磷矿粉中全磷量的测定 (3)72— 4.6 磷矿粉中有效磷的测定 (3)72— 5 钾素化学肥料全钾量分析............………………………………...…............ .372— 6 复合肥料的分析 (38)2—7有机肥料的分析..............………………………………… (38)2-7.1 有机肥料全氮量的测定(铁锌粉还原法) (38)第三篇植物分析 (40)3—1 植物样品的采集、制备与保存 (40)3— 1.1 植物样品的采集 (40)3—1.2 植物组织样品的制备与保存 (41)3—1.3 植物微量元素分析样品的制备与保存 (41)3— 2 植物营养诊断 (41)3—2.1 植株汁液和浸提液的制备 (41)3— 2.2 试剂配制 (42)3—2.3 植物组织中硝态氮的测定 (42)3— 2.4 植物组织中磷的测定............................................................. . (43)3— 2.5 植物组织中钾的测定............................................................. . (44)3— 3 植物水分的测定 (45)3—3.1 风干植物样品水分的测定 (45)3—3.2 新鲜植物样品水分的测定 (45)3— 4 植物粗灰分的测定 (46)3— 5 植物常量元素的分析................................................................ (47)3—5.1 植物全氮、磷、钾的测定 (47)3— 5.1.1 植物样品的消煮................................................................. . (47)3— 5.1.2 植物全氮的测定................................................................. . (48)3— 5.1.3 植物全磷的测定................................................................. . (48)3— 5.1.4 植物全钾的测定................................................................. . (49)3— 5.2 植物全钙、镁的测定.........………………………………….................. ..503— 6 植物微量元素分析 (51)3— 6.1 植物硼的测定............................................................... .. (52)3— 6.2 植物钼的测定............................................................... .. (53)3—6.3 植物铁、锰、铜、锌的测定 (53)3—7 植物全碳的测定 (54)第四篇农产品分析 (55)4—1 农产品样品的采取制备与保存 (55)4—1.1 籽粒样品的采集、制备与贮存 (55)4—1.2 水果蔬菜样品的采集、制备与贮存 (55)4— 2 水分的测定(植物产品)................................................................ .. (56)4— 3 蛋白质的分析 (58)4— 3.1 开氏法测定粗蛋白质 (58)4— 3.2 铜盐沉淀法测纯蛋白质 (5)94—4 农产品中碳水化合物的分析 (60)4— 4.1 糖分的分析 (60)4— 4.1.1 果蔬含糖量的测定 (61)4—4.1.2 作物可溶性糖的测定(蒽酮比色法) (62)4— 4.2 淀粉的测定 (64)4—4.2.1 谷物中淀粉的测定(酸水解法) (64)4— 4.2.2 酶水解法 (65)4—4.3 植物中粗纤维的测定(酸碱洗涤重量法) (66)4— 5 植物中粗脂肪的测定................................................................. (67)4— 5.1 油重法 (67)4— 5.2 残余法 (68)4—6 植物中维生素C的测定(2%草酸浸提—2,6—二氯靛酚滴定法) (70)4—7 农产品酸度测定(滴定法)..................………………………………........... .724—7.1 总酸度测定(滴定法)…………………………………………………. ..734—8 农产品氨基酸的测定................................................................. (74)4—8.1 单指示剂甲醛滴定法 (75)4—8.2 双指示剂甲醛滴定法 (75)4—8.3 茚三酮比色法 (76)4—9 果品硬度的测定 (77)4—10 果品中可溶性固形物的测定(折射仪法) (77)附录A (79)第一篇土壤分析1—1 土壤样品的采集与处理土壤样品的采集是土壤分析工作中的一个重要环节,是直接影响着分析结果和结论是否正确的一个先决条件。

海南大学《土壤农化分析》实验步骤教学内容

海南大学《土壤农化分析》实验步骤教学内容

海南大学2013年《土壤农化分析》实验步骤《土壤农化分析》实验操作步骤实验一:植物样品的采集根据单一差异原则,依据植株的大小、叶片的长势长相、生长发育情况确定适宜采集的植株。

在有效区分后,在不同的植株的不同方向依次采集样品N(小/中/大叶采样量30-50/20-30/15-20)株。

用干净的毛巾擦净植物样品表面的灰尘,剪掉叶柄,在90℃杀青、70℃烘干。

实验二:土壤肥力样品的采集依据单一差异原则及相应的采样单元的采样路线在待采样的土地上进行采样。

按照棋盘式的采样路线采集12个点位置的土壤(每个点采样100—200g)并剔除其中的有机物。

将12个位置的土壤样品混合均匀并称重(约1.5kg)、风干。

实验三:植物样品的消化称取<1mm风干样品0.2000—0.2500g于干燥的100mL消煮管中,润湿样品后加入浓硫酸8.00mL,低温消煮至黑色溶液时去下稍冷却,加入双氧水10-15d,继续加热10min,取下重复以上操作至溶液清亮后继续加热10min取下,冷却定容。

实验四:植物含氮的测定比色法:吸取待测液1.00mL与50mL容量瓶中,加入10%酒石酸钠2.00mL,摇匀后,用指示剂外加入法调节酸度,加水至约40mL,摇匀后加入奈氏试剂2.50mL,定容,30min后,410nm比色,同时做空白。

标准曲线:0;0.25;0.5;1.0;1.5;2.0计算:N(%)=ρ*V*ts*0.0001/m蒸馏法:吸取待测液10.00mL,10M NaOH 8.0mL,2% H3B03 5.0mL,蒸馏至60—70mL,标准酸滴定。

计算:N(%)=((V-V0)*c(1/2H2SO4)*14.0*0.001/m)*1000实验五:植物磷钾的测定磷:吸取待测液2.00mL于50mL容量瓶中,加水至约30mL,加3滴2,6-二硝基酚,用4N NaOH 调至刚显黄色,加入钼锑抗5.0mL,定容后30min,700nm 比色。

