红外触摸屏的原理简述

红外触摸屏的原理简述
红外触摸屏的原理简述

红外触摸屏的原理简述

红外触摸屏技术是在屏幕四周安装红外发射管和红外接收管,形成红外光矩阵,然后分别在横、竖两个方向上不断的扫描并探测,当触摸物阻挡红外光时进行位置判断的坐标定位技术。一般是在显示器的前而安装一个电路板框架,在电路板上四边安装对应红外发射管和红外接收管,如下图所示,白色的是红外发射管,黑色的是红外接收管,通过电路驱动红外发射管发出红外光,位置相对的接收管接收红外光信号。用户在触摸屏幕时,手指就会挡住经过该位置的横竖方向的外线,光信号的改变引起光电探测电路输出的电信号发生变化,通过对电信号处理可以对触摸点在屏幕的位置进行定位。任何对红外光不透明的触摸物体都可阻断红外线实现触摸定位。本文由红外线供应网提供

红外触摸屏的原理是在屏幕四边放置红外发射管和红外接收管,微处理器控制驱动电路依次接通红外发射管并检查相应的红外接收管,以形成横坚交叉的红外光阵列,得到定位的信息。本论文中以Philips公司的ARM7芯片LPC2132为微处理器,通过对移位锁存器74HC595的控制对红外发射管的逐个扫描,同时微处理器通过12C总线寻址每个相应的红外接收管,得到相应的光强值。微处理器根据接收到的被遮挡前后的光强信号得到触摸的位置信息,并通过串口将该信息传送给主机。控制方式如下图所示:

微处理器电路:

微处理器在红外触摸屏硬件系统中起着核心的作用:

1、完成对红外发射电路的驱动;

2、完成对红外接收电路的驱动;

3、完成对是否被触摸的判断以及触摸位置信息的计算;

4、将触摸位置信息通过中P1传送给主机;

5、调试整个程序的运行。

本论文中采用Philips公司的ARM7芯片LPC2132作为微处理器。该芯片是基于一个支持实时仿真和嵌入式跟踪的32/16位ARM7TDMI微控制器,并带有64kB的嵌入的高速Flash 存储器。具有EmbeddedICE-RT和嵌入式跟踪接口,可实时调试;多个串行接口,包括2个16C550工业标准DART,2个高速I2C接口 SP1;多个32位定时器、1个10位8路ADC, 10位DAC,PWM通道和47个GP10以及多达9个边沿或电平触发的外部中断。

这部分电路中主要包括驱动红外发射部分,驱动红外接收部分,出口通信部分,JTAG调试

部分。驱动红外发射部分是由芯片上的第4脚,第44脚,第48脚来完成的,它们分别用于控

制红外发射管亮暗状态的信号:DS、 SH-CP、ST-CP。电路原理理如下图所示:

微处理器通过分别将二个信号按照一定的时序置高低电平,来控制每支红外发射管的亮暗状态。每个管脚最大耐压为 5V,但由于需要驱动165支红外发射管,导致电流很大,以至于容易将管脚烧坏。为了解决这样的问题,在以上二个管脚上分别接上NPN管采用集电极输出电路来增大驱动能力。同时由于输出反向,所以需将原来写入的高电平置为低电平,低电平置为髙电平。驱动红外接收部分是由芯片上第8脚,第12脚,第16脚,第37脚,第41脚来成的。其中第37脚,第41脚分别为I2C总线上的信号SCL,SDA;第8脚,第12脚,第16脚是芯片74HC4051的地址线信号。电路原理于如下图所示:

这部分主要是微处理器通过I2C总线来寻址每个ADS7830来完成165支红外接收管的光强信号的放大、模数转换并将值传回到微处理器中。由于165支红外接收管需要21片ADS7830

来完成寻址,而微处理器上只有2个I2C接口所以必须要扩展I2C接口。这里选用芯74HC4051,用二个地址线来扩展得到5个I2C接口,选通五组红外接收模块。这样微处理器可以通过I2C 总线逐一的寻址每支红外接收管。串口通信部分是由第19脚,第21脚来完成的。它们分别是串口总线上的信号TxDO,RxDO,用来将处理得到的触摸位置信息传送给主机。电路原理图如下图所示:

由于RS-232串行接口标准为一种在低速率串行通讯中增加通讯距离的单端标准。其传送距离最大约为15米,最高速率为20kb/s。 RS-232是为点对点(即只用一对收、发设备)通讯而设计的,其驱动器负载低,只适合本地设备之间的通信。它是一种非平衡的传送方式。为了更好的满足红外触控的要求,这里采用RS-422标准串行接口进行传输。RS-422标准全称是“平衡电压数字接口电路的电气特性”,它定义了接口电路的特性。由于接收器采用髙输入阻抗,发送驱动器比RS-232具有更强的驱动能力,故允许在相同传输线上连接多个接收节点,最多可接10个节点。即一个主设备(Master),其余为从设备(Salve,从设备之间不能通信,所以RS-422支持点对多的双向通信。RS-422的最大传输距离为4000英尺(约1219米),最大传输速率为10Mb/s。

本文中采用芯片Max3490作为RS-422的串行接口芯片。Max3490是一款工作在3.3V 电压下,传输速率可达到10M bps的RS-422发送接收器。它的引脚定义及应用电路如下图

所示:

微处理器芯片中具有11个不同功能的寄存器。这些寄存器用来实现串口上数据的接收和发送,它的基本功能框图如下

JTAG调试部分是由第20脚,第24脚,第52脚,第56脚,第60脚,第64脚来成。它们分别是TRST,TDI,TMS,TCK,TDO,RTCK。其中信号TRST作为输入,用来测试复位;信号TDI作为输入,用来测试数据的输入;信号TMS作为输入,用来测试模式的选择;信号TCK作为输入,用来测试时钟;信号TDO作为输出,用来测试数据的输出;信号RTCK作为输出,是返回的测试时钟。其电路原理图如下:

红外发射电路:

本论文中红外触摸屏采用逐一点亮红外发射管的工作方式,整个红外发射电路是通过每片74HC595扫描8支红外发射管来实现的,其中红外发射管选用EVERL1GHT公司的发射管,其电路实现如下所示:

由于红外发射管采用5V电压供电,而74HC595输出的高电平也为5V,这样在驱动红外发射管时就必须加限流电阻,以免造成芯片引脚被损坏。而发射管电性曲线图(正向电压一正向电流)可知,红外发射管驱动电压在1-1.5V变化时,电流在10-100mA间变化,因此对于10~100mA的驱动电流,限流电阻阻值可估算出来。

(SHCP)和存储时钟(STCP),都是上升沿有效。其时序如图下所示:

微处理器主要是控制这两个时钟以及数据输入端(DS)。通过数据输入端将一个脉冲写入移位寄存器,在移位时钟的上升沿可将写入的数据移入寄存器,并在存储时钟的上升沿将数据置入内部锁存器中。利用这样的特点,在移位时钟的上升沿可实现将输入的脉冲移至发射管,在存储时钟的上升沿点亮发射管。输入的脉冲会随移位时钟上升沿的到来不断的移位一直到从输出端移出。将第一个的移位锁存器的输出端与下一级的输入端相连,可将前级的脉冲移入到下一级中。因此,可实现移位锁存器的级联,同时微处理器实现了对更多的发射管的驱动,结合

以上特点,可以实现将发射管逐个点亮。整个红外发射电路的扫描过程如下图所示:

其中变量Count为被扫描的红外发射管的个数。由于是一行扫描过去的,所以当一支红外发射管被点亮后Count自加。当所有的红外发射管被逐一点亮后Count应该等于红外发射管的总数。当不等于165时说明扫描过程还没有结束,所以被置入的脉冲继续在移位时钟和存储时钟作用下扫描下一支红外发射管。

由于未上电前芯片的内部状态是随机的,所以刚一上电后所有的红外发射管并不是理想的“0”态,会出现很多支红外发射管同时被点亮。这种状态造成红外发射管的电流过大,整个系统中的驱动电压被严重拉下来,使得微处理器芯片不能正常的工作。所以必须采用大电流的电源输入,在上电后对红外发射电路进行清零处理。通过这样的处理使得芯片可以正常工作。只需要向数据端DS写入0,即可实现对红外发射电路进行清零处理。

红外接收电路:

在红外触摸屏中红外接收电路至关重要,它完成了相对应的红外发射管的光强信号的采集,得到了判断是否被触摸的基础数据。本论文中的红外接收电路是通过芯片ADS7830来实现的,

