水处理之物化技术处理剧毒含氰工业污水_副本

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水处理之物化技术处理剧毒含氰工业污水

在整个里面拥有着多种技术,像处理污水是一种技术,处理纯水又是另一种技术,在不同的领域有着不同的技术,还有的还用原来的药剂,现在在工业污水上的处理有一种技术叫做物化技术,来处理工业污水中的剧毒含氰。氰是一种剧毒。在工业污水中非常常见,这类毒素如果流经河流,那么会导致河流边缘会很黑,就是由这类毒素所引发的。那么对于这一技术您了解多少呢?肯定很多人连听都没听过吧,下面就由我来为大家仔细的分析一下这类技术。以便于更了解水处理这个行业。

随着我国经济的迅速发展,工业生产技术水平的不断提高,工业危险废物的产生量急速增大,种类繁多、性质复杂,且产生源数量分布广泛。根据《国家危险废物名录》,在工业生产过程中产生的含氰污水,是危害人类生态环境和人体健康的重要污染源之一,如不进行有效处置而随意排放,不仅对水环境、空气环境和土壤环境造成严重的影响和破坏,还会对人身的安全健康构成直接威胁。因此,深入研究高毒含氰污水的处理工艺就变得至关重要。物化技术——氯氧化法作为一种含氰污水的处置方法,在我国危险废物处置领域具有广泛的适用性。

二、物化技术分析

1、含氰工业污泥概述

含氰污水主要是含有无机氰化物成分,属高毒物质,极少量的氰化物就会使人、畜在很短的时间内中毒死亡,含氰化物浓度很低(

含氰污水污染水体引起鱼类、家畜及至人群急性中毒的事例,国内外都有报道。这些事件是因短期内将大量含氰成分排入水体造成的。因此,在工业生产过程中,必须严格控制含氰成分的排放量。尤其要有完善的污水处理设施以减少氰化物的外排量。本文针对物化技术——氯氧化法的基本原理、流程、设备选型及未来发展方向,以含氰污水的物化处置方式为例进行探讨。

2、物化处理工艺

物化技术——氯氧化法处理含氰工业污水是一种有效、实用、经济的方法。

(1)物化技术——氯氧化法基本原理

利用氯的强氧化性氧化污水中氰化物,使其分解成低毒物或无毒物的方法叫做氯氧化法。在反应过程中,为防止氯化氰和氯逸入空气中,反应常在碱性条件下进行,故常常称做碱性氯化法。氯氧化法于1942年开始应用于工业生产,至今已有六十多年,在我国也有五十余年的应用历史,而且应用技术日趋完善,因此,该方法比较成熟。

(2)氯氧化法的优点

①氯氧化法是一种成熟的方法,在工艺设备等方面都积累了丰富的经验;

②不少氰化厂用氯氧化法处理含氰废水能获得较满意的效果,氰化物可降低到L甚至更低;

③氰酸盐能进一步水解,生成无毒物;

④有毒的重金属生成难溶沉淀物,排水含重金属浓度能符合国家规定的排放标准;

⑤投资少,工艺设备简单,开停简便易操作。

(3)氯氧化法的反应机理

①不完全氧化(局部氰化)

氯氧化法把氰化物氧化成氰酸盐时称氰化物的局部氧化,氰酸盐在PH6~8时水解生成氨和碳酸盐;(该反应需1小时左右的时间)。总反应式如下:

Cl-+ClO-+2H2O=NH3+HCO3-+Cl-

或Cl-+Cl2+2OH-+H2O=NH3+HCO3-+2Cl-

该反应理论加氯比Cl2/CN-=(重量比,以下同)。

②完全氧化

氯把氰化物氧化成氮气和碳酸盐的反应称为氰化物的完全氧化反应,其总反应式如下:

2CN-+5ClO-+H2O=2HCO3-+N2↑+5Cl-

或2CN-+5Cl2+10OH-

=2HCO3-+N2↑+10Cl-+4H2O

该反应理论加氯比Cl2/CN-=,处理1kg氰化物比不完全氧化反应多消耗氯4.1kg /kgCN-。

③结论

由氯氧化法的反应机理可以看出,通过对反应液的PH值控制,使氰化物获得完全氧化,以实现污泥降解的达标处理。反应器中设置PH值在线检测仪,同时设置电极电位检测仪(ORE),以控制氧化还原反应的进行程度。