土壤农化分析报告材料实验的

土壤农化分析报告材料实验的

土壤农化分析实验目录实验一土壤有机质测定(外加热法)实验二土壤全氮量测定实验三水解氮的测定(碱解扩散法)实验四土壤铵态氮的测定(一)蒸馏滴定法(二)奈氏比色法实验五土壤硝态氮的测定(一)硝酸银电极法(二)酚二磺酸比色法实验六土壤有效硫的测定实验七土壤全磷的测定(一)NaOH碱熔—钼锑抗比色法(二)HCl十H2S04酸溶—钼锑抗比色法实验八土壤速效磷的测定(一)中性和石灰性土壤速效磷测定(二)酸性土壤速效磷的测定实验九土壤全钾测定实验十土壤速效钾的测定(一)火焰光度法(二)1molNaN03提取——四苯硼钠比浊法实验十一土壤阳离子交换量测定(一)1mol中性NH40Ac法(二)BaCl2—H2S04快速法实验十二土壤交换性盐基测定(一)交换性盐基总量测定(二)交换性钙、镁的测定(EDTA容量法)(三)交换性钾钠的测定(火焰光度法)实验十三活性酸和交换性酸的测定(一)活性酸(pH)测定(二)交换性酸的测定(总量测定)实验十四土壤水溶性盐总量测定(电导率测定) 实验十五植物样品消化(一)H2S04—H202法(二)混合加速剂消煮法实验十六植物样品中氮的测定(一)奈氏比色法(二)半微量蒸馏法实验十七植物样品中全磷测定(钡钼黄比色法) 实验十八植物样品中全钾测定(火焰光度法)实验十九植物钙镁的测定(EDTA络合滴定法)实验二十土壤和植物中硼的测定(一)姜黄素比色法(二)甲亚胺—H比色法(三)植物样品干灰化及硼测定实验二十一土壤和植物锰的测定(KMn04比色法)(一)土壤有效锰测定(二)植物中锰的测定实验二十二土壤和植物中铜、锌的测定(原子吸收分光光度法)(一)土壤中有效铜、锌测定(二)植物中铜、锌测定实验二十三土壤和植物中钼的测定硫氰酸盐比色法实验二十四土壤和植物中铁的测定(邻菲罗啉比色法)(一)土壤有效铁测定(二)植物中铁的测定实验二十五纯蛋白质的测定(一)沉淀分离后消化测定(二)染料结合法实验二十六氨基酸总量的测定(茚三酮比色法)实验二十七水溶性糖的测定(葸酮法)实验二十八淀粉的测定(HCl水解一菲啉碘量法)实验二十九粗脂肪的测定(残余法)实验三十果蔬总酸度的测定实验三十一维生素C的测定(一)2,6—二氯靛酚滴定法(三)荧光测定法实验三十二氮肥的测定(一)甲醛法(铵态氮肥中氮的测定)(二)蒸馏法(尿素含氮量测定)实验三十三磷肥的测定(一)喹啉钼酸重量法(过磷酸钙有效磷测定)(二)喹啉钼酸容量法(三)过磷酸钙中游离—酸测定(四)钒钼黄法(磷矿粉中有效磷测定)实验三十四钾肥测定(一)火焰光度法(二)四苯硼钠重量法实验一土壤有机质测定(外加热法)一、方法原理:在恒加热条件下(175—180℃,5分钟),用定量K2Cr2O7—H2S04溶液氧化有机质,剩余的K2Cr207用标准FeS04滴定,由氧化有机质消耗的K2Cr2O7的量计算有机质含量。

农化分析实验报告(3篇)

农化分析实验报告(3篇)

第1篇一、实验目的本次实验旨在通过土壤农化分析,掌握土壤中有机质、氮、磷、钾等养分的测定方法,了解土壤肥力的基本状况,为农业生产提供科学依据。

二、实验原理土壤农化分析主要包括土壤有机质、全氮、全磷、全钾等养分的测定。

以下是各指标的测定原理:1. 土壤有机质测定:采用重铬酸钾氧化法,在高温条件下,用一定浓度的K2Cr2O7-H2SO4溶液氧化土壤中的有机质,剩余的K2Cr2O7用FeSO4滴定,根据消耗的K2Cr2O7量计算出有机碳量,再乘以常数1.724,即为土壤有机质含量。

2. 全氮测定:采用凯氏定氮法,将土壤样品中的有机氮转化为氨,然后用硼酸吸收氨,最后通过滴定法测定氨的含量,从而计算出土壤中全氮含量。

3. 全磷测定:采用过硫酸钠消煮法,将土壤样品中的有机磷和无机磷转化为可溶性磷,然后用钒钼黄比色法测定磷的含量,从而计算出土壤中全磷含量。

4. 全钾测定:采用原子吸收分光光度法,将土壤样品中的钾转化为可溶性钾,然后用原子吸收分光光度计测定钾的含量,从而计算出土壤中全钾含量。

三、实验材料与试剂1. 实验材料:土壤样品(风干、磨细、过筛)、蒸馏水、浓硫酸、K2Cr2O7、FeSO4、邻菲啰啉指示剂、过硫酸钠、钒钼黄试剂、硝酸、硼酸、氢氧化钠、盐酸等。

