厌氧氨氧化
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
厌氧氨氧化
厌氧氨氧化作用即在厌氧条件下由厌氧氨氧化菌利用亚硝酸盐为电子受体,将氨氮氧化为氮气的生物反应过程。这种反应通常对外界条件(pH 值、温度、溶解氧等)的要求比较苛刻,但这种反应由于不需要氧气和有机物的参与,因此对其研究和工艺的开发具有可持续发展的意义。
厌氧氨氮化一般前置短程硝化工艺,将废水中的一部分氨氮转化成亚硝酸盐。目前在处理焦化废水、垃圾渗滤液等废水方面已经有成功的运用实例。
厌氧氨氧化是一个微生物反应,反应产物为氮气。具有一些优点:由于氨直接作反硝化反应的电子供体,可免去外源有机物(甲醇),既可节约运行费用,也可防止二次污染;由于氧得到有效利用,供氧能耗下降;由于部分氨没有经过硝化作用而直接参与厌氧氨氧化反应,产酸量下降,产碱量为零,这样可以减少中和所需的化学试剂,降低运行费用,也可以减轻二次污染。
厌氧氨氧化(Anammox)
厌氧氨氧化的发现
Broda的预言
1977年,奥地利理论化学家Broda根据化学反应热力学,预言自然界存在以硝酸盐或亚硝酸盐为氧化剂的氨氧化反应,因为与以氧为氧化剂的氨氧化反应相比,它们释放出的自由能一点也不逊色。
序号电子受体化学反
应ΔG/(KJ/mol)
1 氧2NH4++3O2→
2NO2-+2H2O+4H+ -241
2 亚硝酸盐 NH4++NO2-→
N2+2H2O -335
3 硝酸盐 5NH4++3NO3-→
4N2+9H2O+2H+ -278
既然自然界存在自养型亚硝化细菌,能够催化反应1,那么理论上也应该存在另
一种自养型细菌,能够催化反应2和反应3。由于当时这种细菌还没有被发现,所以,Broda 认为它们是隐藏于自然界的自养型细菌。
Mulder的发现
20世纪80年代末,荷兰Delft工业大学开始研究三级生物处理系统。在试运期间,Mulder等人发现,生物脱氮流化床反应器除了进行人们所熟知的反硝化外,还进行着人们未知的某个反应使氨消失了。进一步观察发现,除了氨不明去向外,硝酸盐和亚硝酸盐也有一半以上不明去向。
而且伴随着氨与硝酸盐(亚硝酸盐)的消失,产气率大幅度提高,气体中的最主要的成分为N2。
对生物脱氮流化床反应器所做的氮素和氧化还原平衡发现,氨与硝酸盐之间的反应基本上按照反应3所预期方式进行。理论值与实测值非常接近。
为了对这一反应结果进行确认,Mulder等人进一步做了分批培养实验。实验证明,氨确实与硝酸盐同步转化;硝酸盐耗尽时,氨转化也停止;添加硝酸盐后,氨转化继续进行。伴随氨和硝酸盐的转化,累计产气量增加;转化停止时,累计产气量不变。气体的主要成分是N2。
至此,Mulder等人认为,生物脱氮流化床反应器中的氨和硝酸盐转化是按Broda 所预言的方式进行的,并将其称为厌氧氨氧化。
厌氧氨氧化的反应机理
Graff等采用15N的示踪实验研究表明,Anammox是通过生物氧化的途径实现的,过程中最可能的电子受体是羟胺(NH2OH),并推测出其代谢途径:
厌氧氨氧化菌首先将NO2-转化成NH2OH,再以NH2OH为电子受体将NH4+氧化生成N2H4;N2H4转化成N2,并为NO2-还原成NH2OH提供电子;实验中有少量NO2-被氧化成NO3-。
厌氧氨氧化涉及的化学反应为:
NH2OH + NH3 → N2H4 + H2O
N2H4 → N2 + 4[H]
HNO2 + 4[H] → NH2OH + H2O
厌氧氨氧化工艺的技术要点
Anammox工艺的关键是获得足量的厌氧氨氧化菌,并将其有效地保持在装置内,
使反应器达到设计的厌氧氨氧化效能。在实施上,不仅要优化营养条件和环境条件,促进厌氧氨氧化菌的生长,同时要设法改善菌体的沉降性能并改进反应器的结构,促使功能菌有效持留。此工艺的技术要点主要包括以下几个方面:
