遥感技术在精准农业中的应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

遥感技术在精准农业中的应用

精准农业又称精细农业、精确农业、精准农作和处方农业。精准农业基于农田作物和环境的空间差异性,是通过各种技术手段来获取农田内不同单元的农田信息,并由此利用变量技术来进行农田优化管理,以便实现生产过程精细化、准确化的农业经营管理系统。

在精准农业的框架下,可以根据地块土壤、水肥、作物病虫害、杂草及产量等在时间与空间上的差异,来进行相适宜地耕种、施肥、灌溉、用药及收获,其目的是以合理的投入来获得最好的经济效益,并保护环境,以确保农业的可持续发展。鉴于我国及全球人口不断增长和土地资源减少的矛盾不可逆转,精准农业在减少投入、降低成本、减轻环境污染、农产品可控化、标准化和批量化等方面均有积极的作用和意义。

在精准农业中,田块内的作物状态及其生长环境的空间差异是进行农业精准管理的关键。遥感可在不同的电磁谱段内周期性地收集地表信息,已成为人们研究、识别地球和环境的主要方法。遥感信息为精准农业所需空间信息差异参数的快速、准确、动态获取提供了重要的技术手段。早期由于受分辨率、时间周期、地理、空域、气象条件、监测成本高及遥感技术发展水平等因素的限制,遥感技术在农业领域的

应用只局限于服务区域的重大决策。20世纪70年代,遥感开始进入一个,高速发展的阶段并广泛地应用于农业生产监测,在作物识别、面积估算、长势监测、旱情监测、灾害评估和作物产量估计等方面,均取得了较大的成绩,然而遥感信息在时空分辨率及所提供信息的精度和丰度还不能满足精准农业对农田信息的需求。近20年来,随着遥感技术的发展,遥感技术在精准农业领域开始发挥越来越大的作用,在指导农田灌溉、施肥、病虫害防治、杂草控制、农作物收获及灾后损失评估等方面均已有很多成功的应用。

以下将对遥感技术在精准农业领域部分应用研究进行介绍。

遥感可为精准农业提供以下两类农田与作物的空间分布信息:一类是基础信息,这种信息在作物生育期内基本没有变化或变化较少,主要包括农田基础设施、地块分布及土壤肥力状况等信息;另一类是时空动态变化信息,包括作物产量、土壤熵情、作物养分状况、病虫害的发生/发展状况、杂草的生长状况以及作物物候等信息。

一、基础信息获取

1.农田基础设施调查

主要包括农田道路、水利设施等,是农业生产和农田管理的基础保障。掌握区域农田基础设施的空间分布状况,是现代农业生产中充分发挥这些设施作用的前提。使用遥感技

术可以在较大范围内实现农业基础设施的快速调查。传统的遥感农田道路及水利设施的信息提取主要有以下3种方法:基于像元尺度的影像自动分类技术、人机交互模式下的人工解译提取技术及自动识别跟踪方法。目前,影像分类有了新的改进方法,面向对象的多尺度分割技术可以更加有效地利用所要提取对象的形态特征,在对道路和水渠等线性特征地物进行提取时,可取得更好的效果。

2014年黑龙江省富锦市设施农用地分布图

基于遥感人工目视解译技术,并结合野外调查的方式,对融合后的高分一号卫星、资源三号卫星遥感影像数据进行信息提取,形成包含育秧棚、晾晒场、农机站等在内的富锦市设施农用地分布图。

2.地块分布调查

精准农业中的变量管理技术是通过将农田分为较小的管理单元来实现,被定义为“农田中产量限制因子均一并且适合进行统一作物投入的田块”。与早期精准农业“Farming By Foot”的概念相比,基于管理单元进行的精准耕作更具有可操作性。利用高分辨率遥感影像进行地块边界及其空间分布的提取,不仅时效性强、精度高,而且符合中国农村高度分散条件下的精准农业的实施。

2014年宝泉岭农垦管理局军川农场耕地资源调查情况图

利用高分一号卫星16m分辨率宽幅多光谱影像数据,对军川农场耕地进行分块调查、集中编号,实现精准确权,进一步规范化、科学化、数字化地籍管理工作。

3.土壤状况调查

土壤状况是决定农田潜在生产力的主要因素,土壤性状

及肥力状况信息可以为精准农田管理提供响应依据。一般可以通过改进土壤肥力指标来提高作物单产,这些指标包括土壤有效氮及其他宏观或微观植物养分、地块的相对位置和坡度以及土壤有机质含量。

土壤的反射光谱主要受其物理性质、化学成分及矿物成分的影响,通过地物反射光谱可以有效区分不同类型的土壤,并可用于土壤肥力状况的调查。目前,遥感技术已经可以成功地获取土壤的有机碳、N、P、K、Ca、盐分以及总有机质等的含量信息,并可以对土壤的pH值等化学属性进行估算。这些信息可以直接用于土壤肥力的评价与空间制图。

土壤结构也是影响土壤反射光谱的因素之一,近几年,利用遥感对土壤物理性质进行监测也在逐渐开展中,并且取得了较好的效果,监测对象包括土壤颗粒大小、质地及粘粒含量等。这些土壤结构参数对土壤水分的涵养及养分物质的迁移有重要的影响,可以用于评估土壤的排灌能力和肥料的利用效率。

2013年4月冬小麦氮肥推荐施肥图

通过利用大区域尺度上冬小麦施肥推荐方法,对GeoEye-1卫星遥感影像数据进行综合分析,确定遥感植被指数与冬小麦氮素营养及最终产量的变化规律,为冬小麦的氮营养诊断和大面积小麦的氮肥管理提供依据。

二、时空动态变化信息的获取及利用

下面从长势监测、农田灌溉、施肥、病虫害防治、杂草控制及作物收获等5个方面对遥感技术在现代农业领域的应用进行说明。

1.长势监测

作物长势是指作物的生长状况与趋势。作物长势可以用个体和群体特征来描述,获取作物长势的传统方法是地面调查,现代农业生产中则主要利用遥感技术监测作物生长状况与趋势。作物长势的遥感监测充分体现了遥感技术宏观、客观、及时、经济的特点,可为田间管理提供及时的决策支持信息,并为早期估测产量提供了依据。特别是随着“3S”集成应用技术、高分辨率卫星资料和大数据计算技术等的快速发展,农作物长势遥感监测信息已成为指导农业生产不可或缺的重要信息。

(a)2014年7月2日作物长势图

(b)2014年8月9日作物长势图

(c)2014年8月29日作物长势图

黑龙江省农垦牡丹江管理局云山农场作物长势监测

利用高分一号卫星16m分辨率宽幅多光谱遥感影像数据,依据归一化植被指数(NDVI)的差异,对黑龙江省农垦牡丹江管理局云山农场的三个不同生长期作物长势进行监测,实现了作物长势时空动态监测。图中将作物长势情况分为10个级别,级别越高,作物长势越好。

相关文档
最新文档