电路原理如下图所示:(只列出四组接收)

红外接收管选用EVERLIGHT(亿光)公司的光敏三极管。它是一种快速响应,高灵敏度的光电二极管,具有高速、高灵敏度的NPN型外延平而,响应波长为980nm。

ADS7830是一个带有I2C接口的8路采样通道的8位模数转换器。它的采样速率可以达到70kHz;既可以4对差分输入,也可以8路单独输入;工作在2.7V到5V的电压下;其内建参考电压为2.5V;支持标准、快速、高速二种I2C工作模式。它的结构如下图:I2C总线是双向传输的总线,在传送数据过程中共有四种类型信号,它们分别是:开始信号、结束信号、应答信号和位传送信号

1)开始信号:SCL为髙电平时,SDA山髙电平向低电平跳变,开始传送数据。

2)结束信号:SCL为髙电平时,SDA由低电平向高电平跳变,结束传送数据。

3)应答信号:接收数据的从器件在接收到8Bit数据后,向发送数据的主器件发出特定的低电平脉冲,表示巳收到数据。主器件向受控单元发出一个信号后,等待受控单元发出一个应答信号,从器件接收到应答信号后,根据情况做出判断是否要继续传递信号。若未收到应答信号,则判断为受控单兀出现问题。

4)位传送信号:在I2C总线启动后或应答信号后的第1个到8个时钟脉冲对应十一个字节的8Bit数据传送。脉冲髙电平期间,数据串行传送;低电平期间为数据准备,允许总线上数据电平变换。

5)同步时钟允许器件通过总线以不同的波特率进行通信,同时可以作为停止和重新启动串行

总线的握手方式。

由于ADS7830带有I2C接口,这样可以通过I2C总线与微处理器进行通信。同时它有8路的采样通道,即每个芯片可以采样8支红外接收管上光强信号,并进行模数转换。这样可以有效的减少驱动芯片数最,从而降低了成本。另外,在I2C总线通信时都是通过寻址I2C器件的地址来完成的,因此寻址每支红外接收管的各个通道地址的正确与否会影响到整个红外接收电路对光强信号的采集。ADS7830的地址设置如下图:

其中10010为芯片先设置好的固定的部分地址位。A1,AO作为地址输入,是根据引脚上输入为髙电平信号还是低电平信号来决定1或0。而低位是根据对芯片的读写来决定1或O命令字节中,SD为单端输入/差分输入:“0”时表示差分输入;”1”时表示单端输入。C2~CO为通道的选择,具体见表PDl,PDO为功率的选择,具体见下表:

PD1、PD0 功率选择模式表

I2C地址具体设置

接收流程如下:

需要注意的是:红外接收管与红外发射管在扫描过程中位置上能否保证时刻的一一对应,对于整个红外触摸屏是否能够正常工作起着至关重要的作用。一旦红外接收管接收到的光强信号并非是与之相对应的红外发射管,将会造成触摸判断无效。所以在每支红外发射管被点亮的时刻,便对与它位置相对应的红外接收管进行寻址,接收相应的光强信号。

电源电路:

电源在整个系统中也起着很重要的作用,将很大程度上影响整个系统是否能够正常的工作。本文中的电源电路中主要由5V和3.3V电源模块构成。

5V电压是通过外部的电源来提供,它一部分主要提供给红外发射电路的驱动芯片74HC595,并驱动所有的红外发射管。还需提供给红外接收电路的驱动芯片ADS7830。另一部分则被转换为3. 3V提供给微处理器芯片LPC2132,串口通信接口芯片Max3490。由于每支红外发射管的电流在10-100mA间变化,所以外部的电源模块必须满足输出电流为2A。在5V转换为3.3V

电路中是通过SPX1117M3和滤波电路输出得到的。其中,SPX 1117M3是Sipex公司生产的,输出电流可达800mA,输出电压的精度在士 1%以内,还具有电流限制和热保护功能。SPX1117系列的芯片有很低的静态电流,在满负载时其低压差仅为1.1V,当输出电流减少时,静态电流

随负载变化,并提高效率。转换电路如下图:

在其输入端和输出端使用一个0.1 uF及470uF的钮电容来改善SPX1117的瞬态响应和稳定

性。

高分辨率的实现:

触換屏的分辨率是通过在屏上x方向所能探测的点数与Y方向上所能探测的点数的乘积来表示的。早期红外触摸屏是根据接收管有无接收到光信号来判断是否被触換的,其分辨率则由红外管的对数决定,因此它的分辨率就等十屏的物理分辨率,即当红外触摸屏的X方向上有120对红外管,Y方向上有45对红外管时,它的分辨率为120X45。这样触換屏的分辨率比较低。但实际上当物体触換后,不同的触摸位置不仅会影响到红外接收管是否能接收到信号,会影响到其接收信号的强度有所不同。即触摸物的位置与接收的红外光信号强度有直接的对应关系。冈此如果将接收的红外光信号强度进行量化分级处理,对十接收管不仅要判断是否收到信号,还要判断出接收到的信号的具_体强度,这样即使触摸物移动非常小的距离,由十收到的信号强度发生了改变,也可探测到触摸位置,从而可以得到极高的分辨率。此时的触摸屏分辨率主要由红外管对数和每对红外管的光强量化级数决定。触摸屏坐标则由红外管的物理坐标和触換点在相应管中的坐标共同决定为了验证并得到触摸物的位置与接收的红外光信号强度的关系,本文中做了遮挡位置和接收电压的实验,实验装置如下所示:

位置与电压关系

通过曲线可以看出遮挡的位置与输出电压是一种近似的线性关系,闪此触摸物的位置与接收的红外信号强度建立起了一种线性的对应关系。基于以上的原理,在“0”状态下采集红外接收管的光强信号作为零点值,在“1”状态下采集红外接收管的光强信号作为满度值,这样将两次釆集到的红外接收管的光强归一化进行256级量化,即接收到的光强信的值的取值范围为0~255。这样得到的最小的分辨率为0.0195,即在0.0195mm的距离上即可探测到一个点。由设计的红外触摸屏的尺寸为600mmX225,所以理论上可以在屏上探测到30769X11538个点,大大提高了红外触摸屏的分辨率.但由于显示屏的分辨率为2048X768,所以只需将光强信号进行32级量化即可实现。

抗强光干扰的实现:

红外触摸屏主要依靠红外光工作,对环境光照因素的变化比较敏感。太阳光中红外光约占50%,在有太阳光的环境使用红外触換屏会受到极大干扰,在光照变化较大时会引起误动作。为了更奵增强红外触摸屏的抗光干扰的性能,现有的技术中主要釆用两种方式:一种是在电路上进行修改调整;另一种是不让或少让外界光照射在红外管,即物理防光。下面介绍几种方案:

1、脉冲方式抗干扰。红外探测采用脉冲方式,即红外发射管发射一个固定频率的信号,接收方只对这一频率进行检测。为提高抗干扰能力,对发射管和接收管均釆用相同固定频率扫描,发射管发射固定频率的信号,同时以同样频率对相对应的接收管进行信号的釆集。

2、采用差动输入滤除干扰信号,在接收管附近设少蛍同型号红外接收管接收环境光中的红外信号,对十釆集的红外脉冲和环境光中红外光的混合信号,釆用差动输入的方式滤除干扰信号。

3、对接收管可加装红外滤光片或进行环氧封装以滤除部分光干扰。红外发射管前端加装凸透镜有利十增加接收光的强度,从而增加各等级信号间强度的差值,减弱接收信号对干扰信号的“敏感度”,提高抗光干扰能力。

本文设计中为了排除周围环境光的干扰得到准确的触摸位置,在计算触摸位置时确定每对

管子的域值作为判断是否有手指触摸的依据。域值的选定对于红外触摸屏是否能够正常的工作,是否能够正确的判断触摸起着至关重要的作用。

域值的确定是通过对每对管子的“0”态和“1”态时数据釆样实现,并默认设定“0”态和“1”态时的数据之和的一半为域值。"0”态,即将所有的发射管进行一次淸零,此时的发射管都为熄火状态,理想状态下采样得到的光强转换值应全部为0;"1”态,即将所有的发射管逐个点亮,此时的发射管在某一时刻只有一支被点亮,理想状态下采样得到的是接收管接收相对应发射管的光强信号。

但在实际应用中,这两种状态的光强信号都会不同程度上受到外界光的影响。对于“0”态,所有的红外发射管都是未被点亮的,但由于外界光的干扰,接收的这些转换值并不是0,对于“1”态,红外发射管逐个点亮,由于外界光的干扰存在,使得红外接收管接收的是接收管接收相对应发射管的光强信号及外界光信号。同时,在整个扫描的过程中,外界光是实时变化的,