温度控制
温度是影响细菌生长和代谢的重要环境条件。随着温度的升高,细胞内的生化反应加快,细菌生长加速;超过上限温度后,对温度敏感的细胞组分(如蛋白质和核酸)变性加剧,细菌生长停止,甚至死亡。如果其他条件不变,细菌有一个最适生长温度。
郑平的研究表明,当温度从15℃上升到30℃时,厌氧氨氧化速率随之增大,但上升到35℃时反应速率下降,最适温度在30℃左右。Jetten等认为,厌氧氨氧化的温度范围为20--43℃,最适温度为40℃。
pH控制
在厌氧氨氧化过程中,pH是一个非常重要的环境条件。它对厌氧氨氧化的影响主要来自它对细菌和基质的影响。
郑平通过研究发现,当pH从6.0升至7.5时,厌氧氨氧化速率提高;但当pH继续由8.0升至9.5时,厌氧氨氧化速率下降;由此判定,最适pH在7.5到8.0附近。据Strous等人报道,厌氧氨氧化的适宜pH 范围为6.7—8.3,最大反应速率出现在pH8.0左右。
溶解氧浓度控制
Strous等人采用序批式反应器试验了氧对厌氧氨氧化的影响。该反应器以厌氧和好氧交替进行,在充氧期间,没有厌氧氨氧化反应;只有在停止供氧后,才发生厌氧氨氧化反应。试验证明,氧能够抑制厌氧氨氧化活性,但除氧后厌氧氨氧化活性能够恢复。
Strous等人进一步考察了氧对厌氧氨氧化的活性抑制浓度。他们发现,在氧浓度为0.5—2.0%空气饱和度的条件下,厌氧氨氧化活性被完全抑制;氧对厌氧氨氧化活性的抑制浓度低于0.5%空气饱和度
基质浓度控制
基质氨和产物硝酸盐对厌氧氨氧化的活性影响较小,只要氨浓度和硝酸盐浓度低于1000mg/l,就不会对厌氧氨氧化活性产生抑制作用。但是,基质亚硝酸盐对厌
氧氨氧化活性影响较大,一旦亚硝酸盐浓度超过100mg/l,就会对厌氧氨氧化活性产生明显的抑制作用。
在基质浓度控制中,应重点控制亚硝酸盐浓度,使之低于5mmol/l.
负荷控制
在反应器容积负荷设定以后,其工作性能有赖于污泥负荷作保障。如果污泥负荷很高,接近或超过最大污泥活性,多余基质将不被转化,如果该基质是氨,则会影响出水水质,如果该基质是亚硝酸盐,甚至会导致反应器失控。
防止污泥超负荷的措施是提高污泥浓度。Anammox工艺常见的污泥氨负荷为0.02—0.3kg/(kg•d).
泥龄控制
由于厌氧氨氧化菌生长缓慢,细胞产率低,维持长泥龄对Anammox工艺具有至关重要的作用。厌氧氨氧化菌的倍增时间长达11d,因此Anammox工艺的泥龄越长越好
厌氧氨氧化工艺的先进性
与传统的硝化反硝化技术相比,厌氧氨氧化工艺具有很多优点:
(1)由于氨可以直接用作反硝化反应的电子供体,因此,不需要外加有机物做电子供体,既可节省费用,又可防止二次污染。
(2)硝化反应每氧化1molNH4+耗氧2mol,而在厌氧氨氧化反应中,每氧化
1molNH4+只需要0.75mol氧气,耗氧减少62.5%,从而使供氧耗能大幅度下降。(3)传统的硝化反应氧化1molNH4+可产生2molH+,反硝化反应还原1molNO3-或NO2-将产生1molOH-,而厌氧氨氧化反应产酸量大幅度下降,产碱量降至为零,可以节省数量客观的中和试剂,同时防止可能出现的二次污染。
厌氧氨氧化工艺存在的主要问题有:
(1)在Anammox反应器中,生物产率极低,几乎观察不到厌氧氨氧化菌的生长繁殖,系统必须有相应的生物补给,否则反应器处理能力将下降甚至丧失功能。(2)系统中的生物产率很低,致使水力停留时间比较长,所需的反应器容积很大,废水处理工程的一次投资比较大。
(3)系统反应所需要的温度较高,实际中必须考虑环境条件和所需的能耗(4)厌氧氨氧化菌对光和氧十分敏感,整个反应要在黑暗中进行,且不得有空