2. 实验仪器:电热板、干燥箱、分析天平、滴定管、锥形瓶、烧杯、蒸发皿、原子吸收分光光度计等。

四、实验步骤1. 土壤有机质测定a. 称取0.25g风干土于干燥试管中,加入少量水润湿样品。

b. 准确沿壁缓慢加入10.0ml K2Cr2O7-H2SO4溶液,摇分散土样,盖上小漏斗。

c. 将试管置于170-180℃的电热板上加热2小时。

d. 取下试管,待冷却后,加入FeSO4溶液和邻菲啰啉指示剂,用0.2mol/L FeSO4溶液滴定至溶液由橙黄色经蓝绿色至棕红色为终点。

2. 全氮测定a. 称取0.5g风干土于锥形瓶中,加入10ml浓硫酸。

b. 将锥形瓶置于电热板上加热,使土壤样品充分消煮。

海南大学《土壤农化分析》实验步骤.doc

海南大学《土壤农化分析》实验步骤.doc

《土壤农化分析》实验操作步骤实验一:植物样品的采集根据单一差异原则,依据植株的大小、叶片的长势长相、生长发育情况确定适宜采集的植株。

在有效区分后,在不同的植株的不同方向依次采集样品N(小/中/大叶采样量30-50/20-30/15-20)株。

用干净的毛巾擦净植物样品表面的灰尘,剪掉叶柄,在90℃杀青、70℃烘干。

实验二:土壤肥力样品的采集依据单一差异原则及相应的采样单元的采样路线在待采样的土地上进行采样。

按照棋盘式的采样路线采集12个点位置的土壤(每个点采样100—200g)并剔除其中的有机物。

将12个位置的土壤样品混合均匀并称重(约1.5kg)、风干。

实验三:植物样品的消化称取<1mm风干样品0.2000—0.2500g于干燥的100mL消煮管中,润湿样品后加入浓硫酸8.00mL,低温消煮至黑色溶液时去下稍冷却,加入双氧水10-15d,继续加热10min,取下重复以上操作至溶液清亮后继续加热10min取下,冷却定容。

实验四:植物含氮的测定比色法:吸取待测液1.00mL与50mL容量瓶中,加入10%酒石酸钠2.00mL,摇匀后,用指示剂外加入法调节酸度,加水至约40mL,摇匀后加入奈氏试剂2.50mL,定容,30min后,410nm比色,同时做空白。

标准曲线:0;0.25;0.5;1.0;1.5;2.0计算:N(%)=ρ*V*ts*0.0001/m蒸馏法:吸取待测液10.00mL,10M NaOH 8.0mL,2% H3B03 5.0mL,蒸馏至60—70mL,标准酸滴定。

计算:N(%)=((V-V0)*c(1/2H2SO4)*14.0*0.001/m)*1000 实验五:植物磷钾的测定磷:吸取待测液2.00mL于50mL容量瓶中,加水至约30mL,加3滴2,6-二硝基酚,用4N NaOH 调至刚显黄色,加入钼锑抗5.0mL,定容后30min,700nm比色。

标准曲线:0;0.05;0.10.0.20;0.40;0.60;0.80计算:P(%)=ρ*V*ts*0.0001/m 钾:吸取待测液2.00mL于50mL容量瓶中,用蒸馏水定容,在火焰光度计上测定。

土壤农化分析

土壤农化分析

⼟壤农化分析1、混合⼟样采集的原则和要求?(1)采样原则:具有⾼度的代表性、统⼀性。

(2)两点要求:①避免⼀切主观因素的影响,做到随机、多点取样;②⼏个相互⽐较的样品组应由同⼀时间(早春或晚秋)、同等数量(同样取样⼯具,取同样深度、宽度和厚度)的⼟样组成。

2、混合样品的采集⽬的、缺点、过程?(1)⽬的:把⼟壤不均⼀性的影响减⼩到最低限度,以减⼩采样误差,提⾼分析数据的可靠性,并且⼤⼤减轻了⼯作量。

(2)缺点:是多点样品混合后的测定值,从分析结果看不出该地块⼟壤的细微变化。

(3)过程:①采样区的划分及采样点的布置;②采样路线;③采样⼯具;④采样⽅法。

3⼟样过筛的注意事项?在橡⽪垫上⽤⽊棍磨碎,或粉碎机。

*注意事项:(1)⽯跞不能碎;⼟样要逐次全部过筛,不能半途弃去。

(2)过筛孔径的⼤⼩,主要根据①分析项⽬的要求;②称样量的多少⽽定。

4、那些测定项⽬需要⽤20⽬的⼟样,那些需要100⽬的⼟样?说明原因?(分别列举三个)(1)100⽬(0.15mm或0.25mm):⼟壤全N、有机质、矿质全量、Si、Fe、Al等(2)20⽬:测定速效N、P、K。

(3)它们(全量)的测定不受磨碎程度的影响,且⼟粒愈细与试剂反应愈充分。

(减少样误差和氧化完全)5、何为⼟壤有机质?⼟壤有机质是⼟壤中各种形态有机化合物的总称,它包括⼟壤中各种动植物残体、微⽣物及其分解与合成的各种有机形态。

6、⼟壤有机质的测定原理?(见实验报告)重铬酸钾—硫酸溶液与有机质作⽤:2K2Cr2O7+3C+8H2SO4=2K2SO4+2Cr2(SO4)3+3CO2↑+8H2OK2Cr2O7-在H2SO4存在下,⼟壤有机C氧化成CO2,释放出的CO2可以按照上述⼲烧法测定;也可把CO2导⼊过量Ba(OH)2溶液中使成BaCO3,然后⽤已知的标准酸(HCl)滴定剩余的Ba(OH)2,由净消耗的酸量求OM含量。

(⽤过量的,⼀定量的K2Cr2O7-H2SO4溶液氧化⼟壤有机C,使Org-C氧化成剩余的K2Cr2O7,⽤标准FeSO4回滴,根据净⽤氧化剂(K2Cr2O7)量来计算有机C量,反应式为:氧化:3C+2CrO2-7 +16H+→ 3CO2+4Cr23++8H2O滴定CrO2-7+6Fe2-+14H+ →2Cr3+ +6Fe3++7H2O终点指⽰剂有邻菲罗啉,⼆苯胺等。

土壤农化分析(完整)

土壤农化分析(完整)

土壤农化分析实验前言为了适应教学、科研和生产的需要,我们编写了这本包括土壤、肥料、植物及农产品分析的《土壤农化分析实验》,作为广大农业科技工作者和高等院校、中等专业学校有关专业师生的实验教材或工具书。