这样不同时刻采集到的数据和最初得到的域值相比较后就可能造成错误的触換判断,引起触摸屏的误操作。这些因素导致红外触摸屏无法正常正确的判断触換位置。

本文中主要釆用动态调节域值和安装对传播方向敏感的光准直沟道相结合的方法增强了红

外触摸屏的抗干扰能力。

具体的方法如下:

1、安装对传播方向敏感的光准直沟道进行过滤,可以实现在水平方向上光透过率很高对于倾斜方向入射的光衰减极大,尽可能的衰减外界光

2、对每支红外接收管得到的“0”态和“1”态时的光强信号的模数转换值进行归一化处理,则“0”态时的模数转换值对应值为0,"1”态时的模数转换值对应为 OxFF;

3、当触摸屏上未发生任何触換动作时,微处理器将不停的采集每支红外接收管“0”态和“1”态时的光强信号,并确定域值,作为判断是否被触換以及计算触換位置的依据;

4、当微处理器探测到发生抬手动作后,将不停的采集每支红外接收管“0"态和“1”态时的光强信号,并确定域值,作为下一次判断是否被触摸以及触換位置的依据;

利用自动量程照度计测量得到:未进行以上的抗强光处理时,红外触摸屏只能工作在低于3500勒克司的环境光下;当安装光准直沟道后,红外触摸屏可工作在7500勒克司的环境光下;当动态调节域值并结合光准直沟道后,红外触摸屏可工作在17600勒克司的环境光下。

通过以上的抗强光处理,红外触換屏的抗强光干扰能力提高了近3倍。

多触点实现:

由于在给定的时间里,触摸屏检测系统只接收唯一的一组位置坐标数据,如果在给定时间

内把两个或两个以上的触摸点都按下,则多个触摸信号就会在该时段重叠起来,釆集得到的触摸地点不是实际触摸的地点。如下图所示

A点为第一个发生触摸事件的地点,经探测后生成第一组定位坐标数据,可釆集到第一个触摸事件发生的实际地点。当用户离开A点后触摸D点生成第二组触摸信号,可以采集到第二个触摸事件的实际地点。在给定的时间里,将A点和D点都按下,则第一组信号和第二组信号就会在该时间内重叠起来,微处理器会算出多个位置坐标数据,由此得到的触摸点可能是A点、B点、C点、D点中的一个,使得触換屏不能正确地响应用户的操作。

随着触换屏技术的发展,多点触換的电阻触換屏和电容触摸屏相继问世。与此同时,在机载显示中,很多情况下需要调节局部区域的亮度或是处理局部区域的图像信号。为了实现这样的功能,需要在触換屏操作过程中必须能够进行多触点的动作来划定所需要的区域。多点触摸的红外触摸屏的开发设计迫在眉睫。现在市场上推出了几种关于红外触摸屏的多点触摸设计方案:1,设计一复杂的辅助判断电路来增强红外触摸屏对多个触摸点的判断力;

2、在红外触摸屏的外边缘额外附加一个或两个摄像头来区分多个触摸点

3、不改变硬件通过检测触摸事件发生的先后顺序来识别多个触摸点;

4、在一个扫描周期内,一个红外接收元件在不同的时刻来接收来自两个不同位置的红外发射元件来发出的光线,从而来区分多个触摸点;

5、利用同轴和离轴的发射和接收管之间的被触摸物隔断的光线,在一个扫描方向上触摸点的坐标值,在另一个方向上确定触摸点的大致坐标值并初步剔除伪触点;然后再在另一个方向上使用相同的方法,最终得到所有的触摸点的精确坐标值,同时剔除伪触摸点本文中釆用判断记录触摸的位置,然后再根据被触摸的先后顺序来剔除伪触摸点,从而得

到精确的坐标点。只体的实现方法如下:对于所示,当A点和D点同时被触摸,首先根据触摸动作在A点和D点上发生的事件上的先后差别,记录下第一个触摸动作的位置坐标,记为A点(X1,Y1),并保存这个触換点。当第二个触摸动作叠加在第一个触摸动作上时,微处理器会得到多组的位置坐标(X1, X1,X2,Y2),从而判断出有新的触摸点加入,通过比较现有的位置坐标(X1,Y1),D点的坐标不可能与A点在任一方向上平行从而排除其他的坐标(X1,Y1),(X2,Y2)的可能。由此确定另外的一个触摸点D点的坐标为(X2,Y2),

这样实现区分出了两个触摸点。

具体的工作流程如下图:

本文分别从微控制器电路、红外发射电路、红外接收电路、电源电路几个方面描述了整个红外触換屏的硬件架构,并主要阐述了红外触触屏的高分辨率、抗强光干扰、多触摸点的眞体实现方法。通过这样的硬件设计,釆集处理得到触換的位置信息,并传送给主机进行验证。

红外线传感器工作原理和技术参数

红外线传感器工作原理和技术参数 人的眼睛能看到的可见光按波长从长到短排列,依次为红、橙、黄、绿、青、蓝、紫。其中红光的波长范围为~μm;紫光的波长范围为~μm。比紫光光波长更短的光叫紫外线,比红光波长更长的光叫红外线 最广义地来说,传感器是一种能把物理量或化学量转变成便于利用的电信号的器件,红外传感器就是其中的一种。随着现代科学技术的发展,红外线传感器的应用已经非常广泛,下面结合几个实例,简单介绍一下红外线传感器的应用。 人体热释电红外传感器和应用介绍 被动式热释电红外探头的工作原理及特性: 一般人体都有恒定的体温,一般在37度,所以会发出特定波长10UM左右的红外线,被动式红外探头就是靠探测人体发射的10UM左右的红外线而进行工作的。人体发射的10UM左右的红外线通过菲尼尔滤光片增强后聚集到红外感应源上。红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,电后续电路经检验处理后即可产生报警信号。 1)这种探头是以探测人体辐射为目标的。所以热释电元件对波长为10UM左右的红外辐射必须非常敏感。 2)为了仅仅对人体的红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲尼尔滤光片,使环境的干扰受到明显的控制作用。 3)被动红外探头,其传感器包含两个互相串联或并联的热释电元。而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。 4)一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同,不能抵消,经信号处理而报警。 5)菲尼尔滤光片根据性能要求不同,具有不同的焦距(感应距离),从而产生不同的监控视场,视场越多,控制越严密。 在电子防盗、人体探测器领域中,被动式热释电红外探测器的应用非常广泛,因其价格低廉、技术性能稳定而受到广大用户和专业人士的欢迎。 红外线遥控鼠标器中的传感器 在机械式鼠标器底部有一个露出一部分的塑胶小球,当鼠标器在操作桌面上移动时,小球随之转动,在鼠标器内部装有三个滚轴与小球接触,其中有两个分别是X轴方向和Y轴方向滚轴,用来分别测量X轴方向和Y轴方向的移动量,另一个是空轴,仅起支撑作用。拖动鼠标器时,由于小球带动三个滚轴转动,X轴方向和Y轴方向滚轴又各带动一个转轴(称为译码轮)转动。译码轮(见图1)的两侧分别装有红外发光二极管和光敏传感器,组成光电耦合器。光敏传感器内部沿垂直方向排列有两个光敏晶体管A和B,如图2所示。由于译码轮有间隙,故当译码轮转动时,红外发光二极管发出的红外线时而照在光敏传感器上,时而被阻断,从而使光敏传感器输出脉冲信号。光敏晶体管A和B被安放的位置使得其光照和阻断的时间有差异,从而产生的脉冲A和脉冲B有一定的相位差,利用这种方法,就能测出鼠标器的拖动方向 照相机中的红外线传感器――夜视功能 红外夜视,就是在夜视状态下,数码摄像机会发出人们肉眼看不到的红外光线去照亮被拍摄的物体,关掉红外滤光镜,不再阻挡红外线进入CCD,红外线经物体反射后进入镜头进行成像,这时我们所看到的是由红外线反射所成的影像,而不是可见光反射所成的影像,即此时可拍摄到黑暗环境下肉眼看不到的影像。索尼数码摄像机首创了红外线夜视摄影功能,能够在全黑环境下进行拍摄,甚至连肉眼也不能分辨清楚的物体,现在也可以清晰地拍摄下来。这种夜视的特点是可以在完全没有光线的条件下进行拍摄,但由于采用的是红外摄影,无法进行彩色的还原,所以拍摄出来的画面是单色的,影像会变绿。不久之后,索尼又推出了拥有超级红外线夜视摄功能的数码摄像机,红外线功能的慢速快门为2段选择,超级红外线夜摄功能的慢速快门为自动调节,可以获得更好的影像效果。举一个大家都见过的例子,在美国空袭伊拉克时,