三、物化——氯氧化法技术应用

1、氯氧化法优点

(1)用氯氧化法处理含氰污水能获得较满意的效果,氰化物可降低到L甚至更低。

(2)氰酸盐能进一步水解,生成无毒物。

(3)有毒的重金属生成难溶沉淀物,排水含重金属浓度能符合国家规定的排放标准。

(4)解毒所需要的药剂(次氯酸钠)容易获得,其特性早已为人所熟悉,可确保安全生产。

2、应用分析

(1)氯系氧化剂的种类

凡是在水溶液中能够释放出HClO、ClO-、Cl2的药剂均属于氯系氧化剂。其中HClO、ClO-、Cl2称为有效氯,也称活性氯。氯系氧化剂的纯度均以含的有效氯(换算成Cl2的量占总量的百分比)来表示。常见的氯系氧化剂有液氯、漂白粉、漂粉精、次氯酸钠溶液和二氧化氯。

(2)氯系氧化剂的选择

氯气或者液氯的化学稳定性较差,毒性强、价格高;漂白粉和漂粉精虽然具有较强的氧化性,但其化学稳定性和安全性相对较差,对人体有一定的伤害。二氧化氯氧化性极强,易发生爆炸。

次氯酸钠由于含有效氯较高,药剂制备容易,根据含氰污水来源特点,选择次氯酸钠作为含氰污水处理药剂。

(3)完全氧化处理工艺条件控制

需控制的工艺条件主要有PH、搅拌强度、投药量。

①PH值的控制

完全氧化破氰的PH宜控制在一较为适宜,PH越低,反应速度越快;当PH<3时,氰酸根(CNO-)会水解生成对水体有害的氨(NH3),NH3又会与氯生成毒性很强的氯胺。当PH调至一时(宜用硫酸调节),边加药,边搅拌,反应池水面上会产生许多大大小小的气泡,反应迅速进行。

PH的控制是破氰反应的关键。局部氧化破氰的速度与PH值密切相关,PH值越高,反应速度越快,也就越彻底。在高PH值下,极毒气体(CNCI)能迅速水解生成低毒的氰酸盐(CNO-),局部氧化破氰的pH值宜控制在~。

②搅拌强度

破氰处理时搅拌程度是否剧烈对含氰污水处理有非常显著的作用。搅拌能使沉淀物中的氰彻底破坏,提高了氰的去除率。一般可用水力搅拌和机械搅拌。根据实验,以机械搅拌为好,机械搅拌切割作用比水力搅拌强的多,破氰更彻底。局部氧化破氰搅拌时间一般为30~40min,完全氧化破氰搅拌时间一般为40~50min。

③投药量

投药量是既涉及处理成本,又关系到处理效果的重要因素。投药量不够,则破氰反应不彻底;投药量过多,不仅造成浪费,而且使处理水中的余氯量超过允许浓度,对环境不利,因此不可忽视投药量的控制。对于投药量,可采用以下公式进行控制。

G=K1×K2×Q×CCN/1000×α=K×Q×CCN/1000×α,(kg/h)

式中:

G为投药量(kg/h);

Q为含氰污水量(m3/h);

CCN为处理后废水的含氰浓度(mg/L),其中,

K1为破坏一份氰所需的活性氯理论值;

K2为安全系数,一般K2=~;

K为投药比,K=K1×K2。含氰污水有各种简单形式,也有各种复杂形式,只能用试验方法求K值。K值一般取8~11,或控制排水中余氯量小于L;

α为药剂中含活性氯的百分比;也可以按实验确定的投药比CN-/Cl-来确定投药量。

(4)二次污染防治措施

氯氧化法处理含氰污水过程中,由于操作控制和设备问题,会产生剧毒的氯化氰气体;为了使氰化物降低到L,必须加入过量的氯,致使处理后废水中存在余氯,由于加氯尤其是加入漂白粉、漂粉精或次氯酸钠这些含有效氯低但氯离子浓度高的药剂,使外排水中氯离子浓度达~15kg/m3;由于氰酸盐水解生成氨,排水中含有一定数量的氨。这就是氯氧化法产生二次污染的四大因素。

①氯化氢

相关文档
最新文档