考虑到分析条件等原因,书中有时在同一分析项目中并列了几个方法,可根据分析项目和要求等选择应用。

本书包括四个方面的内容。

土壤分析主要为土壤水分、土壤物理性质、土壤化学性质及土壤酸碱度的分析。

肥料分析主要为有机肥料、单质化学肥料及复合肥有效成分的分析。

植物分析主要为植物营养诊断、植物体常量元素及微量元素分析。

农产品分析主要为农产品中碳水化合物、糖分、淀粉、粗纤维、粗脂肪、Vc及氨基酸等的分析。

由于编者水平所限,书中疏漏,错误之处在所难免,敬请提出宝贵意见,以便进一步修改目录第一篇土壤分析 (8)1—1土壤样品的采集与处理 (8)1—1.1土壤样品的采集 (8)1—1.2土壤样品的处理 (9)1—2土壤水分的测定................................................ (10)1—2.1土壤吸湿水的测定.................................... . (10)1—2.2土壤田间持水量的测定.................................... . (10)1—3土壤有机质的测定................................................... (11)1—4土壤中氮的测定......................................................... (13)1—4.1 土壤全氮量的测定............................................... . (13)1—4.2 土壤水解性氮的测定 (14)1—5 土壤中磷的测定.................................................................................. .15 1—5.1 土壤全磷的测定 (15)1—5.2 土壤速效磷的测定 (17)1—6 土壤钾素的测定 (18)1—6.1 土壤速效钾的测定 (18)1—6.2 土壤全钾量的测定 (18)1—7 土壤阳离子交换量的测定 (19)1—8 土壤可溶性盐分的测定 (21)1—8.1 待测液的制备 (21)1—8.2 水溶性盐分总量的测定 (21)1—8.3 碳酸根和重碳酸根的测定 (21)1—8.4 氯离子的测定 (22)1—8.5 硫酸根离子的测定 (22)1—8.6 钙和镁离子的测定 (23)1—8.7 钠和钾离子的测定 (24)1—9 土壤微量元素的测定 (25)1—9.1 土壤有效硼的测定 (25)1—9.2 土壤有效钼的测定 (25)1—9.3 土壤中铜、锌、锰、铁的测定 (27)1—10 土壤酸碱度的测定 (27)1—10.1 混合指示剂比色法 (27)1—10.2 电位测定法 (28)1—11 土壤容重和孔度的测定(环刀法) (28)1—11.1 土壤容重的测定(环刀法) (28)1—11.2 土壤孔度的测定 (29)第二篇肥料分析 (31)2—1 肥料样品的采集与制备 (31)2—1.1 化学肥料样品的采集与制备 (31)2—1.2 有机肥料样品的采集与制备 (31)2—2 肥料含水量的测定 (31)2—2.1 常见化肥中含水量的测定 (31)2—2.2 有机肥料中含水量的测定 (29)2—3 氮素化肥分析 (32)2—3.1 氮素化肥总氮量的测定 (32)2—3.2 氮素化肥中铵态氮的测定 (33)2—3.3 氮素化肥中硝态氮的测定 (33)2—3.4 尿素中氮的测定 (34)2—4 磷素化肥分析 (34)2—4.1 磷素化肥全磷量的测定 (34)2—4.2 过磷酸钙中游离酸的测定 (35)2—4.3 过磷酸钙中有效磷的测定 (36)2—4.4 碱性热制磷肥有效磷的测定 (36)2—4.5 磷矿粉中全磷量的测定 (37)2—4.6 磷矿粉中有效磷的测定 (37)2—5 钾素化学肥料全钾量分析 (37)2—6 复合肥料的分析 (38)2—7有机肥料的分析 (38)2-7.1 有机肥料全氮量的测定(铁锌粉还原法) (38)第三篇植物分析 (40)3—1 植物样品的采集、制备与保存 (40)3—1.1 植物样品的采集 (40)3—1.2 植物组织样品的制备与保存 (41)3—1.3 植物微量元素分析样品的制备与保存 (41)3—2 植物营养诊断 (41)3—2.1 植株汁液和浸提液的制备 (41)3—2.2 试剂配制 (42)3—2.3 植物组织中硝态氮的测定 (42)3—2.4 植物组织中磷的测定 (43)3—2.5 植物组织中钾的测定 (44)3—3 植物水分的测定 (45)3—3.1 风干植物样品水分的测定 (45)3—3.2 新鲜植物样品水分的测定 (45)3—4 植物粗灰分的测定 (46)3—5 植物常量元素的分析 (47)3—5.1 植物全氮、磷、钾的测定 (47)3—5.1.1 植物样品的消煮 (47)3—5.1.2 植物全氮的测定 (48)3—5.1.3 植物全磷的测定 (48)3—5.1.4 植物全钾的测定 (49)3—5.2 植物全钙、镁的测定 (50)3—6 植物微量元素分析 (51)3—6.1 植物硼的测定 (52)3—6.2 植物钼的测定 (53)3—6.3 植物铁、锰、铜、锌的测定 (53)3—7 植物全碳的测定 (54)第四篇农产品分析 (55)4—1 农产品样品的采取制备与保存 (55)4—1.1 籽粒样品的采集、制备与贮存 (55)4—1.2 水果蔬菜样品的采集、制备与贮存 (55)4—2 水分的测定(植物产品) (56)4—3 蛋白质的分析 (58)4—3.1 开氏法测定粗蛋白质 (58)4—3.2 铜盐沉淀法测纯蛋白质 (59)4—4 农产品中碳水化合物的分析 (60)4—4.1 糖分的分析 (60)4—4.1.1 果蔬含糖量的测定 (61)4—4.1.2 作物可溶性糖的测定(蒽酮比色法) (62)4—4.2 淀粉的测定 (64)4—4.2.1 谷物中淀粉的测定(酸水解法) (64)4—4.2.2 酶水解法 (65)4—4.3 植物中粗纤维的测定(酸碱洗涤重量法) (66)4—5 植物中粗脂肪的测定 (67)4—5.1 油重法 (67)4—5.2 残余法 (68)4—6 植物中维生素C的测定(2%草酸浸提—2,6—二氯靛酚滴定法) (70)4—7 农产品酸度测定(滴定法) (72)4—7.1 总酸度测定(滴定法) (73)4—8 农产品氨基酸的测定 (74)4—8.1 单指示剂甲醛滴定法 (75)4—8.2 双指示剂甲醛滴定法 (75)4—8.3 茚三酮比色法 (76)4—9 果品硬度的测定 (77)4—10 果品中可溶性固形物的测定(折射仪法) (77)附录A (79)第一篇土壤分析1—1 土壤样品的采集与处理土壤样品的采集是土壤分析工作中的一个重要环节,是直接影响着分析结果和结论是否正确的一个先决条件。