红外触摸屏原理

一、基本原理介绍 红外触摸屏的工作原理是在触摸屏的四周布满红外接收管和红外发射管,这些红外管在触摸屏表面呈一一对应的排列关系,形成一张由红外线布成的光网,当有物体(手指、带手套或任何触摸物体)进入红外光网阻挡住某处的红外线发射接收时,此点横竖两个方向的接收管收到的红外线的强弱就会发生变化,控制器通过了解红外线的接收情况的变化就能知道何处进行了触摸。如下图所示。

二、构成及工作流程 1、构成:红外触摸屏由三部分组成:控制器、发射电路、接收电路。 2、工作流程 工作时,控制器中的微处理器(ARM7或其它)控制驱动电路(移位锁存器)依次接通红外发 射管并同时通过地址线和数据线来寻址相应的红外接收管。当有触摸时,手指或其它物就会挡住经过该位置的横竖红外线,微处理器扫描检查时就会发现该受阻得红外线,判断可能有触摸,同时立刻换到另一坐标再扫描,如果再发现另外一轴也有一条红外线受阻,表示发现触摸,并将两个发现阻隔的红外对管位置报告给主机,经过计算判断出触摸点在屏幕的位置。其控制原理如图1所示。 3、发射电路 发射电路由移位锁存器(例如:TI公司的CD74AC164M)、3-TO-8多路输出选择器(例如:T I的74HC238D)、恒流驱动IC(例如美芯的MAX6966 、TI的ULN2803A等)、红外发射二极 管等组成。现以TI公司的CD74AC164M为例介绍发射电路工作流程。 CD74AC164M是一个8 Bit串行输入并行输出的位移锁存器。微处理器通过IO口控制移位锁存器的时钟以及数据输入端。扫描时微处理器通过IO端口将CD74AC164M的MR脚置为高电平,则CD74AC 164M会自动把输出脚:Q0置为高电平,然后送入时钟信号:CP ,则在时钟信号的上升期移位锁存器自

触摸屏的种类及工作原理

触摸屏种类及原理 随着多媒体信息查询的与日俱增,人们越来越多地谈到触摸屏,因为触摸屏不仅适用于中国多媒体信息查询的国情,而且触摸屏具有坚固耐用、反应速度快、节省空间、易于交流等许多优点。利用这种技术,我们用户只要用手指轻轻地碰计算机显示屏上的图符或文字就能实现对主机操作,从而使人机交互更为直截了当,这种技术大大方便了那些不懂电脑操作的用户。 触摸屏作为一种最新的电脑输入设备,它是目前最简单、方便、自然的一种人机交互方式。它赋予了多媒体以崭新的面貌,是极富吸引力的全新多媒体交互设备。触摸屏在我国的应用范围非常广阔,主要是公共信息的查询;如电信局、税务局、银行、电力等部门的业务查询;城市街头的信息查询;此外应用于领导办公、工业控制、军事指挥、电子游戏、点歌点菜、多媒体教学、房地产预售等。将来,触摸屏还要走入家庭。 随着使用电脑作为信息来源的与日俱增,触摸屏以其易于使用、坚固耐用、反应速度快、节省空间等优点,使得系统设计师们越来越多的感到使用触摸屏的确具有具有相当大的优越性。触摸屏出现在中国市场上至今只有短短的几年时间,这个新的多媒体设备还没有为许多人接触和了解,包括一些正打算使用触摸屏的系统设计师,还都把触摸屏当作可有可无的设备,从发达国家触摸屏的普及历程和我国多媒体信息业正处在的阶段来看,这种观念还具有一定的普遍性。事实上,触摸屏是一个使多媒体信息或控制改头换面的设备,它赋予多媒体系统以崭新的面貌,是极富吸引力的全新多媒体交互设备。发达国家的系统设计师们和我国率先使用触摸屏的系统设计师们已经清楚的知道,触摸屏对于各种应用领域的电脑已经不再是可有可无的东西,而是必不可少的设备。它极大的简化了计算机的使用,即使是对计算机一无所知的人,也照样能够信手拈来,使计算机展现出更大的魅力。解决了公共信息市场上计算机所无法解决的问题。 随着城市向信息化方向发展和电脑网络在国民生活中的渗透,信息查询都已用触摸屏实现--显示内容可触摸的形式出现。为了帮助大家对触摸屏有一个大概的了解,笔者就在这里提供一些有关触摸屏的相关知识,希望这些内容能对大家有所用处。 一、触摸屏的工作原理 为了操作上的方便,人们用触摸屏来代替鼠标或键盘。工作时,我们必须首先用手指或其它物体触摸安装在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。 二、触摸屏的主要类型

触摸屏解决方案

触摸屏查询系统解决方案 随着社会服务业竞争的加剧,改善服务方式,提高服务质量已被摆在更加重要的位置。而使用高新技术来提高用户满意度,则是各行各业用来提高社会效益和经济效益的有效方法。随着多媒体技术的不断发展,一种方便,简单的人机交互设备---多媒体触摸查询一体机开始走进人们的生活,你只要手指轻轻触摸屏幕,就会进入一个集图文,声音于一体的信息世界,它象一位忠实,耐心的朋友等待着您的咨询,它的运用不仅给计算机行家带来便利,更主要是使普通大众也能轻松自如的操作,享受高科技带来的便捷舒适。 触摸屏作为一种最新的电脑输入设备,它是目前最简单、方便、自然的一种人机交互方式。它赋予了多媒体以崭新的面貌,是极富吸引力的全新多媒体交互设备。触摸屏在我国的应用范围非常广阔,主要是公共信息的查询;如政府、电信、邮政、税务、银行、铁路、电力等部门的业务查询;城市街头的信息查询;此外应用于政府办公、工业控制、军事指挥、电子游戏、点歌点菜、多媒体教学、房地产预售等。将来,触摸屏还会走入家庭。 随着使用电脑作为信息来源的与日俱增,触摸屏以其易于使用、坚固耐用、反应速度快、节省空间等优点,使得众多用户越来越多的人感到使用触摸屏的确具有相当大的优越性。触摸屏对于各种应用领域的电脑已经是必不可少的设备。它极大的简化了计算机的使用,即使是对计算机一无所知的人,也照样能够信手拈来,使计算机展现出更大的魅力。解决了公共场所普通计算机所无法解决的问题。 随着城市向信息化方向发展和电脑网络在国民生活中的渗透,信息查询都已用触摸屏实现--显示内容可触摸的形式出现。 一、触摸屏硬件解决方案: 按照触摸屏的工作原理和传输信息的介质,我们把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声波式。 电阻式触摸屏: 这种触摸屏利用压力感应进行控制。电阻触摸屏的主要部分是一块与显示器表面紧

红外触摸屏的原理简述

红外触摸屏的原理简述 红外触摸屏技术是在屏幕四周安装红外发射管和红外接收管,形成红外光矩阵,然后分别在 横、竖两个方向上不断的扫描并探测,当触摸物阻挡红外光时进行位置判断的坐标定位技术。一般是在显示器的前而安装一个电路板框架,在电路板上四边安装对应红外发射管和红外接收管,如下图所示,白色的是红外发射管,黑色的是红外接收管,通过电路驱动红外发射管发出红外光,位置相对的接收管接收红外光信号。用户在触摸屏幕时,手指就会挡住经过该位置的横竖方向的外线,光信号的改变引起光电探测电路输出的电信号发生变化,通过对电信号处理可以对触摸点在屏幕的位置进行定位。任何对红外光不透明的触摸物体都可阻断红外线实现触摸定位。本文由红外线供应网提供 红外触摸屏的原理是在屏幕四边放置红外发射管和红外接收管,微处理器控制驱动电路依次 接通红外发射管并检查相应的红外接收管,以形成横坚交叉的红外光阵列,得到定位的信息。 本论文中以Philips公司的ARM7芯片LPC2132为微处理器,通过对移位锁存器74HC595的 控制对红外发射管的逐个扫描,同时微处理器通过12C总线寻址每个相应的红外接收管,得到相应的光强值。微处理器根据接收到的被遮挡前后的光强信号得到触摸的位置信息,并通过串口将该信息传送给主机。控制方式如下图所示:

红外鮭麦屛控制戸理微处理器电路: 微处理器在红外触摸屏硬件系统中起着核心的作用: 1、完成对红外发射电路的驱动; 2、完成对红外接收电路的驱动; 3、完成对是否被触摸的判断以及触摸位置信息的计算; 4、将触摸位置信息通过中P1传送给主机; 5、调试整个程序的运行。 本论文中采用Philips公司的ARM7芯片LPC2132作为微处理器。该芯片是基于一个支持实时仿真和嵌入式跟踪的32/16位ARM7TDMI微控制器,并带有64kB的嵌入的高速Flash 存储器。具有EmbeddedICE-RT和嵌入式跟踪接口,可实时调试;多个串行接口,包括2个16C550工业标准DART,2个高速I2C接口SP1多个32位定时器、1个10位8路ADC, 10 位DAC , PWM通道和47个GP10以及多达9个边沿或电平触发的外部中断。 这部分电路中主要包括驱动红外发射部分,驱动红外接收部分,出口通信部分,JTAG调试

四大触摸屏技术工作原理及特点分析

四大触摸屏技术工作原理及特点分析 为了操作上的方便,人们用触摸屏来代替鼠标或键盘。工作时,我们必须首先用手指或其它物体触摸安装在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。 触摸屏的主要类型 按照触摸屏的工作原理和传输信息的介质,我们把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声波式。每一类触摸屏都有其各自的优缺点,要了解那种触摸屏适用于那种场合,关键就在于要懂得每一类触摸屏技术的工作原理和特点。下面对上述的各种类型的触摸屏进行简要介绍一下: 1.电阻式触摸屏 电阻式触摸屏的工作原理 这种触摸屏利用压力感应进行控制。电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,这是一种多层的复合薄膜,它以一层玻璃或硬塑料平板作为基层,表面涂有一层透明氧化金属(透明的导电电阻)导电层,上面再盖有一层外表面硬化处理、光滑防擦的塑料层、它的内表面也涂有一层涂层、在他们之间有许多细小的(小于1/1000英寸)的透明隔离点把两层导电层隔开绝缘。当手指触摸屏幕时,两层导电层在触摸点位置就有了接触,电阻发生变化,在X 和Y两个方向上产生信号,然后送触摸屏控制器。控制器侦测到这一接触并计算出(X,Y)的位置,再根据模拟鼠标的方式运作。这就是电阻技术触摸屏的最基本的原理。电阻类触摸屏的关键在于材料科技,常用的透明导电涂层材料有:(1)ITO,氧化铟,弱导电体,特性是当厚度降到1800个埃(埃=10-10米)以下时会突然变得透明,透光率为80%,再薄下去透光率反而下降,到300埃厚度时又上升到80%。ITO是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和电容技术触摸屏的工作面就是ITO涂层。

浅谈红外线传感器的原理和应用

毕节学院

第一章绪论 ? 1.1引言 ?宇宙间的任何物体只要其温度超过零度就能产生红 外辐射,事实上同可见光一样,其辐射能够进行折射和反 射,这样便产生了红外技术,利用红外光探测器因其独有 的优越性而得到广泛的重视,并在军事和民用领域得到了 广泛的应用。军事上,红外探测用于制导、火控跟踪、警 戒、目标侦查、武器热瞄准器、舰船导航等;在民用领域, 广泛应用与工业设备监控、安全监视、救灾、遥感、交通 管理以及医学诊断技术等。红外探测就是用仪器接受被探 测物发出或者反射的红外线,从而掌握被测物所处位置的 技术。作为红外探测系统的核心期间,红外传感器(也称 为红外探测器)的研究成为一个热点。

第二章红外传感器控制的理论依据? 2.1红外传感器概念 ?定义:红外传感器(也称为红外探测器)是能将红外辐射能转换成电能的光敏器件。 ? 2.22红外传感系统分类 ?红外传感系统是用红外线为介质的测量系统,按照功能能够分成五类: ?1)辐射计,用于辐射和光谱测量; ?2)搜索和跟踪系统,用于搜索和跟踪红外目标,确定其空间位置并对它的运动进行跟踪; ?3)热成像系统,可产生整个目标红外辐射的分布图像; ?4)红外测距和通信系统; ?5)混合系统,是指以上各类系统中的两个或者多个的组合。 ? 2.23红外光简介 ?红外光是太阳光谱的一部分,红外光的最大特点就是具有光热效应,辐射热量,它是光谱中最大光热效应区。红外光一种不可见光,与所有电磁波一样,具有反射、折射、散射、干涉、 吸收等性质。红外光在真空中的传播速度为3×108m/s。红外光在介质中传播会产生衰减,在金 属中传播衰减很大,但红外辐射能透过大部分半导体和一些塑料,大部分液体对红外辐射吸收非 常大。 ?不同的气体对其吸收程度各不相同,大气层对不同波长的红外光存在不同的吸收带。红外辐射的物理本质是热辐射。物体的温度越高,辐射出来的红外线越多,红外辐射的能量就越强。研究发 现,太阳光谱各种单色光的热效应从紫色光到红色光是逐渐增大的,而且最大的热效应出现在红 外辐射的频率范围内,因此人们又将红外辐射称为热辐射或热射线。

红外触摸屏一体机原理

很多朋友都关心一个问题,也许也是你关系的一天问题,红外触摸屏一体机会不会不利于人的健康安全,特别是会不会伤害眼睛。 手机和电脑一般都是使用电阻或电容触摸屏,电阻只是类似用东西挤压,让内部两层ITO导通,产生阻值波动等信号判断位置; “英文全译”《Mobile phone and computer generally use resistive or capacitive touch screen, resistance is similar with extrusion,make the internal two ITO conduction, the resistance fluctuation signal of the;》 电容就需要手吸收一部分很微弱的电压,产生容值变动,重新判定信号位置,不同的厂商芯片处理的方式不一样; 红外触摸屏为外置框,周围有红外发射接收装置在显示器前组成红外网,通过检测遮挡实现触摸。 生活当中碰到了多种多样的触摸屏,KTV或则自助终端的大部分都用红外屏幕,所以说红外触摸屏一体机你是可以放心使用的。 触派的红外屏触摸技术先进,把客户的身体健康利益放在第一位,经过不断的测试成功、安全后才会投放到市场,这么多年来,触派的红外触摸屏一体机已经得到了许许多多的客户认可。 “英文全译”《Infrared touch screen to send touch technology advanced, the customer's health interests in the first place, through continuous testing, security will be put on the market, so many years, infrared touch sent one touch screen machine has received many customer approval.》 为了确保你的健康安全,触派建议你多多关注触派的触摸一体机,选用放心,质量好,安全的红外屏触摸一体机。 红外屏功能详细介绍: 高度的稳定性不会因时间、环境的变化产生漂移高度的适应性不受电流、电压和静电干扰,适宜某些恶劣的环境条件高透光性无中间介质,高透光性,最高可达100%使用寿命长高度耐久,不怕刮伤; 触摸密度可达,4096*4096,触控寿命极长使用特性好触摸无需力度,对触摸体无特殊要求,无论触摸物是否是硬物、触摸物是否导电,都不影响正常使用。 Touch the density, 4096*4096, touch very long service life characteristics and touch without strength, no special requirements on touch body, no matter whether is hard, touch touch is conductive, does not affect the normal use. 红外线触摸屏原理: 一般是在显示器屏幕的前面安装一个外框,外框里有电路板,在X、Y方向有排布均匀的红外发射管和红外接收管,一一对应形成横竖交叉的红外线矩阵。当有触摸时,手指或其它物体就会挡住经过该点的横竖红外线,由控制器判断出触摸点在屏幕的位置。

红外测距传感器的工作原理及使用

光电检测技术与应用 论文 题目:红外测距传感器的工作原理及使用 院系:机电工程学院 班级:测控xxxx 完成日期:2017/5/6 小组:第x组 小组成员:xxxxxxxxxx 红外测距传感器的工作原理及使用 摘要: 利用光的反射性质,将光学系统与电路系统相结合可以制作避障传感器,通过单片机的控制,可以完成智能车在运行过程中,对障碍物的处理。避障传感器基本原理:利用物体的反射性质。在一定范围内,如果没有障碍物,发射出去的红外线,因为传播距离越远而逐渐减弱,最后消失。如果有障碍物,红外线遇到障碍物,被反射到达传感器接收头。传感器检测到这一信号,就可以确认正前方有障碍物,并送给单片机,单片机进行一系列的处理分析,协调车轮或者舵机工作,完成躲避障碍物的动作。 关键字:光电检测技术、智能车、测距、红外测距传感器、单片机 一、引言 光电检测作为光学与电子学相结合而产生的一门新兴检测技术,主要包括光信息获取、光电变换、光信息测量以及测量信息的智能化处理等,具有精度高、速度快、距离远、容量大、非接触、寿命长、易于自动化和智能化等优点,在国民经济各行业中得到了迅猛的发展和广泛的应用,如光扫描、光跟踪测量,光纤测量,激光测量,红外测量,图像测量,微光、弱光测量等,是当前最主要和最具有潜力的光电信息技术。