《土壤农化分析实验》课件

《土壤农化分析实验》课件

实验内容
实验内容包括土壤样品的采集、处理和制备,土壤有机质 、氮、磷、钾等养分的测定,以及土壤酸碱度、阳离子交 换容量等指标的测定。
实验结果
通过实验,学生能够获得土壤样品中各养分的含量、土壤 酸碱度、阳离子交换容量等数据,并进行分析和评价。
实验中遇到的问题及解决方案
问题
01 土壤样品不均匀,导致测定结
土壤有机质的测定
01
02
03
样品处理
将土壤样品进行酸化处理 ,以破坏土壤中的有机物 ,释放出其中的碳。
氧化剂制备
制备高锰酸钾或重铬酸钾 氧化剂,用于氧化土壤中 的有机碳。
滴定分析
将氧化剂加入样品中,通 过滴定法测定土壤中有机 碳的含量,从而计算出土 壤有机质的含量。
土壤pH值的测定
样品制备
将土壤样品与蒸馏水按一 定比例混合,制成土壤悬 浊液。
土壤氮、磷、钾的测定
原理
利用化学分析法测定土壤中氮、磷、钾的含量。
步骤
将处理好的土壤样品用酸或碱溶解,然后加入相应的试剂进行沉淀或络合反应,再通过比 色法或滴定法测定氮、磷、钾的含量。
注意事项
在测定过程中要严格控制反应条件,如温度、酸度等,以保证测定结果的准确性。同时, 由于氮、磷、钾的含量可能会随着季节和作物生长状况的变化而变化,因此需要定期进行 测定和分析。
法测定。
注意事项
消化过程中要严格控制温度和时 间,避免样品烧焦或产生其他副
反应。
土壤pH值的测定
原理
利用酸度计测定土壤pH值。
步骤
将土壤悬浊液制备好后,用酸度计测定其pH值,并记录 数据。
注意事项
在测定前要确保酸度计校准准确,避免误差。同时,土壤 pH值可能会受到土壤类型、气候、季节等多种因素的影 响,因此需要多次测定取平均值。

土壤农化分析实验指导

土壤农化分析实验指导

实验一实验室须知及仪器清点洗涤和不同类型分析天平的使用学习《土壤农化分析》首先要了解土壤农化分析的基础知识和安全知识;在实验中要了解实验室的一般规则;所用纯水,试剂;器皿、仪器等等的选择、洗涤和各种分析天平的使用。

思考题1.纯水制备方法有哪几种?2.如何选择洗涤器皿的洗涤剂?3.使用分析天平的注意事项有哪些?参考书1.《分析化学手册》第一册基础知识与安全知识,杭州大学化学系分析化学教研室编、化学工业出版社(正确的) (不适当的) (不适当的)实验二 土壤样品的采集和处理一、土壤样品的采集土壤样品的采集是土壤分析工作中一个最重要最关键的环节,它是关系到分析结果是否正确的一个先决条件,特别是耕作土壤,由于差异较大,若采样不当,所产生的误差(采样误差)远比土壤称样分析发生的误差大,因此,要使所取的少量土壤能代表一定土地面积土壤的实际情况,就得按一定的规定采集有代表性的土壤样品。

如何采样?这要根据分析的目的,要求来决定采样的方法。

(一)土壤样品的采集方法、种类和注意事项:1.混合样品的采集由于土壤是一个不均匀的体系,为了要了解它的养分状况,物理性、化学性,我们不能把整块土都搬进实验室进行分析,因此,就必须选取若干有代表性的点子取样混合后成为混合样品,混合样品实际上就是一个平均样品,这个平均样品就要具有代表性。

要使样品真正有代表性,首先要正确划定采样区,找出采样点,划采样区(采样单元或采样单位)时是根据土壤类别、地形部位、排水情况、耕作措施、种植栽培情况、施肥等等的不同来决定的。

每一个采样区内,再根据田块面积的大小及被测成分的变异系数,来确定采样点的多少,当然,取的点子越多,代表性越强,那就越好,但它会造成工作量的增多,因此一般人为的定为5-10,10-20点或根据计算应取多少点。