二、光电检测技术的概念 光电检测技术是光学与电子学相结合而产生的一门新兴检测技术。它主要利用电子技术对光学信号进行检测,并进一步传递、储存、控制、计算和显示。光电检测技术从原理上讲可以检测一切能够影响光量和光特性的非电量。它可通过光学系统把待检测的非电量信息变换成为便于接受的光学信息,然后用光电探测器件将光学信息量变换成电量,并进一步经过电路放大、处理,以达到电信号输出的目的。然后采用电子学、信息论、计算机及物理学等方法分析噪声产生的原因和规律,以便于进行相应的电路改进,更好地研究被噪声淹没的微弱有用信号的特点与相关性,从而了解非电量的状态。微弱信号检测的目的是从强噪声中提取有用信号,同时提高测系统输出信号的信噪比。 光电检测技术的系统机构比较简单,分为信号的处理器,受光器,光源。在实际检测过程中,受光器在获得感知信号后,就会被反映为不同形状、颜色的信号,同时根据这些器件所处在的不同位置,就能够将他分为反射型与透过型的两种比较的模式。光电检测的媒介光应当是自然的光,例如白炽灯或者萤光灯。特别是随着这些技术的发展,光电技术也取得的非常好发展。由于投光器在发出光后,会以不一样的方式触摸这些被检测物中,直到照射到检测系统中的受光器中,同时受光器在此刺激下,会产生一定量的电流,这就是我们常说的光敏性的原件,实际生活中应用比较广泛的有三极管、二极管。 三、光电检测技术的应用 智能车方面的应用、家庭扫地机器人方面的应用:利用光的反射性质,将光学系统与电路系统相结合可以制作避障传感器,通过单片机的控制,可以完成智能车在运行过程中,对障碍物的处理。避障传感器基本原理:利用物体的反射性质。在一定范围内,如果没有障碍物,发射出去的红外线,因为传播距离越远而逐渐减弱,最后消失。如果有障碍物,红外线遇到障碍物,被反射到达传感器接收头。传感器检测到这一信号,就可以确认正前方有障碍物,并送给单片机,单片机进行一系列的处理分析,协调车轮或者舵机工作,完成躲避障碍物的动作。 四、常用光电检测器件:红外测距传感器 原理:其输出为电压数值,通过公式L?=?(6762/(9-X))-4可计算出小车与障碍物之间的距离。

触摸屏的工作原理及常见问题解析

一、什么是触摸屏 所谓触摸屏,从市场概念来讲,就是一种人人都会使用的计算机输入设备,或者说是人人都会使用的与计算机沟通的设备。不用学习,人人都会使用,是触摸屏最大的魔力,这一点无论是键盘还是鼠标,都无法与其相比。 从技术原理角度讲,触摸屏是一套透明的绝对寻址系统,首先它必须保证是透明的,因此它必须通过材料科技来解决透明问题,像数字化仪、写字板、电梯开关,它们都不是触摸屏;其次它是绝对坐标,手指摸哪就是哪,不需要第二个动作,不像鼠标,是相对定位的一套系统,我们可以注意到,触摸屏软件都不需要游标,有游标反倒影响用户的注意力,因为游标是给相对定位的设备用的,相对定位的设备要移动到一个地方首先要知道现在在何处,往哪个方向去,每时每刻还需要不停的给用户反馈当前的位置才不致于出现偏差。这些对采取绝对坐标定位的触摸屏来说都不需要;再其次就是能检测手指的触摸动作并且判断手指位置,各类触摸屏技术就是围绕“检测手指触摸”而八仙过海各显神通的。 二、触摸屏的工作原理 触摸屏做为一种特殊的计算机外设,它是目前最简单、方便、自然的一种人机交互方式。它赋予了多媒体以崭新的面貌,是极富吸引力的全新多媒体交互设备。触摸屏在我国的应用范围非常广阔,主要是公共信息的查询;如电信局、税务局、银行、电力等部门的业务查询;城市街头的信息查询;此外应用于领导办公、工业控制、军事指挥、电子游戏、点歌点菜、多媒体教学、房地产预售等。尤其是公共场合信息查询服务,它的使用与推广大大方便了人们查阅和获取各种信息。可你对触摸屏了解多少呢? 触摸屏的基本原理是,用手指或其他物体触摸安装在显示器前端的触摸屏时,所触摸的位置(以坐标形式)由触摸屏控制器检测,并通过接口(如RS-232串行口)送到CPU,从而确定输入的信息。

喷码机触摸屏的工作原理与应用

喷码机触摸屏的工作原理与应用 一、触摸屏的工作原理为了操作上的方便,人们用触摸屏来代替鼠标或键盘。工作时,我们必须首先用手指或其它物体触摸安装在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU 发来的命令并加以执行。二、触摸屏的主要类型从技术原理来区别触摸屏,可分为五个基本种类:矢量压力传感技术触摸屏、电阻技术触摸屏、电容技术触摸屏、红外线技术触摸屏、表面声波技术触摸屏。其中矢量压力传感技术触摸屏已退出历史舞台。触摸屏红外屏价格低廉,但其外框易碎,容易产生光干扰,曲面情况下失真;电容屏设计理论好,但其图象失真问题很难得到根本解决;电阻屏的定位准确,但其价格颇高,且怕刮易损。表面声波触摸屏解决了以往触摸屏的各种缺陷,清晰抗暴,适于各种场合,缺憾是屏表面的水滴、尘土会使触摸屏变的迟钝,甚至不工作。按照触摸屏的工作原理和传输信息的介质,我们把触摸屏分为四种,它们分别为电阻式、红外线式、电容感应式以及表面声波式,下面笔者就对上述的各种类型的触摸屏进行简要介绍: 1、电阻式触摸屏电阻触摸屏的屏体部分是一块与显示器表面非常配合的多层复合薄膜,由一层玻璃或有机玻璃作为基层,表面涂有一层透明的导电层(OTI,氧化铟),上面再盖有一层外表面硬化处理、光滑防刮的塑料层,它的内表面也涂有一层OTI,在两层导电层之间有许多细小(小于千分之一英寸)的透明隔离点把它们隔开绝缘。当手指接触屏幕,两层OTI 导电层出现一个接触点,因其中一面导电层接通Y轴方向的5V 均匀电压场,使得侦测层的电压由零变为非零,控制器侦测到这个接通后,进行A/D 转换,并将得到的电压值与5V 相比,即可得触摸点的Y 轴坐标,同理得出X 轴的坐标,这就是电阻技术触摸屏共同的最基本原理。电阻屏根据引出线数多少,分为四线、五线等多线电阻触摸屏。五线电阻触摸屏的A面是导电玻璃而不是导电涂覆层,导电玻璃的工艺使其的寿命得到极大的提高,并且可以提高透光率。 电阻式触摸屏的OTI 涂层比较薄且容易脆断,涂得太厚又会降低透光且形成内反射降低清晰度,OTI 外虽多加了一层薄塑料保护层,但依然容易被锐利物件所破坏;且由于经常被触动,表层OTI 使用一定时间后会出现细小裂纹,甚至变型,如其中一点的外层OTI 受破坏而断裂,便失去作为导电体的作用,触摸屏的寿命并不长久。但电阻式触摸屏不受尘埃、水、污物影响。这种触摸屏利用压力感应进行控制。它用两层高透明的导电层组成触摸屏,两层之间距离仅为2.5 微米。当手指按在触摸屏上时,该处两层导电层接触,电阻发生变化,在X 和Y 两个方向上产生信号,然后送触摸屏控制器。这种触摸屏能在恶劣环境下工作,但手感和透光性较差,适合配带手套和不能用手直接触控的场合。电阻类触摸屏的关键在于材料科技,常用的透明导电涂层材料有:A、ITO,氧化铟,弱导电体,特性是当厚度降到1800 个(埃=10-10 米)以下时会突然变得透明,透光率为80%,再薄下去透光率反而下降,到300 埃厚度时又上升到80%。ITO 是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和电容技术触摸屏的工作面就是ITO 涂层。B、镍金涂层,五线电阻触摸屏的外层导电层使用的是延展性好的镍金涂层材料,外导电层由于频繁触摸,使用延展性好的镍金材料目的是为了延长使用寿命,但是工艺成本较为高昂。镍金导电层虽然延展性好,但是只能作透明导体,不适合作为电阻触摸屏的工作面,因为它导电率高,而且金属不易做到厚度非常均匀,不宜作电压分布层,只能作为探层。 2、电容式触摸屏电容式触摸屏的构造主要是在玻璃屏幕上镀一层透明的薄膜体层,再在导体层外加上一块保护玻璃,双玻璃设计能彻底保护导体层及感应器。电容式触摸屏在