(1)试验田土壤样品的采集:一般试验小区为一采样区。

(2在进行土壤养分状况的调查时,一般是根据土壤类别、地形、排水、耕作、施肥等不同来划分采样区;也有的是根据土壤肥力情况按上、中、下来划分采样区。

土壤农化分析实验

土壤农化分析实验

土壤农化分析实验目录实验一土壤有机质测定(外加热法)实验二土壤全氮量测定实验三水解氮的测定(碱解扩散法)实验四土壤铵态氮的测定(一)蒸馏滴定法(二)奈氏比色法实验五土壤硝态氮的测定(一)硝酸银电极法(二)酚二磺酸比色法实验六土壤有效硫的测定实验七土壤全磷的测定(一)NaOH碱熔—钼锑抗比色法(二)HCl十H2S04酸溶—钼锑抗比色法实验八土壤速效磷的测定(一)中性和石灰性土壤速效磷测定(二)酸性土壤速效磷的测定实验九土壤全钾测定实验十土壤速效钾的测定(一)火焰光度法(二)1molNaN03提取——四苯硼钠比浊法实验十一土壤阳离子交换量测定(一)1mol中性NH40Ac法(二)BaCl2—H2S04快速法实验十二土壤交换性盐基测定(一)交换性盐基总量测定(二)交换性钙、镁的测定(EDTA容量法)(三)交换性钾钠的测定(火焰光度法)实验十三活性酸和交换性酸的测定(一)活性酸(pH)测定(二)交换性酸的测定(总量测定)实验十四土壤水溶性盐总量测定(电导率测定)实验十五植物样品消化(一)H2S04—H202法(二)混合加速剂消煮法实验十六植物样品中氮的测定(一)奈氏比色法(二)半微量蒸馏法实验十七植物样品中全磷测定(钡钼黄比色法)实验十八植物样品中全钾测定(火焰光度法)实验十九植物钙镁的测定(EDTA络合滴定法)实验二十土壤和植物中硼的测定(一)姜黄素比色法(二)甲亚胺—H比色法(三)植物样品干灰化及硼测定实验二十一土壤和植物锰的测定(KMn04比色法)(一)土壤有效锰测定(二)植物中锰的测定实验二十二土壤和植物中铜、锌的测定(原子吸收分光光度法)(一)土壤中有效铜、锌测定(二)植物中铜、锌测定实验二十三土壤和植物中钼的测定硫氰酸盐比色法实验二十四土壤和植物中铁的测定(邻菲罗啉比色法)(一)土壤有效铁测定(二)植物中铁的测定实验二十五纯蛋白质的测定(一)沉淀分离后消化测定(二)染料结合法实验二十六氨基酸总量的测定(茚三酮比色法)实验二十七水溶性糖的测定(葸酮法)实验二十八淀粉的测定(HCl水解一菲啉碘量法)实验二十九粗脂肪的测定(残余法)实验三十果蔬总酸度的测定实验三十一维生素C的测定(一)2,6—二氯靛酚滴定法(三)荧光测定法实验三十二氮肥的测定(一)甲醛法(铵态氮肥中氮的测定)(二)蒸馏法(尿素含氮量测定)实验三十三磷肥的测定(一)喹啉钼酸重量法(过磷酸钙有效磷测定)(二)喹啉钼酸容量法(三)过磷酸钙中游离—酸测定(四)钒钼黄法(磷矿粉中有效磷测定)实验三十四钾肥测定(一)火焰光度法(二)四苯硼钠重量法实验一土壤有机质测定(外加热法)一、方法原理:在恒加热条件下(175—180℃,5分钟),用定量K2Cr2O7—H2S04溶液氧化有机质,剩余的K2Cr207用标准FeS04滴定,由氧化有机质消耗的K2Cr2O7的量计算有机质含量。

土壤农化分析实验

土壤农化分析实验

第一篇土壤分析1—1 土壤样品的采集与处理土壤样品的采集是土壤分析工作中的一个重要环节,是直接影响着分析结果和结论是否正确的一个先决条件。

由于土壤特别是农业土壤本身的差异很大,采样误差要比分析误差大得多,因此必须重视采集有代表性的样品。

另外,要根据分析目的不同而采用不同的采样和处理方法。

1—1.1 土壤样品的采集1土样的采集时间和工具土壤中有效养分的含量因季节的不同而有很大的差异。

分析土壤养分供应的情况时,一般都在晚秋或早春采样。

采样时要特别注意时间因素,同一时间内采取的土样分析结果才能相互比较。

常用的采样工具有铁锨、管形土钻和螺旋土钻。

2 土壤样品采集的方法采样的方法因分析目的不同而不同。

(1)土壤剖面样品。

研究土壤基本理化性质,必须按土壤发生层次采样。

一般每层采样1kg,分别装入袋中并做好标记。

(2)土壤物理性质样品。

如果是进行土壤物理性质的测定,必须采集原状土壤样品。

在取样过程中,须保持土块不受挤压,样品不变形,并要剥去土块外面直接与土铲接触而变形部分。

(3)土壤盐分动态样品。

研究盐分在土壤剖面中的分布和变动时,不必按发生层次采样,可从地表起每10cm或20cm采集一个样品。

(4)耕作层土壤混合样品。

为了评定土壤耕层肥力或研究植物生长期内土壤耕层中养分供求情况,采用只取耕作层20cm深度的土样,对作物根系较深的或熟土层较厚的土壤,可适当增加采样深度。

采样点的选择一般可根据土壤、作物、地形、灌溉条件等划分采样单位。

在同一采样单位里地形、土壤、生产条件应基本相同。

土壤的混合样品是由多点混合而成。

一般采样区的面积小于10亩时,可取5个点的土壤混合;面积为10—40亩时,可取5—15个点的土壤混合;面积大于40亩时,可取15—20个点的土壤混合。

在丘陵山区,一般5—10亩可采一个混合样品。

在平原地区,一般30—50亩可采一个混合样品。

采样点的分布方式主要有:对角线取样法(图1):适用于面积不大,地势平坦,肥力均匀的地块。

土壤农化分析实验

土壤农化分析实验
土壤农化分析实验
试剂的选用
不同级别的试剂价格有时相差很大。 因此,不需要用高一级的试剂时就不用。 相反,有时经过检验,则可用较低级别 的试剂,例如经检查(空白试验)不含氮 的化学试剂(L.R,四级、蓝色标志)甚 至 工 业 用 ( 不 属 试 剂 级 别 ) 的 浓 H2SO4 和 NaOH,也可用于全氮的测定。但必须指 出的是,一些仲裁分析,必须按其要求 选用相应规格的试剂。
土壤农化分析实验
试剂的选用
土壤农化分析中一般都用化学纯试剂配制溶 液。标准溶液和标定剂通常都用分析纯或优级纯 试剂。
微量元素分析一般用分析纯试剂配制溶液, 用优级纯试剂或纯度更高的试剂配制标准溶液。
精密分析用的标定剂等有时需选用更纯的基 准试剂(绿色标志)。光谱分析用的标准物质有时 须用光谱纯试剂(S.P),其中近于不含能干扰待 测元素光谱的杂质。
玻璃器皿
软质玻璃:又称普通 玻璃是含有二氧化硅 ( SiO2 ) 、 氧 化 钙 (CaO) 、 氧 化 钾 (K2O) 、 等 成 分 制 成的。透明性较好,但热 膨胀系数大,易炸裂、破 碎。多制成不需要加热的 仪器。如试剂瓶、漏斗、 量筒、玻璃管等。
土壤农化分析实验
玻璃器皿
硬质玻璃:又称硬料, 主要成分是二氧化硅、碳 酸钾、硼砂等,也称为硼 硅玻璃。硬质玻璃的耐温、 耐腐蚀及抗击性能好,热 膨胀系数小,可耐较大的 温差(一般在300度左右), 可制成加热的玻璃器皿, 如各种烧瓶、试管蒸馏器 等。但不能用于B、Zn元素 的测定。
土壤农化分析实验
分析纯
属于二级试剂, 标签颜色为红色,这 类试剂的杂质含量低。 主要用于一般的科学 研究和分析工作。相 当于进口试剂的 “A.R”(分析试剂)。
土壤农化分析实验
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

土壤农化分析1.本实验与《土壤农化分析》课程相配套,适用于本校农业资源与环境专业本科学生。

本课程实验共计5部分,合计64学时,开放实验2个,20学时。

2.实验课教学目的《土壤农化分析》是研究土壤植物及肥料分析的科学,是一门以实验为主实践性技术性很强的课程,同时也是一门应用科学,是农业资源与环境专业必修的一门专业课。

通过本课程的教学,使学生比较全面系统地掌握土壤植物及肥料分析的基本理论,基本知识和基本操作,并且学会现代分析仪器的使用技术,达到能够熟练掌握土壤农化分析的基本技能及分析方法,准确规范的进行土壤植物及肥料样品的分析得出正确的分析结果,并能应用到生产实际和科学研究中去。

3.基本要求1)总体要求:要求学生实验前,要认真阅读实验指导书,熟悉实验原理、实验仪器、试剂、操作步骤、结果分析及注意事项;认真操作,亲自动手完成64个学时的实验,并认真按规范做好实验报告。

2)先修课程:无机及分析化学、有机化学、植物生理学、土壤学、、植物营养学等。

3)本课程共开出5部分共30个实验,对农资专业应必修30个实验,2个为选修。

《土壤农化分析》中国农业出版社出版,鲍士旦主编课程名称:土壤农化分析开课单位:农学院实验室:农资实验室开课学期:第 5 学期实验总介绍土壤农化分析实验是在理解土壤农化分析的基本理论、基本知识的基础上,掌握土壤植物及肥料样品的采集制备与保存,试验仪器设备的准备及试剂的配制,熟练正确的掌握试验操作技术及土壤植物和肥料常规分析项目的意义目的分析的基本原理方法操作步骤结果分析及注意事项。

并能进行分析结果的质量控制和数据处理,实验的重点在于培养学生的实际分析技术和操作技能。

第一部分实验室基本知识及操作技能的训练实验名称:实验室常用器皿的性能、选用和洗涤及基本操作技能的训练(设计性实验,2学时)实验级别:专业、必修实验课时:2学时实验类型:综合实验地点:实验室实验要求:通过实际操作,掌握实验室常用器皿的性能、选用和洗涤并进行基本操作技能的训练,熟练基本操作技术。

并写出实验报告。

分组情况:每人一组主要设备:实验室常用玻璃器皿。

实验名称:试剂的配制及标准曲线的制作(综合性实验,4学时)实验级别:专业、必修实验课时:4学时实验类型:综合性实验地点:实验室实验要求:要求每一名学生都要配制一种以上试剂,掌握试剂配置的方法和要点,并进行标准曲线的制作,熟练分析技术。

分组情况:每人一组主要设备:实验室常用玻璃器皿,所需配置的试剂。

实验名称:常用试验仪器的原理和使用(综合性实验,2学时)实验级别:专业、必修实验课时:2学时实验类型:综合性实验地点:实验室实验要求:通过实际操作,了解并掌握开氏定氮仪、分光光度计、火焰光度计、酸度计、电导仪、原子吸收分光光度计的分析原理和操作方法。

分组情况:每人一组主要设备:开氏定氮仪、分光光度计、火焰光度计、酸度计、电导仪、原子吸收分光光度计等。

实验名称:实验分析质量的控制和数据处理(综合性实验,2学时)实验级别:专业、选修实验课时:2学时实验类型:综合性实验地点:实验室实验要求:了解实验分析质量的控制的方法,选取一些数据进行处理,掌握实验准确度和精密度的计算方法以及实验数据的取舍规则。

分组情况:每人一组主要设备:实验数据。

第二部分土壤基础肥力的分析与配方施肥实验名称:土壤样品的采集与制备(设计性实验,2学时)实验级别:专业、必修实验课时:2学时实验类型:设计性实验地点:农田实验要求:选取典型的地块,根据测土配方的要求实际采取所需的土壤样品,并按照要求进行土样的风干和制备。

分组情况:每5-6人一组,全班分5-6个组主要设备:土钻、擀杖、样品筛、样品瓶、标签等。

实验名称:土壤吸湿水的测定(设计性实验,2学时)实验级别:专业、必修实验课时:2学时实验类型:设计性实验地点:实验室实验要求:通过实际操作,掌握土壤风干样品吸湿水测定的方法,要求要烘至衡重,为后续实验做准备。

分组情况:每人一组主要设备:烘箱、天平,铝盒、干燥器等。

实验名称:土壤有机质的测定(设计性实验,2学时)实验级别:专业、必修实验课时:2学时实验类型:设计性实验地点:实验室实验要求:通过实际操作,掌握土壤有机质测定的一般方法,熟练土壤有机质的分析技术,了解分析过程中可能出现的问题。

分组情况:每人一组主要设备:油浴消化装置(包括油浴锅和铁丝笼)、可调温电炉、秒表、自动控温调节器等;主要试剂:(1)0.008mol·L-1(1/6K2Cr2O7)标准溶液。

(2)H2SO4。

浓硫酸(H2SO4,GB625-77,分析纯)。

(3)0.2mol·L-1Fe SO4溶液。

(4)邻啡罗啉指示剂(5)Ag2SO4。

硫酸银(Ag2SO4,HG3-945-76,分析纯),研成粉末。

实验名称:土壤全氮的测定(设计性实验,4学时)实验级别:专业、必修实验课时:4学时实验类型:设计性实验地点:实验室实验要求:通过实际操作,掌握土壤全氮测定的一般方法,熟练土壤全氮的分析技术,了解分析过程中可能出现的问题。