表面声波式触摸屏原理

表面声波式触摸屏原理--- 表面声波触摸屏的触摸屏部分可以是一块平面、球面或是柱面的玻璃平板,安装在CRT、LED、LCD或是等离子显示器屏幕的前面。这块玻璃平板只是一块纯粹的强化玻璃,区别于别类触摸屏技术是没有任何贴膜和覆盖层。玻璃屏的左上角和右下角各固定了竖直和水平方向的超声波发射换能器,右上角则固定了两个相应的超声波接收换能器。玻璃屏的四个周边则刻有45°角由疏到密间隔非常精密的反射条纹。 工作原理以右下角的X-轴发射换能器为例: 发射换能器把控制器通过触摸屏电缆送来的电信号转化为声波能量向左方表面传递,然后由玻璃板下边的一组精密反射条纹把声波能量反射成向上的均匀面传递,声波能量经过屏体表面,再由上边的反射条纹聚成向右的线传播给X-轴的接收换能器,接收换能器将返回的表面声波能量变为电信号。 当发射换能器发射一个窄脉冲后,声波能量历经不同途径到达接收换能器,走最右边的最早到达,走最左边的最晚到达,早到达的和晚到达的这些声波能量叠加成一个较宽的波形信号,不难看出,接收信号集合了所有在X轴方向历经长短不同路径回归的声波能量,它们在Y轴走过的路程是相同的,但在X轴上,最远的比最近的多走了两倍X轴最大距离。因此这个波形信号的时间轴反映各原始波形叠加前的位置,也就是X轴坐标。 发射信号与接收信号波形在没有触摸的时候,接收信号的波形与参照波形完全一样。当手指或其它能够吸收或阻挡声波能量的物体触摸屏幕时,X轴途经手指部位向上走的声波能量被部分吸收,反应在接收波形上即某一时刻位置上波形有一个衰减缺口。 接收波形对应手指挡住部位信号衰减了一个缺口,计算缺口位置即得触摸坐标控制器分析到接收信号的衰减并由缺口的位置判定X坐标。之后Y轴同样的过程判定出触摸点的Y坐标。除了一般触摸屏都能响应的X、Y坐标外,表面声波触摸屏还响应第三轴Z轴坐标,也就是能感知用户触摸压力大小值。其原理是由接收信号衰减处的衰减量计算得到。三轴一旦确定,控制器就把它们传给主机。 ---表面声波触摸屏特点--- 表面声波触摸屏第一大特点就是抗暴,因为表面声波触摸屏的工作面是一层看不见、打不坏的声波能量,触摸屏的基层玻璃没有任何夹层和结构应力(表面声波触摸屏可以发展到直接做在CRT表面从而没有任何“屏幕”),因此非常抗暴力使用,适合公共场所。 表面声波第二大特点就是清晰美观,因为结构少,只有一层普通玻璃,透光率和清晰度都比电容电阻触摸屏好得多。反应速度快,是所有触摸屏中反应速度最快的,使用时感觉很顺畅。 表面声波第四大特点是性能稳定,因为表面声波技术原理稳定,而表面声波触摸屏的控制器靠测量衰减时刻在时间轴上的位置来计算触摸位置,所以表面声波触摸屏非常稳定,精度也非常高,目前表面声波技术触摸屏的精度通常是4096×4096×256级力度。 表面声波触摸屏的缺点是触摸屏表面的灰尘和水滴也阻挡表面声波的传递,虽然聪明的控制卡能分辨出来,但尘土积累到一定程度,信号也就衰减得非常厉害,此时表面声波触摸屏变得迟钝甚至不工作,因此,表面声波触摸屏一方面推出防尘型触摸屏,一方面建议别忘了每年定期清洁触摸屏。 表面声波触摸屏能聪明的知道什么是尘土和水滴,什么是手指,有多少在触摸。因为:我们的手指触摸在4096×4096×256级力度的精度下,每秒48次的触摸数据不可能是纹丝不变的,而尘土或水滴就一点都不变,控制器发现一个“触摸”出现后纹丝不变超过三秒钟即自动识别为干扰物。 表面声波触摸屏还具有第三轴Z轴,也就是压力轴响应,这是因为用户触摸屏幕的力量越大,接收信号波形上的衰减缺口也就越宽越深。目在所有触摸屏中只有声波触摸屏具有能感知触摸压力这个性能,有了这个功能,每个触摸点就不仅仅是有触摸和无触摸的两个

热释电红外传感器工作原理讲解学习

1 概述 随着时代的不断进步,人们对自己所处环境的安全性提出了更高的要求,尤其是在家居安全方面,不得不时刻留意那些不速之客?现在很多小区都安装了智能报警系统,因而大大提高了小区的安全程度,有效保证了居民的人身财产安全?由于红外线是不可见光,有很强的隐蔽性和保密性,因此在防盗?警戒等安保装置中得到了广泛的应用?此外,在电子防盗?人体探测等领域中,被动式热释电红外探测器也以其价格低廉?技术性能稳定等特点而受到广大用户和专业人士的欢迎? 目前国内使用的各类防盗?保安报警器基本都是以超声波?主动式红外发射/接收以及微波等技术为基础?而这里所设计的被动式红外报警器则采用了美国的传感元件——热释电红外传感器?这种热释电红外传感器能以非接触形式检测出人体辐射的红外线,并将其转变为电压信号,同时,它还能鉴别出运动的生物与其它非生物?热释电红外传感器既可用于防盗报警装置,也可以用于自动控制?接近开关?遥测等领域?用它制作的防盗报警器与目前市场上销售的许多防盗报警器材相比,具有如下特点: ●不需要用红外线或电磁波等发射源? ●灵敏度高?控制范围大? ●隐蔽性好,可流动安装?

2 热释电红外传感器的原理特性 热释电红外传感器和热电偶都是基于热电效应原理的热电型红外传感器?不同的是热释电红外传感器的热电系数远远高于热电偶,其内部的热电元由高热电系数的铁钛酸铅汞陶瓷以及钽酸锂?硫酸三甘铁等配合滤光镜片窗口组成,其极化随温度的变化而变化?为了抑制因自身温度变化而产生的干扰该传感器在工艺上将两个特征一致的热电元反向串联或接成差动平衡电路方式,因而能以非接触式检测出物体放出的红外线能量变化并将其转换为电信号输出?热释电红外传感器在结构上引入场效应管的目的在于完成阻抗变换?由于热电元输出的是电荷信号,并不能直接使用因而需要用电阻将其转换为电压形式该电阻阻抗高达104MΩ,故引入的N沟道结型场效应管应接成共漏形式即源极跟随器来完成阻抗变换?热释电红外传感器由传感探测元?干涉滤光片和场效应管匹配器三部分组成?设计时应将高热电材料制成一定厚度的薄片,并在它的两面镀上金属电极,然后加电对其进行极化,这样便制成了热释电探测元?由于加电极化的电压是有极性的,因此极化后的探测元也是有正?负极性的? 图1是一个双探测元热释电红外传感器的结构示意图?使用时D端接电源正极,G 端接电源负极,S端为信号输出?该传感器将两个极性相反?特性一致的探测元串接在一起,目的是消除因环境和自身变化引起的干扰?它利用两个极性相反?大小相等的干扰信号在内部相互抵消的原理来使传感器得到补偿?对于辐射至传感器的红外辐射,热释电传感器通过安装在传感器前面的菲涅尔透镜将其聚焦后加至两个探测元上,从而使传感器输出电压信号? 制造热释电红外探测元的高热电材料是一种广谱材料,它的探测波长范围为0.2~2 0μm?为了对某一波长范围的红外辐射有较高的敏感度,该传感器在窗口上加装了一块