分组情况:每人一组主要设备:消煮炉、半微量定氮蒸馏装置、半微量滴定管(5mL)等。

主要试剂:(1)硫酸。

ρ=1.84g·mL-1,化学纯;(2)10mol·L-1NaOH溶液。

(3)甲基红—溴甲酚绿混合指示剂。

(4)20g·L-1H2BO3—指示剂(5)混合加速剂。

(6)0.02 mol·L-1(1/2 H2SO4)标准溶液。

(7)0.01 mol·L-1(1/2 H2SO4)标准液等实验名称:土壤全磷的测定(设计性实验,4学时)实验级别:专业、必修实验课时:4学时实验类型:设计性实验地点:实验室实验要求:通过实际操作,掌握土壤全磷测定的一般方法,熟练土壤全磷的分析技术,了解分析过程中可能出现的问题。

分组情况:每人一组主要设备:721型分光光度计;LNK-872型红外消化炉等。

主要试剂:1)浓硫酸(H2SO4,ρ≈1.84 g·cm-3,分析纯)。

(2)高氯酸[CO(HClO4)≈70%~72%,分析纯]。

(3)2,6-二硝基酚或2,4-二硝基酚指示剂溶液。

(4)4mol·L-1氢氧化钠溶液,(5)2mol·L-1(1/2H2SO4)溶液(6)钼锑抗试剂(7)磷标准溶液。

实验名称:土壤全钾的测定(设计性实验,3学时)实验级别:专业、必修实验课时:3学时实验类型:设计性实验地点:实验室实验要求:通过实际操作,掌握土壤全钾测定的一般方法,熟练土壤全钾的分析技术,了解分析过程中可能出现的问题。

分组情况:每人一组主要设备:茂福电炉、银或镍坩埚或铁坩埚、火焰光度计或原子吸收分光光度计等。

主要试剂:(1)无水酒精(分析纯)。

(2)H2SO4(1:3)溶液。

(3)HCl(1:1)溶液。

(4)0.2mol·L-1 H2SO4溶液。

(5)100µg·mL-1K标准溶液。

实验名称:土壤阳离子交换量的测定(设计性实验,3学时)实验级别:专业、必修实验课时:3学时实验类型:设计性实验地点:实验室实验要求:通过实际操作,掌握土壤阳离子交换量测定的一般方法,熟练土壤阳离子交换量的分析技术,了解分析过程中可能出现的问题。

分组情况:每人一组主要设备:天平、振荡机、高速离心机、火焰光度计等主要试剂:(1)lmol·L-1乙酸钠(pH8.2)溶液。

(2)异丙醇(990mL·L”)或乙醇(950mL·L —1)。

(3)lmol·L-1NH4OAc(pH7)。

(4)钠(Na)标准溶液。

实验名称:土壤PH及水溶性盐含量的测定(设计性实验,2学时)实验级别:专业、必修实验课时:2学时实验类型:设计性实验地点:实验室实验要求:通过实际操作,掌握土壤PH及水溶性盐含量的测定的一般方法,熟练土壤PH 及水溶性盐含量的分析技术,了解分析过程中可能出现的问题。

分组情况:每人一组主要设备:pH酸度计、电导仪等;主要试剂:蒸馏水第三部分植物样品的分析实验名称:植物样品的采集与制备。

(综合性实验,2学时)实验级别:专业、必修实验课时:2学时实验类型:综合性实验地点:农田实验要求:选取合适植株按照要求采集,并进行植株样品的烘干和制备。

分组情况:每人一组主要设备:样品筛、样品瓶、标签等;实验名称:植物样品的消化处理(综合性实验,3学时)实验级别:专业、必修实验课时:2学时实验类型:综合性实验地点:实验室实验要求:通过实际操作,掌握植物样品消煮的一般方法,熟练植物样品消煮的技术,了解消煮过程中可能出现的问题。

分组情况:每人一组主要设备:消煮炉、硬质试管等;主要试剂:浓硫酸、双氧水等实验名称:植株全氮量的测定(综合性实验,2学时)实验级别:专业、必修实验课时:2学时实验类型:综合性实验地点:实验室实验要求:通过实际操作,掌握植株全氮量的测定的一般方法,熟练植株全氮量测定的分析技术,了解分析过程中可能出现的问题。

分组情况:每人一组主要设备:定氮仪、半微量滴定管(5mL)等;主要试剂:(1)40%(m/v)NaOH溶液 (2)2%H3BO3—指示剂溶液 (3)取标准溶液[C(HCl或1/2H2SO4)=0.01mol/L] (4)碱性溶液 等实验名称:植株全磷量的测定(综合性实验,2学时)实验级别:专业、必修实验课时:2学时实验类型:综合性实验地点:实验室实验要求:通过实际操作,掌握植株全磷量的测定的一般方法,熟练植株全磷量测定的分析技术,了解分析过程中可能出现的问题。

分组情况:每人一组主要设备:分光光度计等;主要试剂:(1)钒钼酸铵溶液 (2)6mol/LNaOH溶液 (3)0.2%二硝基酚指示剂 (4)磷标准液等实验名称:植株全钾量的测定(综合性实验,2学时)实验级别:专业、必修实验课时:2学时实验类型:综合性实验地点:实验室实验要求:通过实际操作,掌握植株全钾量的测定的一般方法,熟练植株全钾量测定的分析技术,了解分析过程中可能出现的问题。

分组情况:每人一组主要设备:火焰光度计等;主要试剂:K标准溶液(C(K)=100mg/L) 等实验名称:缺素症的化学诊断(设计性实验,6学时)实验级别:专业、必修实验课时:6学时实验类型:设计性实验地点:农田和实验室实验要求:外形诊断选取缺素症的植株样品和正常植株样品,通过化学分析确定外形诊断是否正确,掌握植株微量元素测定的一般方法,熟练植株微量元素测定的分析技术,了解分析过程中可能出现的问题。

分组情况:每5-6人一组,全班5-6组主要设备:原子吸收分光光度计等;主要试剂:根据测定项目 等第四部分化学肥料质量的分析鉴定实验名称:尿素中缩二脲的测定(综合性实验,2学时)实验级别:专业、必修实验课时:2学时实验类型:综合性实验地点:实验室实验要求:通过实际操作,掌握尿素中缩二脲的测定的一般方法,熟练尿素中缩二脲测定的分析技术,了解分析过程中可能出现的问题。

相关文档
最新文档