红外触摸屏的应用

红外触摸屏的应用 红外触摸屏工作原理是在紧贴屏幕前密布X、Y方向上的红外线矩阵,通过不停的扫描是否有红外线被物体阻挡检测并定位用户的触摸。如下图所示,这种触摸屏是在显示器的前面安装一个外框,外框里设计有电路板,从而在屏幕四边排布红外发射管和红外接收管,一一对应形成横竖交叉的红外线矩阵。每扫描完一圈,如果所有的红外对管通达,表示一切正常并未有触摸。当有触摸时,手指或其它物就会挡住经过该坐标位置的横竖红外线,X或Y轴触摸屏扫描时发现并确信有一条红外线受阻后,表示可能有触摸,同时立刻换到另一轴坐标再扫描,如果再发现另外一轴也有一条红外线受阻,表示发现触摸,并将两个发现阻隔的红外对管位置报告给主机,经过计算判断出触摸点在屏幕的位置。多点触摸是全部扫描完一轴坐标后再另描扫另一轴坐标,实现多点位置的判断,并把多点触摸数据送至主机进行处理。 红外触摸屏产品分外挂式和内置式两种。外挂式的安装方法非常简单,是所有触摸屏中安装最方便的,只要用胶或双面胶将框架固定在显示器前面即可。而红外对管主要有直插跟贴片式,如下图所示: 红外线触摸屏技术特点 红外触摸屏的优点是可用手指、笔或任何可阻挡光线的物体来触摸,而精度

的大小取决于所用红外对管的数量,单位数量越多代表精度越高。 红外触摸屏缺点是在球面显示器上使用时感觉不好,这是因为赖以工作的红外光栅矩阵显然要求保证在同一平面上,因此,真正感应触摸的工作平面距离弧形的显示器屏幕有较大的间隔,尤其在边角,但是这个缺点在平面显示器上不存在,比如液晶显示器。 可以说在平面显示器上使用,红外触摸屏具有相当的优势。红外线探测技术利用同一波长的红外发射管、红外接收管(简称红外对管)就能得到简单的红外线探测方法: 只要有物体阻挡住红外对管之间的连线,接收信号就急剧下降,因此红外线可以探测物体的阻挡,在防盗系统、自动感应系统、计数器等系统上广泛应用红外线若是短距离应用,根据接收信号的衰减程度还可探知阻挡程度,这就是所谓的模拟方式,模拟方式在接收端采用密集的接收管阵列,还可用于造影成像;为防止干扰,红外探测还可采用脉冲方式,即红外发射管发射一个固定频率的信号,而接收方只对这一频率进行检测,脉冲方式抗干扰能力非常强。脉冲方式如果在工作频率上调制信号,还可用于数字通信,这就是大名鼎鼎的红外线通讯,家用电器的遥控、电脑的红外通信、甚至是当今最快的光纤通信,都缘于此。红外通信对人体没有影响,兼又发射距离短没有空间污染,当今备受亲睐。本章立意触摸屏,不神游其它,但是从这一家族兴旺,也可以看出红外触摸屏前途远大。 红外线触摸屏技术难点 环境光因素,红外接收管有最小灵敏度和最大光照度之间的工作范围,但是触摸屏产品却不能限制使用范围,从黑暗的歌厅包房到海南岛高强度阳光下的户外使用,作为产品,它必须适应周围的反射、折射、干扰,红外发射管有一个发射角,接收管有较大范围的接收角,如果周围反射到一定程度,你会发现手指放在什么地方也阻挡不住信号。 要解决这些问题,选择模拟方式最大的好处是可以分析提高触摸屏的分辨率,但是抗干扰能力比不上脉冲方式;选择脉冲方式虽然抗干扰能力强,但是存在脉冲方式在接收方需要一个响应过程时间的问题,而触摸屏却要求极快的速

触摸屏控制原理

触摸屏的原理是什么 作者:来源:浏览次数:358时间:2010-04-09 09:11:05 NULL触控屏的基本原理是,用手指或其他物体触摸安装在显示器前端的触控屏时,所触摸的位置( 以坐标形式) 由触控屏控制器检测,并通过接口( 如RS-232 串行口) 送到CPU ,从而确定输入的信息。触控屏系统一般包括触控屏控制器( 卡) 和触摸检测装置两个部分。其中,触控屏控制器( 卡) 的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU ,它同时能接收CPU 发来的命令并加以执行:触摸检测装置一般安装在显示器的前端,主要作用是检测用户的触摸位置,并传送给触控屏控制卡。 1 .电阻触控屏 电阻触控屏的屏体部分是一块与显示器表面相匹配的多层复合薄膜,由一层玻璃或有机玻璃作为基层,表面涂有一层透明的导电层,上面再盖有一层外表面硬化处理、光滑防刮的塑料层,它的内表面也涂有一层透明导电层,在两层导电层之间有许多细小( 小于千分之一英寸) 的透明隔离点把它们隔开绝缘。 当手指触控屏幕时,平常相互绝缘的两层导电层就在触摸点位置有了一个接触,因其中一面导电层接通Y 轴方向的5V 均匀电压场,使得侦测层的电压由零变为非零,这种接通状态被控制器侦测到后,进行 A /D 转换,并将得到的电压值与5V 相比即可得到触摸点的Y 轴坐标,同理得出X 轴的坐标,这就是所有电阻技术触控屏共同的最基本原理。 2. 电容技术触控屏: 是利用人体的电流感应进行工作的。电容式触控屏是是一块四层复合玻璃屏,玻璃屏的内表面和夹层各涂有一层ITO ,最外层是一薄层矽土玻璃保护层, 夹层ITO 涂层作为工作面, 四个角上引出四个电极,内层ITO 为屏蔽层以保证良好的工作环境。当手指触摸在金属层上时,由于人体电场,用户和触控屏表面形成以一个耦合电容,对于高频电流来说,电容是直接导体,于是手指从接触点吸走一个很小的电流。这个电流分从触控屏的四角上的电极中流出,并且流经这四个电极的电流与手指到四角的距离成正比,控制器通过对这四个电流比例的精确计算,得出触摸点的位置。电容触控屏的特点: 对大多数的环境污染物有抗力。人体成为线路的一部分,因而漂移现象比较严重。带手套不起作用。需经常校准。不适用于金属机柜。当外界有电感和磁感的时候,会使触控屏失灵。 3. 红外触控屏 红外触控屏是利用X 、Y 方向上密布的红外线矩阵来检测并定位用户的触摸。红外触控屏在显示器的前面安装一个电路板外框,电路板在屏幕四边排布红外发射管和红外接收管,一一对应形成横竖交叉的红外线矩阵。用户在触控屏幕时,手指就会挡住经过该位置的横竖两条红外线,因而可以判断出触摸点在屏幕的位置。任何触摸物体都可改变触点上的红外线而实现触控屏操作。红外触控屏不受电流、电压和静电干扰,适宜恶劣的环境条件,红外线技术是触控屏产品最终的发展趋势。采用声学和其它材料学技术的触屏都有其难以逾越的屏障,如单一传感器的受损、老化,触摸界面怕受污染、破坏性使用,维护繁杂等等问题。红外线触控屏只要真正实现了高稳定性能和高分辨率,必将替代其它技术产品而成为触控屏市场主流。过去的红外触控屏的分辨率由框架中的红外对管数目决定,因此分辨率较低,市场上主要国内产品为32x32 、40X32 ,另外还有说红外屏对光照环境因素比较敏感,在光照变化较大时会误判甚至死机。这些正是国外非红外触控屏的国内代理商销售宣传的红外屏的弱点。而最新的技术第五代红外屏的分辨率取决于红外对管数目、扫描频率以及差值算法,分辨率已经达到了1000X720 ,至于说红外屏在光照条件下不稳定,从第二代红外触控屏开始,就已经较好的克服了抗光干扰这个弱点。第五代红外线触控屏是全新一代的智能技术产品,它实现了1000*720 高分辨率、多层次自调节和自恢复的硬件适应能力和高度智能化的判别识别,可长时间在各种恶劣环境下任意使用。并且可针对用户定制扩充功能,如网络控制、声感应、人体接近感应、用户软件加密保护、红外数据传输等。原来媒体宣传的红外触控屏另外一个主要缺点是抗暴性差,其实红外屏完全可以选用任何客户认为满意的防暴玻璃而不会增加太多的成本和影响使用性能,这是其他的触控屏所无法效仿的。

相关文档
最新文档